1
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
da Silva CR, do Amaral Valente Sá LG, Ferreira TL, Leitão AC, de Farias Cabral VP, Rodrigues DS, Barbosa AD, Moreira LEA, Filho HLP, de Andrade Neto JB, Rios MEF, Cavalcanti BC, Magalhães HIF, de Moraes MO, Vitoriano Nobre H. Antifungal activity of selective serotonin reuptake inhibitors against Cryptococcus spp. and their possible mechanism of action. J Mycol Med 2023; 33:101431. [PMID: 37666030 DOI: 10.1016/j.mycmed.2023.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Fungal infections caused by Cryptococcus spp. pose a threat to health, especially in immunocompromised individuals. The available arsenal of drugs against cryptococcosis is limited, due to their toxicity and/or lack of accessibility in low-income countries, requiring more therapeutic alternatives. Selective serotonin reuptake inhibitors (SSRIs), through drug repositioning, are a promising alternative to broaden the range of new antifungals against Cryptococcus spp. This study evaluates the antifungal activity of three SSRIs, sertraline, paroxetine, and fluoxetine, against Cryptococcus spp. strains, as well as assesses their possible mechanism of action. Seven strains of Cryptococcus spp. were used. Sensitivity to SSRIs, fluconazole, and itraconazole was evaluated using the broth microdilution assay. The interactions resulting from combinations of SSRIs and azoles were investigated using the checkerboard assay. The possible action mechanism of SSRIs against Cryptococcus spp. was evaluated through flow cytometry assays. The SSRIs exhibited in vitro antifungal activity against Cryptococcus spp. strains, with minimum inhibitory concentrations ranging from 2 to 32 μg/mL, and had synergistic and additive interactions with azoles. The mechanism of action of SSRIs against Cryptococcus spp. involved damage to the mitochondrial membrane and increasing the production of reactive oxygen species, resulting in loss of cellular viability and apoptotic cell death. Fluoxetine also was able to cause significant damage to yeast DNA. These findings demonstrate the in vitro antifungal potential of SSRIs against Cryptococcus spp. strains.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Livia Gurgel do Amaral Valente Sá
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil; Christus University Center, Fortaleza, Ceará, Brazil
| | - Thais Lima Ferreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Cavalcante Leitão
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Vitória Pessoa de Farias Cabral
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniel Sampaio Rodrigues
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Dias Barbosa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lara Elloyse Almeida Moreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hugo Leonardo Pereira Filho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João Batista de Andrade Neto
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil; Christus University Center, Fortaleza, Ceará, Brazil
| | | | - Bruno Coêlho Cavalcanti
- Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Manoel Odorico de Moraes
- Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hélio Vitoriano Nobre
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules, Federal University of Ceará, Fortaleza, Ceará, Brazil; Center for Research and Development of Medicines, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
Rodrigues DS, Cabral VP, Barbosa AD, Valente Sá LG, Silva CR, Moreira LE, Neto JB, Silva J, Santos HS, Marinho ES, Cavalcanti BC, Moraes MO, Nobre Júnior HV. Sertraline has fungicidal activity against Candida spp. and acts by inhibiting membrane and cell wall biosynthesis. Future Microbiol 2023; 18:1025-1039. [PMID: 37540066 DOI: 10.2217/fmb-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Aim: Our study evaluated the activity of sertraline (SER) alone and associated with antifungal drugs in planktonic Candida spp. strains, and investigated its mechanism of action. Materials & methods: Broth microdilution method and minimum fungicidal concentration/MIC ratio were used to assess SER anticandidal activity, and the interaction with antifungals was determined by fractional inhibitory concentration index. The mechanism of action was investigated by flow cytometry and in silico tests. Results: SER inhibited Candida spp. strains at low concentrations by the fungicidal effect and showed no loss of effectiveness when combined. Its action seemed to be related to the membrane and cell wall biosynthesis inhibition. Conclusion: SER has activity against Candida spp. isolated and associated with antifungals, and acts by causing cell wall and membrane damage.
Collapse
Affiliation(s)
- Daniel S Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Amanda D Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lívia Ga Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lara Ea Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Joao Ba Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Hélcio S Santos
- Science and Technology Center, Chemistry Course, Vale do Acaraú State University, CE, 040-370, Sobral
| | - Emmanuel S Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Bruno C Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Manoel O Moraes
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| |
Collapse
|
4
|
Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A. The Antidepressant Sertraline Affects Cell Signaling and Metabolism in Trichophyton rubrum. J Fungi (Basel) 2023; 9:275. [PMID: 36836389 PMCID: PMC9961077 DOI: 10.3390/jof9020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.
