1
|
Ledwidge MJ, Monk J, Mason SJ, Arnould JPY. Using vessels of opportunity for determining important habitats of bottlenose dolphins in Port Phillip Bay, south-eastern Australia. PeerJ 2024; 12:e18400. [PMID: 39494272 PMCID: PMC11531264 DOI: 10.7717/peerj.18400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding species' critical habitat requirements is crucial for effective conservation and management. However, such information can be challenging to obtain, particularly for highly mobile, wide-ranging species such as cetaceans. In the absence of systematic surveys, alternative economically viable methods are needed, such as the use of data collected from platforms of opportunity, and modelling techniques to predict species distribution in un-surveyed areas. The present study used data collected by ecotourism and other vessels of opportunity to investigate important habitats of a small, poorly studied population of bottlenose dolphins in Port Phillip Bay, south-eastern Australia. Using 16 years of dolphin sighting location data, an ensemble habitat suitability model was built from which physical factors influencing dolphin distribution were identified. Results indicated that important habitats were those areas close to shipping channels and coastlines with these factors primarily influencing the variation in the likelihood of dolphin presence. The relatively good performance of the ensemble model suggests that simple presence-background data may be sufficient for predicting the species distribution where sighting data are limited. However, additional data from the center of Port Phillip Bay is required to further support this contention. Important habitat features identified in the study are likely to relate to favorable foraging conditions for dolphins as they are known to provide feeding, breeding, and spawning habitat for a diverse range of fish and cephalopod prey species. The results of the present study highlight the importance of affordable community-based data collection, such as ecotourism vessels, for obtaining information critical for effective management.
Collapse
Affiliation(s)
- Maddison J. Ledwidge
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Jacquomo Monk
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Suzanne J. Mason
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - John P. Y. Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
2
|
Nikkel E, Clements DR, Anderson D, Williams JL. Regional habitat suitability for aquatic and terrestrial invasive plant species may expand or contract with climate change. Biol Invasions 2023; 25:3805-3822. [PMID: 37854296 PMCID: PMC10579163 DOI: 10.1007/s10530-023-03139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/14/2023] [Indexed: 10/20/2023]
Abstract
The threat of invasive species to biodiversity and ecosystem structure is exacerbated by the increasingly concerning outlook of predicted climate change and other human influences. Developing preventative management strategies for invasive plant species before they establish is crucial for effective management. To examine how climate change may impact habitat suitability, we modeled the current and future habitat suitability of two terrestrial species, Geranium lucidum and Pilosella officinarum, and two aquatic species, Butomus umbellatus and Pontederia crassipes, that are relatively new invasive plant species regionally, and are currently spreading in the Pacific Northwest (PNW, North America), an area of unique natural areas, vibrant economic activity, and increasing human population. Using North American presence records, downscaled climate variables, and human influence data, we developed an ensemble model of six algorithms to predict the potential habitat suitability under current conditions and projected climate scenarios RCP 4.5, 7.0, and 8.5 for 2050 and 2080. One terrestrial species (P. officinarum) showed declining habitat suitability in future climate scenarios (contracted distribution), while the other terrestrial species (G. lucidum) showed increased suitability over much of the region (expanded distribution overall). The two aquatic species were predicted to have only moderately increased suitability, suggesting aquatic plant species may be less impacted by climate change. Our research provides a template for regional-scale modelling of invasive species of concern, thus assisting local land managers and practitioners to inform current and future management strategies and to prioritize limited available resources for species with expanding ranges. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-023-03139-8.
