1
|
Sahoo A, Das PK, Dasu VV, Patra S. Insulin evolution: A holistic view of recombinant production advancements. Int J Biol Macromol 2024; 277:133951. [PMID: 39032893 DOI: 10.1016/j.ijbiomac.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The increased prevalence of diabetes and the growing popularity of non-invasive methods of recombinant human insulin uptake, such as oral insulin, have increased insulin demand, further limiting the affordability of insulin. Over 40 years have passed since the development of engineered microorganisms that replaced the animal pancreas as the primary source of insulin. To stay ahead of the need for insulin in the present and the future, a few drawbacks with the existing expression systems need to be alleviated, including the inclusion body formation, the use of toxic inducers, and high process costs. To address these bottlenecks and improve insulin production, a variety of techniques are being used in bacteria, yeasts, transgenic plants and animals, mammalian cell lines, and cell-free expression systems. Different approaches for the production of insulin, including two-chain, proinsulin or mini-proinsulin, preproinsulin coupled with fusion protein, chaperone, signal peptide, and purification tags, are explored in upstream, whereas downstream processing takes into account the recovery of intact protein in its bioactive form and purity. This article focuses on the strategies used in the upstream and downstream phases of the bioprocess to produce recombinant human insulin. This review also covers a range of analytical methods and tools employed in investigating the genuity of recombinant human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Sahoo A, Das PK, Veeranki VD, Patra S. Production of recombinant human insulin from a promising Pseudomonas fluorescens cell factory and its kinetic modeling. Int J Biol Macromol 2024; 280:135742. [PMID: 39293616 DOI: 10.1016/j.ijbiomac.2024.135742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Insulin intake is recommended for diabetics in addition to a proper diet and lifestyle to maintain adequate blood glucose level. Currently, there is a need for an alternative expression system for insulin production as the current expression systems may not meet the growing demand due to various constraints. Here, we demonstrate the synthesis of human insulin in an unconventional expression system based on Pseudomonas fluorescens, a BSL 1 bacterium. Human insulin was produced in the form of proinsulin fused with fusion protein. Then, the proinsulin fusion protein was purified using Ni-NTA chromatography and converted into human insulin. The physicochemical parameters for producing proinsulin fusion protein are optimized. Glucose and ammonium chloride are determined to be suitable carbon and nitrogen sources, respectively. The validity of insulin and proinsulin fusion protein is assessed using western blot and quantified using ELISA techniques. Up to 145.35 mg/l of the proinsulin fusion protein is achieved at the shake flask level. Further, MALDI-TOF and RP-HPLC analysis of the purified human insulin were observed to be close to the theoretical value and insulin standard, respectively. The expression of the recombinant fusion protein was found to be 214.7 mg/l in a batch bioreactor, a ∼48% enhancement over the shake flask level. Further, kinetic modeling was performed to understand the system regarding growth, substrate utilization and product formation, and to estimate the various kinetic parameters. This study establishes the potential of the P. fluorescens expression system for producing human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
3
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
4
|
Hazra P, Buddha M, Reddy C, Gupta I. Large-scale crystallization as an intermediate processing step in insulin downstream process: explored advantages and identified tool for process intensification. Bioprocess Biosyst Eng 2023; 46:1765-1776. [PMID: 37938390 DOI: 10.1007/s00449-023-02931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
The rising global prevalence of diabetes and increasing demand for insulin, calls for an increase in accessibility and affordability of insulin drugs through efficient and cost-effective manufacturing processes. Often downstream operations become manufacturing bottlenecks while processing a high volume of product. Thus, process integration and intensification play an important role in reducing process steps and time, volume reduction, and lower equipment footprints, which brings additional process efficiencies and lowers the production cost. Manufacturers thrive to optimize existing unit operation to maximize its benefit replacing with simple but different efficient technologies. In this manuscript, the typical property of insulin in forming the pH-dependent zinc-insulin complex is explored. The benefit of zinc chloride precipitation/crystallization has been shown to increase the in-process product purity by reducing the product and process-related impurities. Incorporation of such unit operation in the insulin process has also a clear potential for replacing the high cost involved capture chromatography step. Same time, the reduction in volume of operation, buffer consumption, equipment footprint, and capabilities of product long time storage brings manufacturing flexibility and efficiencies. The data and capabilities of simple operation captured here would be significantly helpful for insulins and other biosimilar manufacturer to make progresses on cost-effective productions.