Collapse
Affiliation(s)
- Flaviane M. Galvão-Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Carlos H. L. Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Maíra P. Martins
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Tamires A. Bitencourt
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
5
|
Abstract
The global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus in vitro. It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion. SRT targets the early stage of viral entry. It can bind to the S1 subunit of the S protein, especially the receptor binding domain (RBD), thus blocking S-hACE2 interaction and interfering with the proteolysis process of S protein. SRT is also effective against infection with SARS-CoV-2 PsV variants, including the newly emerging Omicron. The combination of SRT and other antivirals exhibits a strong synergistic effect against infection of SARS-CoV-2 PsV. The antiviral activity of SRT is independent of serotonin transporter expression. Moreover, SRT effectively inhibits infection of SARS-CoV-2 PsV and alleviates the inflammation process and lung pathological alterations in transduced mice in vivo. Therefore, SRT shows promise as a treatment option for COVID-19. IMPORTANCE The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. It also could be used in combination to prevent SARS-CoV-2 infection. More importantly, with long history of clinical use and proven safety, SRT might be particularly suitable to treat infection of SARS-CoV-2 in the central nervous system and optimized for treatment in older people, pregnant women, and COVID-19 patients with heart complications, which are associated with severity and mortality of COVID-19.
Collapse
|
6
|
Rocha CHL, Rocha FMG, Bitencourt TA, Martins MP, Sanches PR, Rossi A, Martinez-Rossi NM. Synergism between the Antidepressant Sertraline and Caspofungin as an Approach to Minimise the Virulence and Resistance in the Dermatophyte Trichophyton rubrum. J Fungi (Basel) 2022; 8:jof8080815. [PMID: 36012803 PMCID: PMC9409809 DOI: 10.3390/jof8080815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Trichophyton rubrum is responsible for several superficial human mycoses. Novel strategies aimed at controlling this pathogen are being investigated. The objective of this study was to evaluate the antifungal activity of the antidepressant sertraline (SRT), either alone or in combination with caspofungin (CASP). We calculated the minimum inhibitory concentrations of SRT and CASP against T. rubrum. Interactions between SRT and CASP were evaluated using a broth microdilution chequerboard. We assessed the differential expression of T. rubrum cultivated in the presence of SRT or combinations of SRT and CASP. We used MTT and violet crystal assays to compare the effect of SRT alone on T. rubrum biofilms with that of the synergistic combination of SRT and CASP. A human nail infection assay was performed. SRT alone, or in combination with CASP, exhibited antifungal activity against T. rubrum. SRT targets genes involved in the biosyntheses of cell wall and ergosterol. Furthermore, the metabolic activity of the T. rubrum biofilm and its biomass were affected by SRT and the combination of SRT and CASP. SRT alone, or in combination, shows potential as an approach to minimise resistance and reduce virulence.
Collapse
|
7
|
Jampilek J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin Drug Discov 2022; 17:949-968. [PMID: 35787715 DOI: 10.1080/17460441.2022.2097659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Some of otherwise useful fungi are pathogenic to humans, and unfortunately, the number of these pathogens is increasing. In addition to common skin infections, these opportunistic pathogens are able to cause severe, often incurable, systemic mycoses. AREAS COVERED : The number of antifungal drugs is limited, especially drugs that can be used for systemic administration, and resistance to these drugs is very common. This review summarizes various approaches to the discovery and development of new antifungal drugs, provides an overview of the most important molecules in terms of basic (laboratory) research and compounds currently in clinical trials, and focuses on drug repurposing strategy, while providing an overview of drugs of other indications that have been tested in vitro for their antifungal activity for possible expansion of antifungal drugs and/or support of existing antimycotics. EXPERT OPINION : Despite the limitations of the research of new antifungal drugs by pharmaceutical manufacturers, in addition to innovated molecules based on clinically used drugs, several completely new small entities with unique mechanisms of actions have been identified. The identification of new molecular targets that offer alternatives for the development of new unique selective antifungal highly effective agents has been an important outcome of repurposing of non-antifungal drugs to antifungal drug. Also, given the advances in monoclonal antibodies and their application to immunosuppressed patients, it may seem possible to predict a more optimistic future for antifungal therapy than has been the case in recent decades.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
8
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
9
|
Malacrida AM, Salci TP, Negri M, Svidzinski TIE. Insight into the antifungals used to address human infection due to Trichosporon spp.: a scoping review. Future Microbiol 2021; 16:1277-1288. [PMID: 34689610 PMCID: PMC8544482 DOI: 10.2217/fmb-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Trichosporonosis infections have been increasing worldwide. Providing adequate treatment for these infections remains a challenge. This scoping review contains information about potential antifungals to treat this pathology. Using online databases, we found 76 articles published between 2010 and 2020 related to this topic. Classic antifungals, molecules and biomolecules, repositioned drugs and natural products have been tested against species of Trichosporon. Experimental research has lacked depth or was limited to in vitro and in vivo tests, so there are no promising new candidates for the clinical treatment of patients with trichosporonosis. Furthermore, most studies did not present appropriate scientific criteria for drug tests, compromising their quality.
