1
|
deCamp AC, Corcoran MM, Fulp WJ, Willis JR, Cottrell CA, Bader DLV, Kalyuzhniy O, Leggat DJ, Cohen KW, Hyrien O, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Mahoney CR, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Mullen TM, Maenza J, Kolokythas O, Khati N, Bethony J, Roederer M, Diemert D, Koup RA, Laufer DS, McElrath JM, McDermott AB, Karlsson Hedestam GB, Schief WR. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. NPJ Vaccines 2024; 9:58. [PMID: 38467663 PMCID: PMC11384754 DOI: 10.1038/s41541-024-00811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.
Collapse
Grants
- UM1 AI144462 NIAID NIH HHS
- UM1 AI069481 NIAID NIH HHS
- UM1 AI068618 NIAID NIH HHS
- UM1 AI068635 NIAID NIH HHS
- U19 AI128914 NIAID NIH HHS
- P01 AI094419 NIAID NIH HHS
- Funding: This work was supported by the Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (CCVIMC INV-007371 to R.A.K., A.B.M., and M.J.M.; VISC INV-008017 and INV-032929 to A.C.D.; VxPDC INV-008352 and INV-007375 to IAVI; and NAC INV-007522 and INV-008813 to W.R.S.), IAVI (including IAVI 167627819 to M.J.M. and other support to W.R.S.), the IAVI Neutralizing Antibody Center (NAC) to W.R.S., National Institute of Allergy and Infectious Diseases (NIAID) P01 AI094419 (HIVRAD Optimizing HIV immunogen-BCR interactions for vaccine development") (to W.R.S.), UM1 Al100663 (Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery) and UM1 AI144462 (Scripps Consortium for HIV/AIDS Vaccine Development) (to W.R.S. and M.J.M.); and UM1AI069481 (Seattle-Lausanne CTU), U19AI128914 (HIPC), and UM1AI068618 (HVTN LC) to M.J.M.; by the Ragon Institute of MGH, MIT, and Harvard (to W.R.S.) and by the Swedish Research Council (grant #2017-00968) to GKH.
Collapse
Affiliation(s)
- Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - William J Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jordan R Willis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniel L V Bader
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oleksandr Kalyuzhniy
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David J Leggat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Abhinaya Srikanth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farhad Rahaman
- IAVI, 125 Broad Street, 9th floor, New York, NY, 10004, USA
| | | | | | - Rachael E Whaley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexis M Ruppel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia R Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Taylor
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Brown
- The Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Troy Sincomb
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tina-Marie Mullen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Nadia Khati
- Department of Radiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dagna S Laufer
- IAVI, 125 Broad Street, 9th floor, New York, NY, 10004, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - William R Schief
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Moderna Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Fakih M, Harb W, Mahadevan D, Babiker H, Berlin J, Lillie T, Krige D, Carter J, Cox C, Patel M, Parfitt L, Powell M, Rosen L. Safety and efficacy of the tumor-selective adenovirus enadenotucirev, in combination with nivolumab, in patients with advanced/metastatic epithelial cancer: a phase I clinical trial (SPICE). J Immunother Cancer 2023; 11:jitc-2022-006561. [PMID: 37094988 PMCID: PMC10151977 DOI: 10.1136/jitc-2022-006561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Novel combination therapies to overcome anti-PD-1 resistance are required. Enadenotucirev, a tumor-selective blood stable adenoviral vector, has demonstrated a manageable safety profile and ability to increase tumor immune-cell infiltration in phase I studies in solid tumors. METHODS We conducted a phase I multicenter study of intravenous enadenotucirev plus nivolumab in patients with advanced/metastatic epithelial cancer not responding to standard therapy. Co-primary objectives were safety/tolerability and maximum tolerated dose and/or maximum feasible dose (MTD/MFD) of enadenotucirev plus nivolumab. Additional endpoints included response rate, cytokine responses, and anti-tumor immune responses. RESULTS Overall, 51 heavily pre-treated patients were treated, 45/51 (88%) of whom had colorectal cancer (35/35 patients with information available were microsatellite instability-low/microsatellite stable) and 6/51 (12%) had squamous cell carcinoma of the head and neck. The MTD/MFD of enadenotucirev plus nivolumab was not reached, with the highest dose level tested (1×1012 vp day 1; 6×1012 vp days 3 and 5) shown to be tolerable. Overall, 31/51 (61%) patients experienced a grade 3-4 