1
|
Martínez-Aranzales JR, Córdoba-Agudelo M, Pérez-Jaramillo JE. Fecal microbiome and functional prediction profiles of horses with and without crib-biting behavior: A comparative study. J Equine Vet Sci 2024; 142:105198. [PMID: 39306146 DOI: 10.1016/j.jevs.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Crib-biting is a stereotyped oral behavior with poorly understood etiology and pathophysiology. The relationship between the gut microbiome and brain function has been described in behavioral disorders such as schizophrenia, depression and anxiety in humans. In horses, studies of behavioral problems and the microbiome are very limited. This study aimed to characterize the fecal microbiome and the predicted functional profile of horses with and without aerophagia. Fecal samples were collected from 12 Colombian Creole Horses of both sexes, divided into two groups: group 1, composed of six horses with crib-biting (3 females and 3 males), average body weight of 330 ± 10 kg, age of 7.0 ± 1.2 years and body condition score (BCS) of 5/9 ± 1 and group 2, consisting of six horses without crib-biting (3 females and 3 males), average body weight of 335 ± 5 kg, age 6.5 ± 1 years and BCS of 6/9 ± 1. From each horse in both groups fecal total DNA was obtained and 16S ribosomal RNA gene amplicons were sequenced to characterize the bacterial community structure. Community structure and differential abundance analyses revealed significant differences between the two conditions (p < 0.05). Specifically, the fecal microbiota at the family level in crib-biting horses, showing a decrease in Bacteroidales and an increase in Bacillota and Clostridia, differed from that of healthy horses without crib-biting, consistent with findings from previous studies. Furthermore, metagenome prediction suggests metabolic profile changes in bacterial communities between both conditions in horses. Further studies are required to validate the role of the microbiota-gut-brain axis in the etiology of crib-biting and other abnormal and stereotyped behaviors.
Collapse
Affiliation(s)
- José R Martínez-Aranzales
- Equine Medicine and Surgery Research Line (LIMCE), CENTAURO Research Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad de Antioquia, Medellin 050010, Colombia.
| | | | - Juan E Pérez-Jaramillo
- Institute of Biology, University of Antioquia, Medellin, Colombia; Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
3
|
Kawaida MY, Maas KR, Moore TE, Reiter AS, Tillquist NM, Reed SA. Effects of astaxanthin on gut microbiota of polo ponies during deconditioning and reconditioning periods. Physiol Rep 2024; 12:e16051. [PMID: 38811348 PMCID: PMC11136553 DOI: 10.14814/phy2.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To determine the effects of astaxanthin (ASTX) supplementation on the equine gut microbiota during a deconditioning-reconditioning cycle, 12 polo ponies were assigned to a control (CON; n = 6) or supplemented (ASTX; 75 mg ASTX daily orally; n = 6) group. All horses underwent a 16-week deconditioning period, with no forced exercise, followed by a 16-week reconditioning program where physical activity gradually increased. Fecal samples were obtained at the beginning of the study (Baseline), after deconditioning (PostDecon), after reconditioning (PostRecon), and 16 weeks after the cessation of ASTX supplementation (Washout). Following DNA extraction from fecal samples, v4 of 16S was amplified and sequenced to determine operational taxonomic unit tables and α-diversity and β-diversity indices. The total number of observed species was greater at Baseline than PostDecon, PostRecon, and Washout (p ≤ 0.02). A main effect of ASTX (p = 0.01) and timepoint (p = 0.01) was observed on β-diversity, yet the variability of timepoint was greater (13%) than ASTX (6%), indicating a greater effect of timepoint than ASTX. Deconditioning and reconditioning periods affected the abundance of the Bacteroidetes and Fibrobacteres phyla. Physical activity and ASTX supplementation affect the equine gut microbiome, yet conditioning status may have a greater impact.
