1
|
Bosch MJ, Liang P, Sun X, Hall S, Love K, Cox D, Matsumoto T, Follett PA, Stockton DG. Avocado cultivar and tree-to-tree leaf compositional differences affect infestation severity of Pseudocysta perseae (Hemiptera: Tingidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:849-859. [PMID: 38988302 DOI: 10.1093/ee/nvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Avocado lace bug, Pseudocysta perseae (Heidemann) (Hemiptera: Tingidae), is a sap-feeding insect that feeds on the underside of avocado leaves. First observed in 2019, P. perseae has spread throughout the Hawaiian islands, causing premature leaf drop and decrease in avocado yield. Due to Hawai'i's approximately 200 cultivars comprised of all 3 avocado races with extensive racial hybrids, we were able to investigate whether certain cultivars were more prone to experiencing higher P. perseae abundances and infestations compared to others. We conducted longitudinal abundance surveys on Hawai'i Island across several common avocado varieties monitoring changes in P. perseae abundance. These surveys were supplemented with longitudinal infestation severity surveys across 4 avocado lineages (Mexican, Guatemalan, West Indian, and Guatemalan × West Indian hybrid). Additionally, we collected leaves of 'Sharwil', 'Hass', 'Kahalu'u', and 'Nishikawa' cultivars looking at associations between P. perseae abundance and cultivar, herbivory-related biomechanical traits, and soluble sugar content. We found that some cultivars, such as 'Malama', typically experience lower P. perseae abundances compared to cultivars such as 'Kahalu'u', 'Beshore', and 'Sharwil'. Guatemalan × West Indian hybrid trees were also shown to have a higher probability of experiencing more severe P. perseae infestations compared to other lineages. Lastly, soluble sugar content, specifically fructose content, had a positive effect on juvenile P. perseae abundance. These findings suggest that cultivar differences in P. perseae infestations may exist, but tree-to-tree leaf compositional differences, such as soluble sugar content, may be a large driver of variation in P. perseae abundance.
Collapse
Affiliation(s)
- Michael J Bosch
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Station, Tropical Crop Commodity Protection Research Unit, Hilo, HI, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Peishih Liang
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Station, Tropical Crop Commodity Protection Research Unit, Hilo, HI, USA
| | - Xiuxiu Sun
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Station, Tropical Crop Commodity Protection Research Unit, Hilo, HI, USA
| | - Sierra Hall
- Department of Biology, University of Hawai'i at Hilo, Hilo, HI, USA
| | - Ken Love
- Hawaii Tropical Fruit Growers, Captain Cook, HI, USA
| | - David Cox
- Kane Plantation Avocados, Hōnaunau, HI, USA
| | - Tracie Matsumoto
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Station, Tropical Crop Commodity Protection Research Unit, Hilo, HI, USA
| | - Peter A Follett
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Station, Tropical Crop Commodity Protection Research Unit, Hilo, HI, USA
| | - Dara G Stockton
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Station, Tropical Crop Commodity Protection Research Unit, Hilo, HI, USA
| |
Collapse
|
2
|
Effects of phylogeny, traits, and seasonality on invertebrate herbivory damage in a meadow community. ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Zettlemoyer MA. Leaf traits mediate herbivory across a nitrogen gradient differently in extirpated vs. extant prairie species. Oecologia 2022; 198:711-720. [PMID: 35192065 DOI: 10.1007/s00442-022-05130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
Increasing nitrogen deposition threatens many grassland species with local extinction. In addition to the direct effects of nitrogen deposition, nitrogen can indirectly affect plant populations via phenotypic shifts in plant traits that influence plant susceptibility to herbivory. Here, I test how herbivory varies across an experimental nitrogen gradient and whether differences in susceptibility to herbivory might explain patterns of local species loss. Specifically, I examine how increasing nitrogen availability in a restored prairie influences leaf traits and subsequent herbivory (by leaf-chewers like insects/small mammals versus deer) and the severity of herbivore damage on confamiliar pairs of extirpated versus extant species from Michigan prairies. Nitrogen increased herbivory by both leaf-chewers and deer as well as herbivore damage (proportion of leaves damaged). Leaf hairiness and specific leaf area affected patterns of herbivory following nitrogen addition, although patterns varied between extirpated vs. extant taxa and herbivory type. Nitrogen increased leaf hairiness. At high levels of nitrogen addition, hairy extant plants experienced less herbivory and damage than smooth-leaved plants. In contrast, hairy extirpated plants were more likely to experience leaf-chewer herbivory. Extirpated plants with thin leaves (high specific leaf area) were less likely to experience leaf-chewer herbivory; the opposite was true for extant species. Generally, extant species experienced more herbivory than locally extirpated species, particularly at high levels of nitrogen addition, suggesting that increasing herbivory under nutrient addition likely does not influence extirpation in this system. This study suggests that trait-mediated responses to nitrogen addition and herbivory differ between extant and extirpated species.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA. .,Department of Plant Biology, University of Georgia, Athens, GA, 30602-5004, USA.