treatment-emergent adverse event (TEAE), most frequently anemia (12%), infusion-related reaction (8%), hyponatremia (6%), and large intestinal obstruction (6%). Seven (14%) patients experienced serious TEAEs related to enadenotucirev; the only serious TEAE related to enadenotucirev occurring in >1 patient was infusion-related reaction (n=2). Among the 47 patients included in efficacy analyses, median progression-free survival was 1.6 months, objective response rate was 2% (one partial response for 10 months), and 45% of patients achieved stable disease. Median overall survival was 16.0 months; 69% of patients were alive at 12 months. Persistent increases in Th1 and related cytokines (IFNγ, IL-12p70, IL-17A) were seen from ~day 15 in two patients, one of whom had a partial response. Among the 14 patients with matching pre-tumor and post-tumor biopsies, 12 had an increase in intra-tumoral CD8+ T-cell infiltration and 7 had increased markers of CD8 T-cell cytolytic activity. CONCLUSIONS Intravenously dosed enadenotucirev plus nivolumab demonstrated manageable tolerability, an encouraging overall survival and induced immune cell infiltration and activation in patients with advanced/metastatic epithelial cancer. Studies of next-generation variants of enadenotucirev (T-SIGn vectors) designed to further re-program the tumor microenvironment by expressing immune-enhancer transgenes are ongoing. TRIAL REGISTRATION NUMBER NCT02636036.
Collapse
Affiliation(s)
- Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Wael Harb
- Horizon Oncology Center, Lafayette, Indiana, USA
| | | | - Hani Babiker
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Jordan Berlin
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | - Lee Rosen
- UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
deCamp AC, Corcoran MM, Fulp WJ, Willis JR, Cottrell CA, Bader DLV, Kalyuzhniy O, Leggat DJ, Cohen KW, Hyrien O, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Mahoney CR, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Mullen TM, Maenza J, Kolokythas O, Khati N, Bethony J, Roederer M, Diemert D, Koup RA, Laufer DS, McElrath JM, McDermott AB, Hedestam GBK, Schief WR. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287126. [PMID: 36993183 PMCID: PMC10055468 DOI: 10.1101/2023.03.10.23287126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials. One-Sentence Summary Human genetic variation can modulate the strength of vaccine-induced broadly neutralizing antibody precursor B cell responses.
Collapse
|
4
|
Khalil DN, Prieto González-Albo I, Rosen L, Lillie T, Stacey A, Parfitt L, Soff GA. A tumor-selective adenoviral vector platform induces transient antiphospholipid antibodies, without increased risk of thrombosis, in phase 1 clinical studies. Invest New Drugs 2023; 41:317-323. [PMID: 36897458 PMCID: PMC9999314 DOI: 10.1007/s10637-023-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Tumor-selective viruses are a novel therapeutic approach for treating cancer. Tumor-Specific Immuno Gene Therapy (T-SIGn) vectors are tumor-selective adenoviral vectors designed to express immunomodulatory transgenes. Prolonged activated partial thromboplastin time (aPTT), associated with the presence of antiphospholipid antibodies (aPL), has been observed in patients with viral infections, and following administration of adenovirus-based medicines. aPL may be detected as lupus anticoagulant (LA), anti-cardiolipin (aCL) and/or anti-beta 2 glycoprotein antibodies (aβ2GPI). No subtype alone is definitive for development of clinical sequalae, however, patients who are 'triple positive' have a greater thrombotic risk. Additionally, isolated aCL and aβ2GPI IgM do not appear to add value in thrombotic association to aPL positivity, rather IgG subtypes must also be present to confer an increased risk. Here we report induction of prolonged aPTT and aPL in patients from eight Phase 1 studies who were treated with adenoviral vectors (n = 204). Prolonged aPTT (≥ Grade 2) was observed in 42% of patients, with a peak at 2-3 weeks post-treatment and resolution within ~ 2 months. Among patients with aPTT prolongation, LA, but not aCL IgG nor aβ2GPI IgG, was observed. The transience of the prolongation and discordance between positive LA and negative aCL/aβ2GPI IgG assays is not typical of a prothrombotic state. Among the patients with prolonged aPTT there was no evidence of an increased rate of thrombosis. These findings elucidate the relationship between viral exposure and aPL in the context of clinical trials. They suggest a framework in which hematologic changes can be monitored in patients receiving similar treatments.Clinical trial registration:NCT02028442, NCT02636036, NCT02028117, NCT03852511, NCT04053283, NCT05165433, NCT04830592, NCT05043714.