Collapse
Affiliation(s)
- Mia Y. Kawaida
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Kendra R. Maas
- Microbial Analysis, Resources, and ServicesUniversity of ConnecticutStorrsConnecticutUSA
| | - Timothy E. Moore
- Statistical Consulting Services, Center for Open Research Resources and EquipmentUniversity of ConnecticutStorrsConnecticutUSA
| | - Amanda S. Reiter
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Sarah A. Reed
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
4
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Carrillo Heredero AM, Sabbioni A, Asti V, Ablondi M, Summer A, Bertini S. Fecal microbiota characterization of an Italian local horse breed. Front Vet Sci 2024; 11:1236476. [PMID: 38425839 PMCID: PMC10902133 DOI: 10.3389/fvets.2024.1236476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
The Bardigiano horse is a traditional native Italian breed with a rich history and peculiar characteristics. Local breeds are proven to have unique genetic traits developed over generations to adapt to defined geographical regions and/or conditions. The specific microbial communities that coexist within these animals are unraveled by studying their microbiota, which permits a further step in the characterization of local heritage. This work aimed to characterize Bardigiano horse fecal microbiota composition. The data obtained were then compared with published data of a mix of athlete breeds to evaluate potential differences among local and specialized breeds. The study involved 11 Bardigiano mares between 3 and 4 years of age, from which stool was sampled for the study. Samples were processed for 16S rRNA sequencing. Data obtained were analyzed and plotted using R, RStudio, and FastTree software. The samples analyzed were similar to what literature has reported on horses of other breeds and attitudes at higher taxonomic levels (from phylum to genera). While at lower taxonomic levels, the difference was more marked highlighting specific families found in the Bardigiano breed only. Weight, province of origin, and breeding sites significantly affected microbiota composition (p-value ≤0.02, p-value ≤0.04, and p-value ≤0.05, respectively). The comparison with athlete breed showed a significant difference confirming that animal and environmental factors are crucial in determining fecal microbiota composition (p-value <0.001). Understanding the microbiota composition in local breeds like the Bardigiano horse is crucial for preserving biodiversity, managing animal health, and promoting sustainable farming practices.
Collapse
Affiliation(s)
| | | | - Vittoria Asti
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
6
|
Leduc L, Costa M, Leclère M. The Microbiota and Equine Asthma: An Integrative View of the Gut-Lung Axis. Animals (Basel) 2024; 14:253. [PMID: 38254421 PMCID: PMC10812655 DOI: 10.3390/ani14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Both microbe-microbe and host-microbe interactions can have effects beyond the local environment and influence immunological responses in remote organs such as the lungs. The crosstalk between the gut and the lungs, which is supported by complex connections and intricate pathways, is defined as the gut-lung axis. This review aimed to report on the potential role of the gut-lung gut-lung axis in the development and persistence of equine asthma. We summarized significant determinants in the development of asthma in horses and humans. The article discusses the gut-lung axis and proposes an integrative view of the relationship between gut microbiota and asthma. It also explores therapies for modulating the gut microbiota in horses with asthma. Improving our understanding of the horse gut-lung axis could lead to the development of techniques such as fecal microbiota transplants, probiotics, or prebiotics to manipulate the gut microbiota specifically for improving the management of asthma in horses.
Collapse
Affiliation(s)
- Laurence Leduc
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marcio Costa
- Veterinary Department of Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mathilde Leclère
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
7
|
Cullen JMA, Shahzad S, Dhillon J. A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions. Front Physiol 2023; 14:1292673. [PMID: 38187136 PMCID: PMC10770260 DOI: 10.3389/fphys.2023.1292673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024] Open
Abstract
The gut microbiome, hosting a diverse microbial community, plays a pivotal role in metabolism, immunity, and digestion. While the potential of exercise to influence this microbiome has been increasingly recognized, findings remain incongruous. This systematic review examined the effects of exercise on the gut microbiome of human and animal models. Databases (i.e., PubMed, Cochrane Library, Scopus, and Web of Science) were searched up to June 2022. Thirty-two exercise studies, i.e., 19 human studies, and 13 animal studies with a minimum of two groups that discussed microbiome outcomes, such as diversity, taxonomic composition, or microbial metabolites, over the intervention period, were included in the systematic review (PROSPERO registration numbers for human review: CRD42023394223). Results indicated that over 50% of studies found no significant exercise effect on human microbial diversity. When evident, exercise often augmented the Shannon index, reflecting enhanced microbial richness and evenness, irrespective of disease status. Changes in beta-diversity metrics were also documented with exercise but without clear directionality. A larger percentage of animal studies demonstrated shifts in diversity compared to human studies, but without any distinct patterns, mainly due to the varied effects of predominantly aerobic exercise on diversity metrics. In terms of taxonomic composition, in humans, exercise usually led to a decrease in the Firmicutes/Bacteroidetes ratio, and consistent increases with Bacteroides and Roseburia genera. In animal models, Coprococcus, another short chain fatty acid (SCFA) producer, consistently rose with exercise. Generally, SCFA producers were found to increase with exercise in animal models. With regard to metabolites, SCFAs emerged as the most frequently measured metabolite. However, due to limited human and animal studies examining exercise effects on microbial-produced metabolites, including SCFAs, clear patterns did not emerge. The overall risk of bias was deemed neutral. In conclusion, this comprehensive systematic review underscores that exercise can potentially impact the gut microbiome with indications of changes in taxonomic composition. The significant variability in study designs and intervention protocols demands more standardized methodologies and robust statistical models. A nuanced understanding of the exercise-microbiome relationship could guide individualized exercise programs to optimize health. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=394223, identifier CRD42023394223.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Arnold CE, Pilla R. What Is the Microbiota and What Is Its Role in Colic? Vet Clin North Am Equine Pract 2023:S0749-0739(23)00016-0. [PMID: 37121786 DOI: 10.1016/j.cveq.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The fecal microbiome of the horse is reflective of the large colon and plays an important role in the health of the horse. The microbes of the gastrointestinal tract digest fiber and produce energy for the host. Healthy horses have Firmicutes, Bacteroidetes, and Verrucromicrobia as the most common phyla. During gastrointestinal disease such as colic or colitis, the microbiome shows less diversity and changes in bacterial community composition.