Collapse
Affiliation(s)
- Partha Hazra
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Plot No. 2 & 3, Bommasandra Industrial Estate, IV Phase, Bommasandra Jigani Link Road, Bangalore, 560 099, India.
| | - Madhavan Buddha
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Plot No. 2 & 3, Bommasandra Industrial Estate, IV Phase, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Chinnappa Reddy
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Plot No. 2 & 3, Bommasandra Industrial Estate, IV Phase, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Indranil Gupta
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Plot No. 2 & 3, Bommasandra Industrial Estate, IV Phase, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| |
Collapse
|
5
|
Heinemann L, Davies M, Home P, Forst T, Vilsbøll T, Schnell O. Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials. J Diabetes Sci Technol 2023; 17:1649-1661. [PMID: 35818669 PMCID: PMC10658691 DOI: 10.1177/19322968221105864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A wave of expiring patents for first-generation insulin analogues has created opportunities in the global insulin market for highly similar versions of these products, biosimilar insulins. Biologics are generally large, complex molecules produced through biotechnology in a living system, such as a microorganism, plant cell, or animal cell. Since manufacturing processes of biologics vary, biosimilars cannot be exact copies of their reference product but must exhibit a high degree of functional and structural similarity. Biosimilarity is proven by analytical approaches in comparative assessments, preclinical cell-based and animal studies, as well as clinical studies in humans facilitating the accumulation of evidence across all assessments. The approval of biosimilars follows detailed regulatory pathways derived from those of their reference products and established by agencies such as the European Medicines Agency and the US Food and Drug Administration. Regulatory authorities impose requirements to ensure that biosimilars meet high standards of quality, safety, and efficacy and are highly similar to their reference product. PURPOSE This review aims to aid clinical understanding of the high standards of development, manufacturing, and regulation of biosimilar insulins. METHODS Recent relevant studies indexed by PubMed and regulatory documents were included. CONCLUSIONS Driven by price competition, the emergence of biosimilar insulins may help expand global access to current insulin analogues. To maximize the impact of the advantage for falling retail costs of biosimilar insulins compared with that of reference insulins, healthcare professionals and insulin users must gain further awareness and confidence.
Collapse
Affiliation(s)
- Lutz Heinemann
- Science Consulting in Diabetes GmbH, Kaarst, Deutschland
| | - Melanie Davies
- University of Leicester, Leicester General Hospital, Leicester, UK
| | - Philip Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Schnell
- Forschergruppe Diabetes e.V., Neuherberg, Munich, Germany
| |
Collapse
|
6
|
Zha J, Liu D, Ren J, Liu Z, Wu X. Advances in Metabolic Engineering of Pichia pastoris Strains as Powerful Cell Factories. J Fungi (Basel) 2023; 9:1027. [PMID: 37888283 PMCID: PMC10608127 DOI: 10.3390/jof9101027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Pichia pastoris is the most widely used microorganism for the production of secreted industrial proteins and therapeutic proteins. Recently, this yeast has been repurposed as a cell factory for the production of chemicals and natural products. In this review, the general physiological properties of P. pastoris are summarized and the readily available genetic tools and elements are described, including strains, expression vectors, promoters, gene editing technology mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, and adaptive laboratory evolution. Moreover, the recent achievements in P. pastoris-based biosynthesis of proteins, natural products, and other compounds are highlighted. The existing issues and possible solutions are also discussed for the construction of efficient P. pastoris cell factories.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.L.); (J.R.); (Z.L.)
| | | | | | | | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.L.); (J.R.); (Z.L.)
| |
Collapse
|
7
|
Utami N, Nurdiani D, Hariyatun H, Putro EW, Patria FP, Kusharyoto W. Full-length versus truncated α-factor secretory signal sequences for expression of recombinant human insulin precursor in yeast Pichia pastoris: a comparison. J Genet Eng Biotechnol 2023; 21:67. [PMID: 37212962 PMCID: PMC10203085 DOI: 10.1186/s43141-023-00521-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Human insulin was the first FDA-approved biopharmaceutical drug produced through recombinant DNA technology. The previous studies successfully expressed recombinant human insulin precursors (HIP) in Pichia pastoris truncated and full-length α-factor recombinant clones. The matting α-factor (Matα), a signal secretion, direct the HIP protein into the culture media. This study aimed to compare the HIP expression from full-length and truncated α-factor secretory signals clones that grown in two types of media, buffered methanol complex medium (BMMY) and methanol basal salt medium (BSMM). RESULTS ImageJ analysis of the HIP's SDS-PAGE shows that the average HIP expression level of the recombinant P. pastoris truncated α-factor clone (CL4) was significantly higher compared to the full-length (HF7) when expressed in both media. Western blot analysis showed that the expressed protein was the HIP. The α-factor protein structure was predicted using the AlphaFold and visualized using UCSF ChimeraX to confirm the secretion ability for both clones. CONCLUSIONS CL4 clone, which utilized a truncated α-factor in the P. pastoris HIP expression cassette, significantly expressed HIP 8.97 times (in BMMY) and 1.17 times (in BSMM) higher than HF7 clone, which used a full-length α-factor secretory signal. This research confirmed that deletion of some regions of the secretory signal sequence significantly improved the efficiency of HIP protein expression in P. pastoris.
Collapse
Affiliation(s)
- Nuruliawaty Utami
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia.
| | - Dini Nurdiani
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Hariyatun Hariyatun
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Eko Wahyu Putro
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Fadillah Putri Patria
- Laboratory Department, Indonesia International Institute for Life Sciences (i3L), Jakarta, Timur, 13210, Indonesia
| | - Wien Kusharyoto
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| |
Collapse
|
8
|
Anderson HR, Reeves WL, Bockus AT, Suating P, Grice AG, Gallagher M, Urbach AR. Semisynthesis of Aminomethyl-Insulin: An Atom-Economic Strategy to Increase the Affinity and Selectivity of a Protein for Recognition by a Synthetic Receptor. Bioconjug Chem 2023; 34:212-217. [PMID: 36534758 DOI: 10.1021/acs.bioconjchem.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advancements in the molecular recognition of insulin by nonantibody-based means would facilitate the development of methodology for the continuous detection of insulin for the management of diabetes mellitus. Herein, we report a novel insulin derivative that binds to the synthetic receptor cucurbit[7]uril (Q7) at a single site and with high nanomolar affinity. The insulin derivative was prepared by a four-step protein semisynthetic method to present a 4-aminomethyl group on the side chain of the PheB1 position. The resulting aminomethyl insulin binds to Q7 with an equilibrium dissociation constant value of 99 nM in neutral phosphate buffer, as determined by isothermal titration calorimetry. This 6.8-fold enhancement in affinity versus native insulin was gained by an atom-economical modification (-CH2NH2). To the best of our knowledge, this is the highest reported binding affinity for an insulin derivative by a synthetic receptor. This strategy for engineering protein affinity tags induces minimal change to the protein structure while increasing affinity and selectivity for a synthetic receptor.