Collapse
Affiliation(s)
- Emma Nikkel
- Department of Geography, University of British Columbia, Vancouver, BC Canada
| | - David R. Clements
- Department of Biology, Trinity Western University, Langley, BC Canada
| | - Delia Anderson
- Department of Biology, Trinity Western University, Langley, BC Canada
| | - Jennifer L. Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
3
|
Tytar V, Nekrasova O, Pupins M, Skute A, Kirjušina M, Gravele E, Mezaraupe L, Marushchak O, Čeirāns A, Kozynenko I, Kulikova AA. Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine. J Fungi (Basel) 2023; 9:607. [PMID: 37367543 DOI: 10.3390/jof9060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Amphibians are the most threatened group of vertebrates. While habitat loss poses the greatest threat to amphibians, a spreading fungal disease caused by Batrachochytrium dendrobatidis Longcore, Pessier & D.K. Nichols 1999 (Bd) is seriously affecting an increasing number of species. Although Bd is widely prevalent, there are identifiable heterogeneities in the pathogen's distribution that are linked to environmental parameters. Our objective was to identify conditions that affect the geographic distribution of this pathogen using species distribution models (SDMs) with a special focus on Eastern Europe. SDMs can help identify hotspots for future outbreaks of Bd but perhaps more importantly identify locations that may be environmental refuges ("coldspots") from infection. In general, climate is considered a major factor driving amphibian disease dynamics, but temperature in particular has received increased attention. Here, 42 environmental raster layers containing data on climate, soil, and human impact were used. The mean annual temperature range (or 'continentality') was found to have the strongest constraint on the geographic distribution of this pathogen. The modeling allowed to distinguish presumable locations that may be environmental refuges from infection and set up a framework to guide future search (sampling) of chytridiomycosis in Eastern Europe.
Collapse
Affiliation(s)
- Volodymyr Tytar
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Oksana Nekrasova
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Mihails Pupins
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Arturs Skute
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Muza Kirjušina
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Evita Gravele
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Ligita Mezaraupe
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Oleksii Marushchak
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Andris Čeirāns
- Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, LV5400 Daugavpils, Latvia
| | - Iryna Kozynenko
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | | |
Collapse
|
4
|
Kanmaz O, Şenel T, Dalfes HN. A Modeling Framework to Frame a Biological Invasion: Impatiens glandulifera in North America. PLANTS (BASEL, SWITZERLAND) 2023; 12:1433. [PMID: 37050059 PMCID: PMC10097319 DOI: 10.3390/plants12071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Biological invasions are a major component of global environmental change with severe ecological and economic consequences. Since eradicating biological invaders is costly and even futile in many cases, predicting the areas under risk to take preventive measures is crucial. Impatiens glandulifera is a very aggressive and prolific invasive species and has been expanding its invasive range all across the Northern hemisphere, primarily in Europe. Although it is currently spread in the east and west of North America (in Canada and USA), studies on its fate under climate change are quite limited compared to the vast literature in Europe. Hybrid models, which integrate multiple modeling approaches, are promising tools for making projections to identify the areas under invasion risk. We developed a hybrid and spatially explicit framework by utilizing MaxEnt, one of the most preferred species distribution modeling (SDM) methods, and we developed an agent-based model (ABM) with the statistical language R. We projected the I. glandulifera invasion in North America, for the 2020-2050 period, under the RCP 4.5 scenario. Our results showed a predominant northward progression of the invasive range alongside an aggressive expansion in both currently invaded areas and interior regions. Our projections will provide valuable insights for risk assessment before the potentially irreversible outcomes emerge, considering the severity of the current state of the invasion in Europe.
Collapse
|
5
|
Baecher JA, Johnson SA, Roznik EA, Scheffers BR. Experimental evaluation of how biological invasions and climate change interact to alter the vertical assembly of an amphibian community. J Anim Ecol 2023; 92:875-888. [PMID: 36872563 DOI: 10.1111/1365-2656.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/17/2022] [Indexed: 03/07/2023]
Abstract
While biotic-abiotic interactions are increasingly documented in nature, a process-based understanding of how such interactions influence community assembly is lacking in the ecological literature. Perhaps the most emblematic and pervasive example of such interactions is the synergistic threat to biodiversity posed by climate change and invasive species. Invasive species often out-compete or prey on native species. Despite this long-standing and widespread issue, little is known about how abiotic conditions, such as climate change, will influence the frequency and severity of negative biotic interactions that threaten the persistence of native fauna. Treefrogs are a globally diverse group of amphibians that climb to complete life-cycle processes, such as foraging and reproduction, as well as to evade predators and competitors, resulting in frog communities that are vertically partitioned. Furthermore, treefrogs adjust their vertical position to maintain optimal body temperature and hydration in response to environmental change. Here, utilizing this model group, we designed a novel experiment to determine how extrinsic abiotic and biotic factors (changes to water availability and an introduced predator, respectively) interact with intrinsic biological traits, such as individual physiology and behaviour, to influence treefrogs' vertical niche. Our study found that treefrogs adjusted their vertical niche through displacement behaviours in accordance with abiotic resources. However, biotic interactions resulted in native treefrogs distancing themselves from abiotic resources to avoid the non-native species. Importantly, under altered abiotic conditions, both native species avoided the non-native species 33 $$ 33 $$ %- 70 % $$ 70\% $$ more than they avoided their native counterpart. Additionally, exposure to the non-native species resulted in native species altering their tree climbing behaviours by 56 % - 78 % $$ 56\%\hbox{--} 78\% $$ and becoming more vertically dynamic to avoid the non-native antagonist. Our experiment determined that vertical niche selection and community interactions were most accurately represented by a biotic-abiotic interaction model, rather than a model that considers these factors to operate in an isolated (singular) or even additive manner. Our study provides evidence that native species may be resilient to interacting disturbances via physiological adaptations to local climate and plasticity in space-use behaviours that mediate the impact of the introduced predator.