Collapse
Affiliation(s)
- Carolyn E Arnold
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Street, Amarillo, Texas 79106, USA.
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Bustamante CC, de Paula VB, Rabelo IP, Fernandes CC, Kishi LT, Canola PA, Lemos EGDM, Valadão CAA. Effects of Starch Overload and Cecal Buffering on Fecal Microbiota of Horses. Animals (Basel) 2022; 12:ani12233435. [PMID: 36496956 PMCID: PMC9737938 DOI: 10.3390/ani12233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Starch overload in horses causes gastrointestinal and metabolic disorders that are associated with microbiota changes. Therefore, we identified the fecal microbiota and hypothesized that intracecal injection of alkaline solution (buffer; Mg(OH)2 + Al(OH)3) could stabilize these microbiota and clinical changes in horses submitted to corn starch overload. Ten crossbred horses (females and geldings) were allocated to group I (water−saline and starch−buffer treatments) and group II (water−buffer and starch−saline treatments). Clinical signs, gross analysis of the feces, and fecal microbiota were evaluated through 72 h (T0; T8; T12; T24; T48; T72). Corn starch or water were administrated by nasogastric tube at T0, and the buffer injected into the cecum at T8 in starch−buffer and water−buffer treatments. Starch overload reduced the richness (p < 0.001) and diversity (p = 0.001) of the fecal microbiota. However, the starch−buffer treatment showed greater increase in amylolytic bacteria (Bifidobacterium 0.0% to 5.6%; Lactobacillus 0.1% to 7.4%; p < 0.05) and decrease in fibrolytic bacteria (Lachnospiraceae 10.2% to 5.0%; Ruminococcaceae 11.7% to 4.2%; p < 0.05) than starch−saline treatment. Additionally, animals that received starch−buffer treatment showed more signs of abdominal discomfort and lameness associated with dysbiosis (amylolytic r > 0.5; fribolytic r < 0.1; p < 0.05), showing that cecal infusion of buffer did not prevent, but intensified intestinal disturbances and the risk of laminitis.
Collapse
Affiliation(s)
- Caio C. Bustamante
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Vanessa B. de Paula
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Isabela P. Rabelo
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Camila C. Fernandes
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Luciano T. Kishi
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Paulo A. Canola
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Eliana Gertrudes de M. Lemos
- Department of Technology, Biochemistry of Microorganisms and Plants Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Carlos Augusto A. Valadão
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
10
|
Fecal Microbiota Comparison between Healthy Teaching Horses and Client-Owned Horses. J Equine Vet Sci 2022; 118:104105. [PMID: 36058504 DOI: 10.1016/j.jevs.2022.104105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to compare the fecal microbiota of 2 healthy teaching horse herds with that of client-owned horses from the same geographic areas. The fecal microbiota of client-owned horses from Ontario Canada (n = 15) and Florida, USA (n = 11) was compared with that teaching horses from the University of Guelph, Ontario, Canada (n = 10) and the University of Florida, Florida, USA (n = 15). The fecal microbiota was characterized by sequencing of bacterial DNA using the V4 hypervariable region of the 16S rRNA gene. The diversity (inverse Simpson index) of the fecal microbiota was significantly higher in teaching than client owned horses from the same geographical area (P < 0.05). The community membership (Jaccard Index) and structure (Yue and Clayton index) of teaching horses was also significantly different from that of client owned horses from the same geographical area (AMOVA P < 0.001). The bacterial membership and structure of the fecal microbiota of Ontario and Florida teaching horses were significantly different, while the bacterial membership, but not the structure of Ontario and Florida client owned horses was significantly different (AMOVA P < 0.001). In all 4 groups of healthy horses, Lachnospiraceae, Ruminococcaceae, Bacteroidales, Clostridiales, and Treponema were detected in high relative abundance. The fecal microbiota of healthy horses from teaching herds kept in the same environment with identical management practices differs significantly from that of horses housed in different facilities with dissimilar management practices. Our results suggest an effect of the environment and management practices on the gastrointestinal microbiota. Researchers should attempt to include healthy horses from the same farm with similar management as control groups when comparing with diseased horses.