Collapse
Affiliation(s)
- Hayden R Anderson
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Wei L Reeves
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Andrew T Bockus
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Amy G Grice
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Madeleine Gallagher
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| |
Collapse
|
9
|
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol Lett 2022; 44:643-669. [DOI: 10.1007/s10529-022-03247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
|
10
|
Large scale purification and characterization of A21 deamidated variant-most prominent post translational modification (PTM) for insulins which is also widely observed in insulins pharmaceutical manufacturing and storage. Protein Expr Purif 2021; 185:105895. [PMID: 33957255 DOI: 10.1016/j.pep.2021.105895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Biopharmaceutical development demands appropriate understanding of product related variants, which are formed due to post-translational modification and during downstream processing. These variants can lead to low yield, reduced biological activity, and suboptimal product quality. In addition, these variants may undergo immune reactions, henceforth need to be appropriately controlled to ensure consistent product quality and patient safety. Deamidation of insulin is the most common post-translational modification occurring in insulin and insulin analogues. AsnA21 desamido variant is also the most prominent product variant formed during human insulin manufacturing process and/or during the storage. Often, this deamidated variant is used as an impurity standard during in-process and final product analysis in the QC system. However, purification of large quantity of purified deamidated material is always being challenging due to highly similar mass, ionic, hydrophobic properties, and high structural similarity of the variant compared to the parent product. Present work demonstrates the simplified and efficient scalable process for generation of AsnA21 deamidated variant in powder form with ~96% purity. The mixed-mode property of anion exchange resin PolyQuat was utilized to purify the deamidated impurity with high recovery. Subsequent reversed-phase high performance liquid chromatography (RP-HPLC) step was introduced for concentration of product in bind elute mode. Elution pool undergone isoelectric precipitation and lyophilisation. The lyophilized product allows users for convenient use of the deamidated impurity for intended purposes. Detailed characterization by Mass spectrometry revealed deamidation is at AsnA21 and further confirmed that, structural and functional characterization as well as the biological activity of isolated variant is equivalent to insulin.
Collapse
|
11
|
Caballero-Pérez A, Viader-Salvadó JM, Herrera-Estala AL, Fuentes-Garibay JA, Guerrero-Olazarán M. Buried Kex2 Sites in Glargine Precursor Aggregates Prevent Its Intracellular Processing in Pichia pastoris Mut s Strains and the Effect of Methanol-Feeding Strategy and Induction Temperature on Glargine Precursor Production Parameters. Appl Biochem Biotechnol 2021; 193:2806-2829. [PMID: 33931817 DOI: 10.1007/s12010-021-03567-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
Glargine is a long-acting insulin analog with less hypoglycemia risk. Like human insulin, glargine is a globular protein composed of two polypeptide chains linked by two disulfide bonds. Pichia pastoris KM71 Muts strains were engineered to produce and secrete insulin glargine through the cleavage of two Kex2 sites. Nevertheless, the recombinant product was the single-chain insulin glargine (glargine precursor) instead of the expected double-chain glargine. Molecular model analysis of the dimeric and hexameric forms of the single-chain glargine showed buried Kex2 sites that prevent intracellular glargine precursor processing. The effect of the methanol-feeding strategy (methanol limited fed-batch vs. methanol non-limited fed-batch) and the induction temperature (28 °C vs. 24 °C) on the cell growth and production parameters in bioreactor cultures was also evaluated. Exponential growth at a constant specific growth rate was observed in all the cultures. The volumetric productivities and specific substrate consumption rates were directly proportional to the specific growth rate. The lower temperature led to increased metabolic activity of the yeast cells, which increased the specific growth rate. The methanol non-limited fed-batch culture at 24 °C showed the highest values for the process parameters. After 75 h of induction, 0.122 g/L of glargine precursor was obtained from the culture medium.