| |
Collapse
|
4
|
Cotrozzi L, Conti B, Lorenzini G, Pellegrini E, Nali C. In the tripartite combination ozone-poplar-Chrysomela populi, the pollutant alters the plant-insect interaction via primary metabolites of foliage. ENVIRONMENTAL RESEARCH 2021; 201:111581. [PMID: 34174255 DOI: 10.1016/j.envres.2021.111581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3)-induced metabolic changes in leaves are relevant and may have several ecological significances. Here, variations in foliar chemistry of two poplar clones (Populus deltoides × maximowiczii, Eridano, and P. × euramericana, I-214) under a chronic O3 treatment (80 ppb, 5 h d-1 for 10 consecutive days) were investigated. The aim was to elucidate if leaf age and/or O3-sensitivity (considering Eridano and I-214 as O3-sensitive and O3-resistant, respectively) can affect suitability of poplar foliage for Chrysomela populi L. (Coleoptera Chrysomelidae), in terms of palatability. Comparing controls, only low amino acid (AA) contents were reported in Eridano [about 3- and 4-fold in mature and young leaves (ML and YL, respectively)], and all the investigated primary metabolites [i.e. water soluble carbohydrates (WSC), proteins (Prot) and AA] were higher in YL than in ML of I-214 (+23, +54 and + 20%, respectively). Ozone increased WSC only in YL of Eridano (+24%, i.e. highest values among samples; O3 effects are always reported comparing O3-treated plants with the related controls). A concomitant decrease of Prot was observed in both ML and YL of Eridano, while only in YL of I-214 (-41, -45 and -51%, respectively). In addition, O3 decreased AA in YL of Eridano and in ML of I-214 (-40 and -14%, respectively). Comparing plants maintained under charcoal-filtered air, total ascorbate (Asc) was lower in Eridano in both ML and YL (around -22%), and abscisic acid (ABA) was similar between clones; furthermore, higher levels of Asc were reported in YL than in ML of Eridano (+19%). Ozone increased Asc and ABA (about 2- and 3-fold, respectively) in both ML and YL of Eridano, as well as ABA in YL of I-214 (about 2-fold). Comparing leaves maintained under charcoal-filtered air, the choice feeding test showed that the 2nd instar larvae preferred YL, and the quantity of YL consumed was 9 and 4-fold higher than ML in Eridano and I-214, respectively. Comparing leaves exposed to O3-treatment, a significant feeding preference for YL disks was also observed, regardless of the clone. The no-choice feeding test showed that larval growth was slightly higher on untreated YL than on untreated ML (+19 and + 10% in Eridano and I-214, respectively). The body mass of larvae fed with O3-treated YL was also significantly higher than that of larvae fed with untreated YL (3- and 2-fold in Eridano and I-214). This study highlights that realistic O3 concentrations can significantly impact the host/insect interactions, a phenomenon dependent on leaf age and O3-sensitivity of the host.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy.
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
5
|
Martínez-Gonzalez I, Ruiz-Guerra B, Velázquez-Rosas N. Elevational relationship between functional leaf traits and insect herbivory in two cloud forest understory species in Mexico. ECOSCIENCE 2019. [DOI: 10.1080/11956860.2019.1645566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Betsabé Ruiz-Guerra
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, México
| | - Noé Velázquez-Rosas
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, México
| |
Collapse
|
6
|
Waterman JM, Cazzonelli CI, Hartley SE, Johnson SN. Simulated Herbivory: The Key to Disentangling Plant Defence Responses. Trends Ecol Evol 2019; 34:447-458. [DOI: 10.1016/j.tree.2019.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
|
7
|
Abstract
Secondary succession, the postdisturbance transition of herbaceous to woody-dominated ecosystems, occurs faster at lower latitudes with important ramifications for ecosystem processes. This pattern could be driven by the direct effect of temperature on tree growth; however, an alternative mechanism is tree-herb competition, which may be more intense in more fertile northern soils. We manipulated soil fertility and herbaceous species composition in identical experiments at six sites spanning the Eastern United States (30-43° N) and monitored the growth and survival of four early successional trees. Tree seedling mass 2 years after sowing was strongly associated with site differences in mean growing season temperature, regardless of species or soil treatment. The effect of temperature was twofold: seedlings grew faster in response to warmer site temperatures, but also due to the reduction of competitive interference from the herbaceous community, which was inhibited in warmer sites. Our results suggest that increasing temperatures will promote a faster transition of fields to forests in temperate ecosystems.
Collapse
|
8
|
Defossez E, Pellissier L, Rasmann S. The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol Lett 2018; 21:609-618. [PMID: 29484833 DOI: 10.1111/ele.12926] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 01/30/2023]
Abstract
Understanding the functional economics that drives plant investment of resources requires investigating the interface between plant phenotypes and the variation in ecological conditions. While allocation to defence represents a large portion of the carbon budget, this axis is usually neglected in the study of plant economic spectrum. Using a novel geometrical approach, we analysed the co-variation in a comprehensive set of functional traits related to plant growth strategies, as well as chemical defences against herbivores on all 15 Cardamine species present in the Swiss Alps. By extracting geometrical information of the functional space, we observed clustering of plants into three main syndromes. Those different strategies of growth form and defence were also distributed within distinct elevational bands demonstrating an association between the functional space and the ecological conditions. We conclude that plant strategies converge into clear syndromes that trade off abiotic tolerance, growth and defence within each elevation zone.
Collapse
Affiliation(s)
- Emmanuel Defossez
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland.,Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|