Collapse
|
11
|
Arnold CE, Pilla R, Chaffin MK, Leatherwood JL, Wickersham TA, Callaway TR, Lawhon SD, Lidbury JA, Steiner JM, Suchodolski JS. The effects of signalment, diet, geographic location, season, and colitis associated with antimicrobial use or Salmonella infection on the fecal microbiome of horses. J Vet Intern Med 2021; 35:2437-2448. [PMID: 34268795 PMCID: PMC8478058 DOI: 10.1111/jvim.16206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The fecal microbiome of healthy horses may be influenced by signalment, diet, environmental factors, and disease. OBJECTIVES To assess the effects of age, breed, sex, geographic location, season, diet, and colitis caused by antibiotic use (antimicrobial-associated diarrhea [AAD]) and Salmonella infection on fecal microbiota. ANIMALS Healthy horses (n = 80) were sampled from nonhospital environments across multiple geographical locations in the United States. Horses with AAD (n = 14) were defined as those that developed diarrhea secondary to antimicrobial use. Horses with Salmonella infection (n = 12) were presented with spontaneous onset of colitis and subsequently tested positive on Salmonella quantitative polymerase chain reaction. All horses were >1 year of age and stratified by a dietary scale that included forages (pasture and hay) and concentrates grouped by percentage of fiber and amount. METHODS Illumina sequencing of 16S rRNA genes was performed on fecal DNA. RESULTS Healthy horses fed higher amounts of grain clustered separately from those fed lower amounts of grain (analysis of similarities [ANOSIM], R = 0.356-0.385, Q = 0.002). Horses with AAD and Salmonella had decreased richness and evenness compared to healthy horses (P < .05). Univariable analysis of the 3 groups identified increases in Bacteroidetes (Q = 0.002) and Protebacteria (Q = 0.001) and decreases in Verrucomicrobia (Q = 0.001) in AAD horses whereas Salmonella horses had less Firmicutes (Q = 0.001) when compared to healthy horses. CONCLUSIONS AND CLINICAL IMPORTANCE Although the amount of grain in the diet had some impact on the fecal microbiome, colitis had a significantly larger influence. Horses with ADD have a more severe dysbiosis than do horses with Salmonella.
Collapse
Affiliation(s)
- Carolyn E Arnold
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - M Keith Chaffin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Tryon A Wickersham
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jonathan A Lidbury
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Joerg M Steiner
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
The Equine Faecal Microbiota of Healthy Horses and Ponies in The Netherlands: Impact of Host and Environmental Factors. Animals (Basel) 2021; 11:ani11061762. [PMID: 34204691 PMCID: PMC8231505 DOI: 10.3390/ani11061762] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Several studies have described the bacterial composition in the intestines of horses, and several factors of influence have been detected. Variation in the results between studies, however, is substantial. Therefore, the current study aimed to study the bacterial composition in the faeces of healthy horses and ponies kept under standard housing and management condition in The Netherlands. Seventy-nine horses and ponies originating from two farms were included. Several factors, such as location, age, the season of sampling, horse type (horses vs. ponies) and pasture access significantly affected the bacterial composition. The current study provides important baseline information on variation in the bacterial composition in healthy horses and ponies under standard housing and management conditions. The aforementioned factors identified in this study to affect the bacterial population of the gut should be considered in future studies regarding the bacterial population of the equine gut. Abstract Several studies have described the faecal microbiota of horses and the factors that influence its composition, but the variation in results is substantial. This study aimed to investigate the microbiota composition in healthy equids in The Netherlands under standard housing and management conditions and to evaluate the effect of age, gender, horse type, diet, pasture access, the season of sampling and location on it. Spontaneously produced faecal samples were collected from the stall floor of 79 healthy horses and ponies at two farms. The validity of this sampling technique was evaluated in a small pilot study including five ponies showing that the microbiota composition of faecal samples collected up to 6 h after spontaneous defaecation was similar to that of the samples collected rectally. After DNA extraction, Illumina Miseq 16S rRNA sequencing was performed to determine microbiota composition. The effect of host and environmental factors on microbiota composition were determined using several techniques (NMDS, PERMANOVA, DESeq2). Bacteroidetes was the largest phylum found in the faecal microbiota (50.1%), followed by Firmicutes (28.4%). Alpha-diversity and richness decreased significantly with increasing age. Location, age, season, horse type and pasture access had a significant effect on beta-diversity. The current study provides important baseline information on variation in faecal microbiota in healthy horses and ponies under standard housing and management conditions. These results indicate that faecal microbiota composition is affected by several horse-related and environment-related factors, and these factors should be considered in future studies of the equine faecal microbiota.
Collapse
|
13
|
Hesta M, Costa M. How Can Nutrition Help with Gastrointestinal Tract-Based Issues? Vet Clin North Am Equine Pract 2021; 37:63-87. [PMID: 33820610 DOI: 10.1016/j.cveq.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Many horses are fed differently than their wild ancestors. They often have limited access to pasture and are fed conserved forage and concentrates rich in starch and sugars, in only 2 meals per day. Feeding practices in contrast to natural feeding behavior can lead to gastrointestinal issues. Standard nutritional evaluation is warranted because of its important role in prevention and in treatment and management of diseases. When medical and nutritional treatments are combined, success rates are higher. New techniques to characterize equine microbiota have been used, allowing for microbiota manipulation to prevent and treat intestinal diseases.