Collapse
Affiliation(s)
- Amanda M Malacrida
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Tânia P Salci
- Departament of Pharmacy and Science, Faculdade Integrado de Campo Mourão, Campo Mourão, Paraná, CEP, 87300-970, Brazil
| | - Melyssa Negri
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Terezinha IE Svidzinski
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| |
Collapse
|
10
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
11
|
Chaves AFA, Xander P, Romera LMD, Fonseca FLA, Batista WL. What is the elephant in the room when considering new therapies for fungal diseases? Crit Rev Microbiol 2021; 47:275-289. [PMID: 33513315 DOI: 10.1080/1040841x.2021.1876632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The global scenario of antimicrobial resistance is alarming, and the development of new drugs has not appeared to make substantial progress. The constraints on drug discovery are due to difficulties in finding new targets for therapy, the high cost of development, and the mismatch between the time of drug introduction in a clinic and microorganism adaptation to a drug. Policies to address neglected diseases miss the broad spectrum of mycosis. Society is not aware of the actual threat represented by fungi to human health, food security, and biodiversity. The evidence discussed here is critical for warning governments to establish effective surveillance policies for fungi.HIGHLIGHTSFungal diseases are ignored even among neglected disease classifications.There are few options to treat mycoses, which is an increasing concern regarding fungal resistance to drugs, as evidenced by the spread of Candida auris.Fungal diseases represent a real threat to human health and food security.Investment in research to investigate the potential of repurposing drugs already in use could obtain results in the short term.
Collapse
Affiliation(s)
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Pereira TC, de Menezes RT, de Oliveira HC, de Oliveira LD, Scorzoni L. In vitro synergistic effects of fluoxetine and paroxetine in combination with amphotericin B against Cryptococcus neoformans. Pathog Dis 2021; 79:6070654. [PMID: 33417701 DOI: 10.1093/femspd/ftab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a yeast that mainly affects immunocompromised individuals and causes meningoencephalitis depending on the immune status of the host. The present study aimed to validate the efficacy of selective serotonin reuptake inhibitors, fluoxetine hydrochloride (FLH) and paroxetine hydrochloride (PAH), alone and in combination with amphotericin B (AmB) against C. neoformans. Susceptibility tests were conducted using the broth microdilution method and synergistic effects of combining FLH and PAH with AmB were analyzed using the checkerboard assay. Effects of minimum inhibitory concentration (MIC) and synergistic concentration were evaluated in biofilms by quantifying the biomass, measuring the viability by counting the colony-forming units (CFU/mL) and examining the size of the induced capsules. Cryptococcus neoformans was susceptible to FLH and PAH and the synergistic effect of FLH and PAH in combination with AmB reduced the MIC of AmB by up to 8-fold. The isolated substances and combination with AmB were able to reduce biofilm biomass and biofilm viability. In addition, FLH and PAH alone or in combination with AmB significantly decreased the size of the yeast capsules. Collectively, our results indicate the use of FLH and PAH as a promising prototype for the development of anti-cryptococcal drugs.
Collapse
Affiliation(s)
- Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 Curitiba, PR 81350-010, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| |
Collapse
|
13
|
Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM. Antifungal Drug Repurposing. Antibiotics (Basel) 2020; 9:antibiotics9110812. [PMID: 33203147 PMCID: PMC7697925 DOI: 10.3390/antibiotics9110812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
- Correspondence: ; Tel.: +1-510-559-5841
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Mendel Friedman
- Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | | | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
14
|
In Vitro Activity of Sertraline, an Antidepressant, Against Antibiotic-Susceptible and Antibiotic-Resistant Helicobacter pylori Strains. Pathogens 2019; 8:pathogens8040228. [PMID: 31717683 PMCID: PMC6963513 DOI: 10.3390/pathogens8040228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substance. The aim of the study, therefore, was to determine the antibacterial activity of SER in relation to antibiotic-sensitive and antibiotic-resistant H. pylori strains. The antimicrobial tests were performed using a diffusion-disk method, microdilution method, and time-killing assay. The interaction between SER and antibiotics (amoxicillin, clarithromycin, tetracycline, and metronidazole) was determined by using a checkerboard method. In addition, the study was expanded to include observations by light, fluorescence, and scanning electron microscopy. The growth inhibition zones were in the range of 19–37 mm for discs impregnated with 2 mg of SER. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) counted for 2–8 µg/mL and 4–8 µg/mL, respectively. The time-killing assay showed the time-dependent and concentration-dependent bactericidal activity of SER. Bacteria exposed to MBCs (but not sub-MICs and MICs ≠ MBCs) underwent morphological transformation into coccoid forms. This mechanism, however, was not protective because these cells after a 24-h incubation had a several-fold reduced green/red fluorescence ratio compared to the control. Using the checkerboard assay, a synergistic/additive interaction of SER with all four antibiotics tested was demonstrated. These results indicate that SER may be a promising anti-H. pylori compound.