Collapse
Affiliation(s)
- Danny N Khalil
- Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA. .,Parker Institute for Cancer Immunotherapy, New York, NY, USA. .,Weill Cornell Medicine, New York, NY, USA.
| | | | - Lee Rosen
- UCLA Medical Center, Los Angeles, CA, USA
| | | | | | | | - Gerald A Soff
- University of Miami Health System/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
5
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
6
|
Pischel L, Patel KM, Goshua G, Omer SB. Adenovirus-Based Vaccines and Thrombosis in Pregnancy: A Systematic Review and Meta-analysis. Clin Infect Dis 2022; 75:1179-1186. [PMID: 35134164 PMCID: PMC9383370 DOI: 10.1093/cid/ciac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Rare cases of thrombosis and thrombocytopenia (thrombosis with thrombocytopenia syndrome [TTS]) have been associated with 2 coronavirus disease 2019 adenovirus vector vaccines: the ChAdOx1 nCoV-19 Vaxzevria vaccine (Oxford/AstraZeneca) and the JNJ-7836735 Johnson & Johnson vaccine (Janssen). It is unknown if TTS is a class-mediated effect of adenovirus-based vaccines or if it could worsen known hypercoagulable states. Since most cases of TTS happen in women of childbearing age, pregnancy is a crucial risk factor to assess. Understanding these risks is important for advising vaccine recipients and future adenovirus vector vaccine development. METHODS To explore the potential associations of adenovirus-based vaccine components with symptoms of TTS in the general clinical trial population and in pregnant women in clinical trials, we conducted a systematic review and meta-analysis of adenovirus-based vector vaccines to document cases of thrombocytopenia, coagulopathy, and or pregnancy from 1 January 1966 to 9 August 2021. RESULTS We found 167 articles from 159 studies of adenovirus vector-based vaccines, 123 of which targeted infectious diseases. In the general population, 20 studies reported an event of thrombocytopenia and 20 studies indicated some coagulopathy. Among pregnant women, of the 28 studies that reported a total of 1731 pregnant women, thrombocytopenia or coagulopathy were not reported. CONCLUSIONS In this systematic review and meta-analysis, there was no class-wide effect of adenovirus vector vaccines toward thrombocytopenia or coagulopathy events in the general population or in pregnant women.
Collapse
Affiliation(s)
- Lauren Pischel
- Correspondence: L. Pischel, Section of Infectious Diseases, Yale School of Medicine, 135 College St, Suite 323, New Haven, CT 06510-2483 ()
| | - Kavin M Patel
- Section of Infectious Diseases, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - George Goshua
- Section of Hematology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Health Policy and Management, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Saad B Omer
- Section of Infectious Diseases, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute of Global Health, New Haven, Connecticut, USA
- Yale School of Nursing, Orange, Connecticut, USA
| |
Collapse
|
7
|
Tsakiri M, Naziris N, Demetzos C. Innovative vaccine platforms against infectious diseases: Under the scope of the COVID-19 pandemic. Int J Pharm 2021; 610:121212. [PMID: 34687816 PMCID: PMC8527590 DOI: 10.1016/j.ijpharm.2021.121212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022]
Abstract
While classic vaccines have proved greatly efficacious in eliminating serious infectious diseases, innovative vaccine platforms open a new pathway to overcome dangerous pandemics via the development of safe and effective formulations. Such platforms play a key role either as antigen delivery systems or as immune-stimulators that induce both innate and adaptive immune responses. Liposomes or lipid nanoparticles, virus-like particles, nanoemulsions, polymeric or inorganic nanoparticles, as well as viral vectors, all belong to the nanoscale and are the main categories of innovative vaccines that are currently on the market or in clinical and preclinical phases. In this paper, we review the above formulations used in vaccinology and we discuss their connection with the development of safe and effective prophylactic vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
8
|
Affiliation(s)
- Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. .,Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.