Collapse
Affiliation(s)
- Abel Caballero-Pérez
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, N.L, Mexico
| | - José María Viader-Salvadó
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, N.L, Mexico
| | - Ana Lucía Herrera-Estala
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, N.L, Mexico
| | - José Antonio Fuentes-Garibay
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, N.L, Mexico
| | - Martha Guerrero-Olazarán
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, N.L, Mexico.
| |
Collapse
|
12
|
Che Z, Cao X, Chen G, Liang Z. An effective combination of codon optimization, gene dosage, and process optimization for high-level production of fibrinolytic enzyme in Komagataella phaffii (Pichia pastoris). BMC Biotechnol 2020; 20:63. [PMID: 33276774 PMCID: PMC7716587 DOI: 10.1186/s12896-020-00654-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND As a main drug for diseased thrombus, some clinically used thrombolytic agents have various disadvantages, safer novel thrombolytic agents are of great demand. This study aimed to achieve high and efficient production of a fibrinolytic enzyme with superior enzymatic properties, by a combination strategy of codon optimization, gene dosage and process optimization in Komagataella phaffii (K. phaffii). RESULTS After codon optimization, the fibase from a marine Bacillus subtilis was expressed and secreted in K. phaffii GS115. Recombinant strains harboring different copies of the fib gene (fib-nc) were successfully obtained via Geneticin (0.25-4 mg/ml) screening on minimal dextrose selection plates and assessment via real-time quantitative PCR. The respective levels of fibase produced by strains expressing fib-5.4c, fib-6c, fib-8c, fib-9c, and fib-12c were 4428, 5781, 7323, 7930, and 2472 U/ml. Levels increased as the copy number increased from 4 to 9, but decreased dramatically at copy number 12. After high cell density fermentation optimization, the highest fibase activity of the strain expressing fib-9c was 7930 U/ml in a shake flask and increased to 12,690 U/ml after 3 days of continuous culture in a 5-L fermenter, which is one of the highest levels of production reported. The recombinant fibase was maximally active at pH 9.0 and 45 °C, and was remarkably stable at pH levels ranging from 5 to 10 and temperatures up to 50 °C. As a metal-dependent serine protease, fibase did not cause hemolysis in vitro and preferentially degraded fibrin directly. CONCLUSIONS The combination of codon optimization, gene dosage, and process optimization described herein could be used for the expression of other therapeutic proteins difficult to express. The characteristics of the recombinant fibase suggest that it has potential applications for thrombosis prevention and therapy.
Collapse
Affiliation(s)
- Zhiqun Che
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaoyan Cao
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
13
|
Faust C, Ochs C, Korn M, Werner U, Jung J, Dittrich W, Schiebler W, Schauder R, Rao E, Langer T. Production of a novel heterodimeric two-chain insulin-Fc fusion protein. Protein Eng Des Sel 2020; 33:5959880. [PMID: 33159202 DOI: 10.1093/protein/gzaa026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023] Open
Abstract
Insulin is a peptide hormone produced by the pancreas. The physiological role of insulin is the regulation of glucose metabolism. Under certain pathological conditions the insulin levels can be reduced leading to the metabolic disorder diabetes mellitus (DM). For type 1 DM and, dependent on the disease progression for type 2 DM, insulin substitution becomes indispensable. To relieve insulin substitution therapy for patients, novel insulin analogs with pharmacokinetic and pharmacodynamic profiles aiming for long-lasting or fast-acting insulins have been developed. The next step in the evolution of novel insulins should be insulin analogs with a time action profile beyond 1-2 days, preferable up to 1 week. Nowadays, insulin is produced in a recombinant manner. This approach facilitates the design and production of further insulin-analogs or insulin-fusion proteins. The usage of the Fc-domain from immunoglobulin as a fusion partner for therapeutic proteins and peptides is widely used to extend their plasma half-life. Insulin consists of two chains, the A- and B-chain, which are connected by two disulfide-bridges. To produce a novel kind of Fc-fusion protein we have fused the A-chain as well as the B-chain to Fc-fragments containing either 'knob' or 'hole' mutations. The 'knob-into-hole' technique is frequently used to force heterodimerization of the Fc-domain. Using this approach, we were able to produce different variants of two-chain-insulin-Fc-protein (tcI-Fc-protein) variants. The tcI-Fc-fusion variants retained activity as shown in in vitro assays. Finally, prolonged blood glucose lowering activity was demonstrated in normoglycemic rats. Overall, we describe here the production of novel insulin-Fc-fusion proteins with prolonged times of action.