Collapse
|
15
|
Padovan ACB, Rocha WPDS, Toti ACDM, Freitas de Jesus DF, Chaves GM, Colombo AL. Exploring the resistance mechanisms in Trichosporon asahii: Triazoles as the last defense for invasive trichosporonosis. Fungal Genet Biol 2019; 133:103267. [PMID: 31513917 DOI: 10.1016/j.fgb.2019.103267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
Trichosporon asahii has recently been recognized as an emergent fungal pathogen able to cause invasive infections in neutropenic cancer patients as well as in critically ill patients submitted to invasive medical procedures and broad-spectrum antibiotic therapy. T. asahii is the main pathogen associated with invasive trichosporonosis worldwide. Treatment of patients with invasive trichosporonosis remains a controversial issue, but triazoles are mentioned by most authors as the best first-line antifungal therapy. There is mounting evidence supporting the claim that fluconazole (FLC) resistance in T. asahii is emerging worldwide. Since 2000, 15 publications involving large collections of T. asahii isolates described non-wild type isolates for FLC and/or voriconazole. However, very few papers have addressed the epidemiology and molecular mechanism of antifungal resistance in Trichosporon spp. Data available suggest that continuous exposure to azoles can induce mutations in the ERG11 gene, resulting in resistance to this class of antifungal drugs. A recent report characterizing T. asahii azole-resistant strains found several genes differentially expressed and highly mutated, including genes related to the Target of Rapamycin (TOR) pathway, indicating that evolutionary modifications on this pathway induced by FLC stress may be involved in developing azole resistance. Finally, we provided new data suggesting that hyperactive efflux pumps may play a role as drug transporters in FLC resistant T. asahii strains.
Collapse
Affiliation(s)
| | - Walicyranison Plinio da Silva Rocha
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Caroline de Moraes Toti
- Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Guilherme Maranhão Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
|
17
|
Villanueva-Lozano H, Treviño-Rangel RDJ, Téllez-Marroquín R, Bonifaz A, Rojas OC, Hernández-Rodríguez PA, González GM. In vitro inhibitory activity of sertraline against clinical isolates of Sporothrix schenckii. Rev Iberoam Micol 2019; 36:139-141. [PMID: 31171430 DOI: 10.1016/j.riam.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sertraline (SRT) is an antidepressant that has proven its activity in vitro against Cryptococcus, Coccidioides, Trichosporon and other fungi. Disseminated sporotrichosis, although rare, has a high mortality and its treatment is difficult and prolonged, often relying in combining two or more antifungals. AIMS In our study we evaluate the antifungal activity of SRT, alone and in combination with itraconazole (ITC), voriconazole (VRC) and amphotericin B (AMB), against 15 clinical isolates of Sporothrix schenckii. METHODS We used the broth microdilution method as described by the CLSI to test the susceptibility to antifungals, and the checkerboard microdilution method to evaluate drug interactions. RESULTS The minimum inhibitory concentration (MIC) with SRT was in the range of 4-8μg/ml, while for AMB, VRC and ITC were 0.5-4μg/ml, 0.5-8μg/ml and 0.125-2μg/ml, respectively. In addition, SRT showed synergy with ITC in one strain, mainly additivity with VRC, and indifference with AMB in others. CONCLUSIONS The MIC values with SRT for the isolates studied show the potential role of this drug as an adjuvant in the treatment of sporotrichosis, especially in disseminated or complicated cases.
Collapse
Affiliation(s)
- Hiram Villanueva-Lozano
- Department of Microbiology, School of Medicine, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico
| | | | - Ricardo Téllez-Marroquín
- Infectious Diseases Service, Department of Internal Medicine, University Hospital "Dr. José E. Gonzalez", Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico
| | - Alexandro Bonifaz
- Dermatology Service & Mycology Department, Hospital General de Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Olga C Rojas
- Department of Microbiology, School of Medicine, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico; Vice-rectory Health Sciences, Department of Basic Science, Universidad de Monterrey, Nuevo Leon, Mexico
| | - Pedro A Hernández-Rodríguez
- Infectious Diseases Service, Department of Internal Medicine, University Hospital "Dr. José E. Gonzalez", Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico
| | - Gloria M González
- Department of Microbiology, School of Medicine, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico.
| |
Collapse
|