Collapse
Affiliation(s)
- J Alex Baecher
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
| | - Steve A Johnson
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Elizabeth A Roznik
- Department of Conservation and Research, Memphis Zoo, Memphis, Tennessee, USA.,North Carolina Zoo, Asheboro, North Carolina, USA
| | - Brett R Scheffers
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Balzani P, Haubrock PJ. Expanding the invasion toolbox: including stable isotope analysis in risk assessment. NEOBIOTA 2022. [DOI: 10.3897/neobiota.76.77944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Species introductions are a major concern for ecosystem functioning, socio-economic wealth, and human well-being. Preventing introductions proved to be the most effective management strategy, and various tools such as species distribution models and risk assessment protocols have been developed or applied to this purpose. These approaches use information on a species to predict its potential invasiveness and impact in the case of its introduction into a new area. At the same time, much biodiversity has been lost due to multiple drivers. Ways to determine the potential for successful reintroductions of once native but now extinct species as well as assisted migrations are yet missing. Stable isotope analyses are commonly used to reconstruct a species’ feeding ecology and trophic interactions within communities. Recently, this method has been used to predict potentially arising trophic interactions in the absence of the target species. Here we propose the implementation of stable isotope analysis as an approach for assessment schemes to increase the accuracy in predicting invader impacts as well as the success of reintroductions and assisted migrations. We review and discuss possibilities and limitations of this methods usage, suggesting promising and useful applications for scientists and managers.
Collapse
|
7
|
Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: a case study of Parthenium hysterophorus L. Trop Ecol 2021. [DOI: 10.1007/s42965-020-00135-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change. CLIMATE 2019. [DOI: 10.3390/cli7020024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The invasive species Erigeron karvinskianus or Mexican daisy is considered a significant weed that impacts native forest restoration efforts in New Zealand. Mapping the potential distribution of this species under current and future predicted climatic conditions provides managers with relevant information for developing appropriate management strategies. Using occurrences available from global and local databases, spatial distribution characteristics were analyzed using geostatistical tools in ArcMap to characterize current distribution. Species distribution modeling (SDM) using Maxent was conducted to determine the potential spatial distribution of E. karvinskianus worldwide and in New Zealand with projections into future climate conditions. Potential habitat suitability under future climatic conditions were simulated using greenhouse gas emission trajectories under the Representative Concentration Pathway (RCP) models RCP2.6, RCP4.5, RCP6.0 and RCP8.5 for years 2050 and 2070. Occurrence data were processed to minimize redundancy and spatial autocorrelation; non-correlated environmental variables were determined to minimize bias and ensure robust models. Kernel density, hotspot and cluster analysis of outliers show that populated areas of Auckland, Wellington and Christchurch have significantly greater concentrations of E. karvinskianus. Species distribution modeling results find an increase in the expansion of range with higher RCP values, and plots of centroids show a southward movement of predicted range for the species.
Collapse
|
9
|
Aguilar GD, Blanchon DJ, Foote H, Pollonais CW, Mosee AN. A performance based consensus approach for predicting spatial extent of the Chinese windmill palm ( Trachycarpus fortunei ) in New Zealand under climate change. ECOL INFORM 2017. [DOI: 10.1016/j.ecoinf.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|