Collapse
Affiliation(s)
- Christine Faust
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christian Ochs
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany.,Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marcus Korn
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ulrich Werner
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Jung
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Dittrich
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Schiebler
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Schauder
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ercole Rao
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Thomas Langer
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Nataraj NB, Sukumaran SK, Sambasivam G, Sudhakaran R. Truncated Thioredoxin Peptides Serves as an Efficient Fusion Tag for Production of Proinsulin. Protein Pept Lett 2019; 27:419-431. [PMID: 31746289 DOI: 10.2174/0929866526666191028150843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Insulin is a peptide hormone used for regulating blood glucose levels. Human insulin market is projected to grow at a rate of 12.5% annually. To meet the needs of patients, a cost effective insulin manufacturing strategy has to be developed. This can be achieved by selecting a competent host, ideal fusion tag and streamlined downstream process. OBJECTIVE In this article, we have demonstrated that selecting a right fusion partner for expression of toxic proteins like insulin, plays a major role in increasing the recombinant protein yield. METHODS In this article, we have focused on identifying a peptide tag fusion partner for expressing proinsulin by truncating thioredoxin tag. Truncations were carried out from both Amino and Carboxy terminus of the protein and efficiency of truncated sequences was evaluated by expressing it with proinsulin gene. FCTRX (1-15) sequence fused to proinsulin was processed further to establish downstream protocol for purification. RESULTS Thioredoxin tag was truncated appropriately by considering the fusion tag: protein ratio. A couple of sequences ranging 10 - 15 amino acids were identified based on its in silico properties. Of these FCTRX (1-15) showed increased expression and stability of fusion protein. 156 mg of purified insulin was generated from 1g of inclusion body after enzymatic conversion and chromatographic steps. CONCLUSION As a result of the current study, it was concluded that FCTRX (1-15) peptide has advantageous attributes to be considered as an ideal fusion tag for expression of proinsulin. This can be further explored by expressing it with other proteins.
Collapse
Affiliation(s)
- Nandini B Nataraj
- Anthem Biosciences Pvt. Ltd., Bommasandra Industrial Area, Bommasandra, Bangalore-560099, India.,Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
| | - Sunil Kumar Sukumaran
- Anthem Biosciences Pvt. Ltd., Bommasandra Industrial Area, Bommasandra, Bangalore-560099, India.,Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
| | - Ganesh Sambasivam
- Anthem Biosciences Pvt. Ltd., Bommasandra Industrial Area, Bommasandra, Bangalore-560099, India.,Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
| | - Raja Sudhakaran
- Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
| |
Collapse
|
15
|
Vorauer-Uhl K, Lhota G. Quantification of Recombinant Products in Yeast. Methods Mol Biol 2019; 1923:385-428. [PMID: 30737753 DOI: 10.1007/978-1-4939-9024-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantification of various proteins expressed in yeast can be performed by different methods. In this respect, classical as well as advanced techniques can be applied, where the analysis of crude supernatants is of special interest in screening but also manufacturing.The following chapter addresses the analytical background of the introduced methods followed by specific recommendations for the quantification of different products of industrial interest. The method portfolio includes electrophoresis, chromatography, and ELISA as classical techniques, but also biosensor-based, microfluidic and automated, miniaturized methods are introduced. Furthermore, individual strengths and perceived limitations are summarized.Although prominent examples are described, it should be noted that individual modifications are required according to host and cultivation mode.
Collapse
Affiliation(s)
- Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
| | - Gabriele Lhota
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|