Collapse
Affiliation(s)
- Myriam Hesta
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B9820, Belgium.
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Canada
| |
Collapse
|
14
|
Boshuizen B, Moreno de Vega CV, De Maré L, de Meeûs C, de Oliveira JE, Hosotani G, Gansemans Y, Deforce D, Van Nieuwerburgh F, Delesalle C. Effects of Aleurone Supplementation on Glucose-Insulin Metabolism and Gut Microbiome in Untrained Healthy Horses. Front Vet Sci 2021; 8:642809. [PMID: 33912605 PMCID: PMC8072273 DOI: 10.3389/fvets.2021.642809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022] Open
Abstract
Aleurone, a layer of the bran fraction, is deemed to be responsible for the positive health effects associated with the consumption of whole-grain products. Studies on rodents, pigs, and humans report beneficial effects of aleurone in five main areas: the reduction of oxidative stress, immunomodulatory effects, modulation of energy management, digestive health, and the storage of vitamins and minerals. Our study is the first aleurone supplementation study performed in horses. The aim of this study was to investigate the effect of an increase in the dose levels of aleurone on the postprandial glucose-insulin metabolism and the gut microbiome in untrained healthy horses. Seven adult Standardbred horses were supplemented with four different dose levels of aleurone (50, 100, 200, and 400 g/day for 1 week) by using a Latin square model with a 1-week wash out in between doses. On day 7 of each supplementation week, postprandial blood glucose-insulin was measured and fecal samples were collected. 16S ribosomal RNA (rRNA) gene sequencing was performed and QIIME2 software was used for microbiome analysis. Microbial community function was assessed by using the predictive metagenome analysis tool Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and using the Metacyc database of metabolic pathways. The relative abundancies of a pathway were analyzed by using analysis of composition of microbiomes (ANCOM) in R. There was a significant dose-dependent increase in the postprandial time to peak of glucose (p = 0.030), a significant delay in the time to peak of insulin (p = 0.025), and a significant decrease in both the insulin peak level (p = 0.049) and insulin area under the curve (AUC) (p = 0.019) with increasing dose levels of aleurone, with a consideration of 200 g being the lowest significant dose. Alpha diversity and beta diversity of the fecal microbiome showed no significant changes. Aleurone significantly decreased the relative abundance of the genera Roseburia, Shuttleworthia, Anaerostipes, Faecalibacter, and Succinovibrionaceae. The most pronounced changes in the relative abundance at phyla level were seen in Firmicutes and Verrucomicrobia (downregulation) and Bacteroidetes and Spirochaetes (upregulation). The PICRUSt analysis shows that aleurone induces a downregulation of the degradation of L-glutamate and taurine and an upregulation of the three consecutive pathways of the phospholipid membrane synthesis of the Archaea domain. The results of this study suggest a multimodal effect of aleurone on glucose-insulin metabolism, which is most likely to be caused by its effect on feed texture and subsequent digestive processing; and a synergistic effect of individual aleurone components on the glucose-insulin metabolism and microbiome composition and function.
Collapse
Affiliation(s)
- Berit Boshuizen
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lorie De Maré
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Small Animals and Horses, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Constance de Meeûs
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Catherine Delesalle
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
15
|
Górniak W, Cholewińska P, Szeligowska N, Wołoszyńska M, Soroko M, Czyż K. Effect of Intense Exercise on the Level of Bacteroidetes and Firmicutes Phyla in the Digestive System of Thoroughbred Racehorses. Animals (Basel) 2021; 11:ani11020290. [PMID: 33498857 PMCID: PMC7910997 DOI: 10.3390/ani11020290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/28/2022] Open
Abstract
Exercise significantly affects the body of both animals and humans, including the composition of the digestive microbiome. This study aimed to determine the changes in the composition of the most numerous bacterial phyla (Firmicutes and Bacteroidetes, as well as the level of the Lactobacillaceae family) in the digestive system of horses under the influence of physical effort. The study included a group of 17 Thoroughbred racehorses at the age of 3 years, fed the same forage, from whom feces samples were collected individually before and 48 h after physical effort. The obtained samples were subjected to DNA isolation and RT-PCR analysis. The results showed a significant increase in the level of both phyla after exercise compared to the state before physical effort; there were no such differences in the level of facultative aerobes, i.e., the Lactobacillaceae family (although a decreasing tendency was found after exercise). In addition, the analysis of the level of the studied phyla indicates individual differences in horses' response to the effort.