| |
Collapse
|
9
|
Luo S, Zhang P, Liu B, Yang C, Liang C, Wang Q, Zhang L, Tang X, Li J, Hou S, Zeng J, Fu Y, Allain JP, Li T, Zhang Y, Li C. Prime-boost vaccination of mice and rhesus macaques with two novel adenovirus vectored COVID-19 vaccine candidates. Emerg Microbes Infect 2021; 10:1002-1015. [PMID: 33993845 PMCID: PMC8172228 DOI: 10.1080/22221751.2021.1931466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.
Collapse
Affiliation(s)
- Shengxue Luo
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China.,Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Chan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chaolan Liang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Qi Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Xi Tang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Department of Infection, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Jinfeng Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Shuiping Hou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Jinfeng Zeng
- Shenzhen Blood Center, Shenzhen, People's Republic of China
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Blood Center, Guangzhou, People's Republic of China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Emeritus Professor, University of Cambridge, Cambridge, UK
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuming Zhang
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Talotta R, Robertson ES. Antiphospholipid antibodies and risk of post-COVID-19 vaccination thrombophilia: The straw that breaks the camel's back? Cytokine Growth Factor Rev 2021; 60:52-60. [PMID: 34090785 PMCID: PMC8159713 DOI: 10.1016/j.cytogfr.2021.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs), present in 1–5 % of healthy individuals, are associated with the risk of antiphospholipid syndrome (APS), which is the most common form of acquired thrombophilia. APLs may appear following infections or vaccinations and have been reported in patients with COronaVIrus Disease-2019 (COVID-19). However, their association with COVID-19 vaccination is unclear. Notably, a few cases of thrombocytopenia and thrombotic events resembling APS have been reported to develop in recipients of either adenoviral vector- or mRNA-based COVID-19 vaccines. The aim of this review is therefore to speculate on the plausible role of aPLs in the pathogenesis of these rare adverse events. Adenoviral vector-based vaccines can bind platelets and induce their destruction in the reticuloendothelial organs. Liposomal mRNA-based vaccines may instead favour activation of coagulation factors and confer a pro-thrombotic phenotype to endothelial cells and platelets. Furthermore, both formulations may trigger a type I interferon response associated with the generation of aPLs. In turn, aPLs may lead to aberrant activation of the immune response with participation of innate immune cells, cytokines and the complement cascade. NETosis, monocyte recruitment and cytokine release may further support endothelial dysfunction and promote platelet aggregation. These considerations suggest that aPLs may represent a risk factor for thrombotic events following COVID-19 vaccination, and deserve further investigations.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU "Gaetano Martino", via Consolare Valeria 1, 98124, Messina, Italy.
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, 201E JP, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Affiliation(s)
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
12
|
Gonzalez SM, Taborda NA, Rugeles MT. Role of Different Subpopulations of CD8 + T Cells during HIV Exposure and Infection. Front Immunol 2017; 8:936. [PMID: 28824656 PMCID: PMC5545716 DOI: 10.3389/fimmu.2017.00936] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8+ T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8+ T cells, as evidenced in HLA-DR+ CD38− cells. CD8+ T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8+ T cells in relation with natural resistance to HIV infection and progression.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
13
|
DiCarlo JE, Deeconda A, Tsang SH. Viral Vectors, Engineered Cells and the CRISPR Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:3-27. [PMID: 29130151 DOI: 10.1007/978-3-319-63904-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.
Collapse
Affiliation(s)
- James E DiCarlo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| | - Anurag Deeconda
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|