Collapse
Affiliation(s)
- Wanda Górniak
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland
- Correspondence:
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| | - Natalia Szeligowska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| | - Magdalena Wołoszyńska
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wroclaw, Poland;
| | - Maria Soroko
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| |
Collapse
|
16
|
Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan MP, Lansade L. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 2020; 10:8311. [PMID: 32433513 PMCID: PMC7239938 DOI: 10.1038/s41598-020-65444-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
We simultaneously measured the fecal microbiota and multiple environmental and host-related variables in a cohort of 185 healthy horses reared in similar conditions during a period of eight months. The pattern of rare bacteria varied from host to host and was largely different between two time points. Among a suite of variables examined, equitation factors were highly associated with the gut microbiota variability, evoking a relationship between gut microbiota and high levels of physical and mental stressors. Behavioral indicators that pointed toward a compromised welfare state (e.g. stereotypies, hypervigilance and aggressiveness) were also associated with the gut microbiota, reinforcing the notion for the existence of the microbiota-gut-brain axis. These observations were consistent with the microbiability of behaviour traits (> 15%), illustrating the importance of gut microbial composition to animal behaviour. As more elite athletes suffer from stress, targeting the microbiota offers a new opportunity to investigate the bidirectional interactions within the brain gut microbiota axis.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Alice Ruet
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| | - Allison Clark
- Health Science Department, Open University of Catalonia, 08018, Barcelona, Spain
| | | | - Yuliaxis Ramayo-Caldas
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Elisa Crisci
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Samuel Pennarun
- US UMR 1426, INRAE, Genomic platform, 31326, Castanet-Tolosan, France
| | - Sophie Dhorne-Pollet
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Aline Foury
- University of Bordeaux, INRAE, NutriNeuro UMR 1286, 33076, Bordeaux, France
| | | | - Léa Lansade
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| |
Collapse
|
17
|
Transporting and Exercising Unconditioned Horses: Effects on Microflora Populations. J Equine Vet Sci 2020; 90:102988. [PMID: 32534767 DOI: 10.1016/j.jevs.2020.102988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
The objective of this study was to determine if transportation and exercise stress in horses affect the microflora populations in the equine hindgut. Four horses were subjected to three transport periods (0, 3, and 6 hours) with a 7-d rest period between each transport. Horses were fed 0.91 kg/day of Purina Impact All Stages 12% and had ad libitum access to Cynodon dactylon (Coastal Bermudagrass) hay. Fecal samples were collected before (0 hours) and after (48 hours) transport. In addition, three horses underwent a different standardized exercise test with a 7-d rest period between each exercise. Standardized exercise test intensity was determined by heart rate to validate if the horse was in aerobic or anaerobic work. The protocol for fecal sample collection after exercise was the same as for transport. Prokaryotic community profiling was conducted by 16S metagenomic analysis. After DNA evaluation, differences were found in the microbiome at transport 0 hours and grouped transport 3 hours time 48 and transport 6 hours time 48 (PERMANOVA P = .037) where Bacteroidetes increased 48 hours after transport and Firmicutes decreased 48 hours after transport. Exercise microbial communities showed no difference in either alpha or beta diversity when compared with controls (0 hours). In the present study, difference in microflora may have resulted from stress duration of transport rather than stress duration of exercise.
Collapse
|
18
|
Garber A, Hastie P, Murray JA. Factors Influencing Equine Gut Microbiota: Current Knowledge. J Equine Vet Sci 2020; 88:102943. [PMID: 32303307 DOI: 10.1016/j.jevs.2020.102943] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Gastrointestinal microbiota play a crucial role in nutrient digestion, maintaining animal health and welfare. Various factors may affect microbial balance often leading to disturbances that may result in debilitating conditions such as colic and laminitis. The invention of next-generation sequencing technologies and bioinformatics has provided valuable information on the effects of factors influencing equine gut microbiota. Among those factors are nutrition and management (e.g., diet, supplements, exercise), medical substances (e.g., antimicrobials, anthelmintics, anesthetics), animal-related factors (breed and age), various pathological conditions (colitis, diarrhea, colic, laminitis, equine gastric ulcer syndrome), as well as stress-related factors (transportation and weaning). The aim of this review is to assimilate current knowledge on equine microbiome studies, focusing on the effect of factors influencing equine gastrointestinal microbiota. Decrease in microbial diversity and richness leading to decrease in stability; decrease in Lachnospiraceae and Ruminococcaceae family members, which contribute to gut homeostasis; increase in Lactobacillus and Streptococcus; decrease in lactic acid utilizing bacteria; decrease in butyrate-producing bacteria that have anti-inflammatory properties may all be considered as a negative change in equine gut microbiota. Shifts in Firmicutes and Bacteroidetes have often been observed in the literature in response to certain treatments or when describing healthy and unhealthy animals; however, these shifts are inconsistent. It is time to move forward and use the knowledge now acquired to start manipulating the microbiota of horses.
Collapse
Affiliation(s)
- Anna Garber
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | - Peter Hastie
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jo-Anne Murray
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lübke-Becker A, Günther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 2019; 1:14. [PMID: 33499951 PMCID: PMC7807895 DOI: 10.1186/s42523-019-0013-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the complex interactions of microbial communities including bacteria, archaea, parasites, viruses and fungi of the gastrointestinal tract (GIT) associated with states of either health or disease is still an expanding research field in both, human and veterinary medicine. GIT disorders and their consequences are among the most important diseases of domesticated Equidae, but current gaps of knowledge hinder adequate progress with respect to disease prevention and microbiome-based interventions. Current literature on enteral microbiomes mirrors a vast data and knowledge imbalance, with only few studies tackling archaea, viruses and eukaryotes compared with those addressing the bacterial components.Until recently, culture-dependent methods were used for the identification and description of compositional changes of enteral microorganisms, limiting the outcome to cultivatable bacteria only. Today, next generation sequencing technologies provide access to the entirety of genes (microbiome) associated with the microorganisms of the equine GIT including the mass of uncultured microbiota, or "microbial dark matter".This review illustrates methods commonly used for enteral microbiome analysis in horses and summarizes key findings reached for bacteria, viruses and fungi so far. Moreover, reasonable possibilities to combine different explorative techniques are described. As a future perspective, knowledge expansion concerning beneficial compositions of microorganisms within the equine GIT creates novel possibilities for early disorder diagnostics as well as innovative therapeutic approaches. In addition, analysis of shotgun metagenomic data enables tracking of certain microorganisms beyond species barriers: transmission events of bacteria including pathogens and opportunists harboring antibiotic resistance factors between different horses but also between humans and horses will reach new levels of depth concerning strain-level distinctions.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | | | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Sabita D Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Günther
- Pharmaceutical Biology Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
20
|
Massacci FR, Clark A, Ruet A, Lansade L, Costa M, Mach N. Inter-breed diversity and temporal dynamics of the faecal microbiota in healthy horses. J Anim Breed Genet 2019; 137:103-120. [PMID: 31523867 DOI: 10.1111/jbg.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Understanding gut microbiota similarities and differences across breeds in horses has the potential to advance approaches aimed at personalized microbial modifications, particularly those involved in improving sport athletic performance. Here, we explore whether faecal microbiota composition based on faecal 16S ribosomal RNA gene sequencing varies across six different sport breeds at two time points 8 months apart within a cohort of 189 healthy horses cared for under similar conditions. Lusitano horses presented the smallest and Hanoverians the greatest bacterial diversity. We found subtle but significant differences in β-diversity between Lusitano, Anglo Arabian and the central European breeds, and we reproduced these results across the two time points. Repeat sampling of subjects showed community to be temporally more stable in Lusitano and Anglo Arabian breeds. Additionally, we found that 27 genera significantly varied in abundance across breeds. Overall, 33% of these taxa overlapped with previously identified taxa that were associated with genetic variation in humans or other species. However, a non-significant correlation was observed between microbial composition and the host pedigree-based kinship. Despite a notable variation in the diversity and composition of the faecal microbiota, breed exerted limited effects on the equine faecal microbiota.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Research and Development Department, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.,Agricultural and Food Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Allison Clark
- Gastroenterology Department, Vall d'Hebron Research Center, Barcelona, Spain
| | - Alice Ruet
- PRC, INRA, CNRS, IFCE, University of Tours, Nouzilly, France
| | - Léa Lansade
- PRC, INRA, CNRS, IFCE, University of Tours, Nouzilly, France
| | - Marcio Costa
- Biomedical Veterinary Sciences Department, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Núria Mach
- UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
21
|
Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep 2019; 9:11121. [PMID: 31366962 PMCID: PMC6668452 DOI: 10.1038/s41598-019-47204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young vertebrates in supporting the development and regulation of the host immune system. However, knowledge of the impact that infections by GI helminths exert on the developing microbiota of juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin). We observed that high versus low parasite burdens (measured via parasite egg counts in faecal samples) were associated with specific compositional alterations of the developing microbiome; in particular, the faecal microbiota of animals with heavy worm infection burdens was characterised by lower microbial richness, and alterations to the relative abundances of bacterial taxa with immune-modulatory functions. Amino acids and glucose were increased in faecal samples from the same cohort, which indicated the likely occurrence of intestinal malabsorption. These data support the hypothesis that GI helminth infections in young livestock are associated with significant alterations to the GI microbiota, which may impact on both metabolism and development of acquired immunity. This knowledge will direct future studies aimed to identify the long-term impact of infection-induced alterations of the GI microbiota in young livestock.
Collapse
|
22
|
Abstract
Methods Fecal samples were collected from 92 bats in Slovenia, consisting of 12 different species, and the bacterial microbiota was assessed via next generation sequencing of the 16S rRNA gene V4 region. Results Sequences were assigned to 28 different phyla, but only Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria accounted for ≥1% of sequences. One phylum (Proteobacteria), one class (Gammaproteobacteria), three orders (Pseudomonadales, Lactobacillales, Bacillales), four families (Enterobacteriaceae, Pseudomonadaceae, Staphylococcaceae, Carnobacteriaceae), and five genera (Pseudomonas, Staphylococcus, Carnobacterium, an unclassified Enterobacteriaceae, Acinetobacter) accounted for 50% of sequences. There were no significant differences in the relative abundances of any phyla between bat species, but various differences were noted at lower taxonomic levels, such as Enterobacteriaceae (P = 0.007, most abundant in M. blythii), Pseudomonadaceae (P = 0.007, most abundant in Rhinolophus hipposideros) and Chlamydiaceae (P = 0.04, most abundant in Myotis myotis). There were significant differences in richness between species in both adults and juveniles/subadults, but there was no impact of sex on any alpha diversity index. When only adults are considered, there were significant differences in community membership between M. blythii and M. emarginatus (P = 0.011), and M. blythii and R. hipposideros (P = 0.004). There were also significant differences in community structure between M. blythii and M. emarginatus (P = 0.025), and M. blythii and R. hipposideros (P = 0.026). When adults of the four main species were compared, 14 OTUs were identified as differentially abundant using LEfSe. Only one difference was identified when comparing R. hipposideros adults and juvenile/subadults, with Klebsiella over-represented in the younger bats. Conclusions Bats have a complex and diverse microbiota with a high relative abundance of Proteobacteria. The relevance of this difference is unclear and requires further study. Differences in the microbiota were observed between bat species, perhaps reflecting different diets and environmental exposures.
Collapse
|
23
|
Costa MC, Weese JS. Understanding the Intestinal Microbiome in Health and Disease. Vet Clin North Am Equine Pract 2018; 34:1-12. [PMID: 29402480 DOI: 10.1016/j.cveq.2017.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This article provides readers with the basic concepts necessary to understand studies using recent molecular methods performed in intestinal microbiome assessment, with special emphasis on the high throughput sequencing. This review also summarizes the current knowledge on this topic and discusses future insights on the interaction between the intestinal microbiome and equine health.
Collapse
Affiliation(s)
- Marcio Carvalho Costa
- Department of Veterinary Biomedicine, University of Montreal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada.
| | - Jeffrey Scott Weese
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
24
|
Beckers KF, Schulz CJ, Childers GW. Rapid regrowth and detection of microbial contaminants in equine fecal microbiome samples. PLoS One 2017; 12:e0187044. [PMID: 29091944 PMCID: PMC5665523 DOI: 10.1371/journal.pone.0187044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
Abstract
Advances have been made to standardize 16S rRNA gene amplicon based studies for inter-study comparisons, yet there are many opportunities for systematic error that may render these comparisons improper and misleading. The fecal microbiome of horses has been examined previously, however, no universal horse fecal collection method and sample processing procedure has been established. This study was initialized in large part to ensure that samples collected by different individuals from different geographical areas (i.e., crowdsourced) were not contaminated due to less than optimal sampling or holding conditions. In this study, we examined the effect of sampling the surface of fecal pellets compared to homogenized fecal pellets, and also the effect of time of sampling after defecation on ‘bloom’ taxa (bloom taxa refers to microbial taxa that can grow rapidly in horse feces post-defecation) using v4 16S rRNA amplicon libraries. A total of 1,440,171 sequences were recovered from 65 horse fecal samples yielding a total of 3,422 OTUs at 97% similarity. Sampling from either surface or homogenized feces had no effect on diversity and little effect on microbial composition. Sampling at various time points (0, 2, 4, 6, 12 h) had a significant effect on both diversity and community composition of fecal samples. Alpha diversity (Shannon index) initially increased with time as regrowth taxa were detected in the amplicon libraries, but by 12 h the diversity sharply decreased as the community composition became dominated by a few bloom families, including Bacillaceae, Planococcaeae, and Enterococcaceae, and other families to a lesser extent. The results show that immediate sampling of horse feces must be done in order to ensure accurate representation of horse fecal samples. Also, several of the bloom taxa found in this study are known to occur in human and cattle feces post defecation. The dominance of these taxa in feces shortly after defecation suggests that the feces is an important habitat for these organisms, and horse fecal samples that were improperly stored can be identified by presence of bloom taxa.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, United States of America
| | - Christopher J. Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, United States of America
- * E-mail:
| | - Gary W. Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, United States of America
| |
Collapse
|