1
|
Nieminen V, Martikainen MV, Kalliomäki S, Virén T, Seppälä J, Juutilainen J, Naarala J, Luukkonen J. 50 Hz magnetic field influences caspase-3 activity and cell cycle distribution in ionizing radiation exposed SH-SY5Y neuroblastoma cells. Int J Radiat Biol 2024; 100:1183-1192. [PMID: 38924721 DOI: 10.1080/09553002.2024.2369105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Earlier evidence suggests that extremely low frequency magnetic fields (ELF MFs) can modify the effects of carcinogenic agents. However, the studies conducted so far with ionizing radiation as the co-exposure agent are sparse and have provided inconclusive results. We investigated whether 50 Hz MFs alone, or in combination with ionizing radiation alter cell biological variables relevant to cancer and the biological effects of ionizing radiation. MATERIALS AND METHODS Human SH-SY5Y neuroblastoma cells were sham exposed or exposed to 100 or 500 µT MF for 24 h either before or after ionizing radiation exposure (0, 0.4 or 2 Gy). After the exposures, cells were assayed for viability, clonogenicity, reactive oxygen species, caspase-3 activity, and cell cycle distribution. Cell cycle distribution was assayed with propidium iodide staining followed by flow cytometry analysis and ROS levels were assayed together with cell viability by double staining with DeepRed and Sytox Blue followed by flow cytometry analysis. RESULTS Increased caspase-3 activity was observed in cells exposed to 500 µT MF before or after ionizing radiation. Furthermore, exposure to the 500 µT MF after the ionizing radiation decreased the percentage of cells in S-phase. No changes in the ROS levels, clonogenicity, or viability of the cells were observed in the MF exposed groups compared to the corresponding sham exposed groups, and no MF effects were observed in cells exposed at 100 µT. CONCLUSIONS Only the 500 µT magnetic flux density affected SH-SY5Y cells significantly. The effects were small but may nevertheless help to understand how MFs modify the effects of ionizing radiation. The increase in caspase-3 activity may not reflect effects on apoptosis, as no changes were observed in the subG1 phase of the cell cycle. In contrast to some earlier findings, 50 Hz MF exposure after ionizing radiation was not less effective than MF treatment given prior to ionizing radiation.
Collapse
Affiliation(s)
- Valtteri Nieminen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saija Kalliomäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Zhang Y, Hao M, Yang X, Zhang S, Han J, Wang Z, Chen HN. Reactive oxygen species in colorectal cancer adjuvant therapies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166922. [PMID: 37898425 DOI: 10.1016/j.bbadis.2023.166922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Colorectal cancer (CRC), a prevalent global malignancy, often necessitates adjuvant therapies such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy to mitigate tumor burden in advanced stages. The efficacy of these therapies is significantly influenced by reactive oxygen species (ROS). Previous research underscores the pivotal role of ROS in gut pathology, targeted therapy, and drug resistance. ROS-mediated CRC adjuvant therapies encompass a myriad of mechanisms, including cell death and proliferation, survival and cell cycle, DNA damage, metabolic reprogramming, and angiogenesis. Preliminary clinical trials have begun to unveil the potential of ROS-manipulating therapy in enhancing CRC adjuvant therapies. This review aims to provide a comprehensive synthesis of studies exploring the role of ROS in CRC adjuvant therapies.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqiu Hao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hai-Ning Chen
- Colorectal Cancer Center and Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Hambarde S, Manalo JM, Baskin DS, Sharpe MA, Helekar SA. Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells. Sci Rep 2023; 13:19264. [PMID: 37935811 PMCID: PMC10630398 DOI: 10.1038/s41598-023-46758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Raising reactive oxygen species (ROS) levels in cancer cells to cause macromolecular damage and cell death is a promising anticancer treatment strategy. Observations that electromagnetic fields (EMF) elevate intracellular ROS and cause cancer cell death, have led us to develop a new portable wearable EMF device that generates spinning oscillating magnetic fields (sOMF) to selectively kill cancer cells while sparing normal cells in vitro and to shrink GBM tumors in vivo through a novel mechanism. Here, we characterized the precise configurations and timings of sOMF stimulation that produce cytotoxicity due to a critical rise in superoxide in two types of human glioma cells. We also found that the antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect. Our findings clarify the link between the physics of magnetic stimulation and its mechanism of anticancer action, facilitating the development of a potential new safe noninvasive device-based treatment for GBM and other gliomas.
Collapse
Affiliation(s)
- Shashank Hambarde
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jeanne M Manalo
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - David S Baskin
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Martyn A Sharpe
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Santosh A Helekar
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA.
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
5
|
Mehdizadeh R, Ansari AM, Forouzesh F, Ghadirian R, Shahriari F, Shariatpanahi SP, Javidi MA. Cross-talk between non-ionizing electromagnetic fields and metastasis; EMT and hybrid E/M may explain the anticancer role of EMFs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00060-3. [PMID: 37302516 DOI: 10.1016/j.pbiomolbio.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Recent studies have shown that non-ionizing electromagnetic fields (NIEMFs) in a specific frequency, intensity, and exposure time can have anti-cancer effects on various cancer cells; however, the underlying precise mechanism of action is not transparent. Most cancer deaths are due to metastasis. This important phenomenon plays an inevitable role in different steps of cancer including progression and development. It has different stages including invasion, intravasation, migration, extravasation, and homing. Epithelial-mesenchymal transition (EMT), as well as hybrid E/M state, are biological processes, that involve both natural embryogenesis and tissue regeneration, and abnormal conditions including organ fibrosis or metastasis. In this context, some evidence reveals possible footprints of the important EMT-related pathways which may be affected in different EMFs treatments. In this article, critical EMT molecules and/or pathways which can be potentially affected by EMFs (e.g., VEGFR, ROS, P53, PI3K/AKT, MAPK, Cyclin B1, and NF-кB) are discussed to shed light on the mechanism of EMFs anti-cancer effect.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhane Ghadirian
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Askaripour K, Żak A. A mechanistically approached review upon assorted cell lines stimulated by athermal electromagnetic irradiation. Cell Cycle 2023; 22:1319-1342. [PMID: 37144743 PMCID: PMC10228405 DOI: 10.1080/15384101.2023.2206682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 05/06/2023] Open
Abstract
The probable influence of electromagnetic irradiation on cancer treatment has been deduced from the interaction of artificial electromagnetic emissions with biological organisms. Nonetheless, the suspected health effects induced by electromagnetic-based technology imply that such a treatment may contaminate the adjacent healthy cells. Thus, gaining mechanistic insights into the problem is required to avoid athermal health hazards. To tackle that, the current review, based upon in vitro studies into assorted cell lines, depicts the alterations in physiological processes triggered by electromagnetic irradiation via addressing gene regulatory cascades. Furthermore, decisive factors in the hypothesized cause-effect linkage in terms of the cell line-associated, exposure-associated, or endpoint-associated parameters are highlighted. As a result, subcellular structures such as aberrant Ca2+ channels, rich glycocalyx charge, or high water content in cancerous cells, which have attracted a great deal of attention, can explain their higher susceptibility compared with healthy cells under irradiation. Affected by cell components or geometry, the cellular biological window correlates with the metabolic or cell cycle status and determines the irradiation that causes the maximum influence. For instance, correlations between the frequency (or intensity) of irradiation and cell excitability or between the duration of irradiation and cell doubling time are observed. There are unspecified signaling pathways such as the pathway of PPAR-γ or MAPKs, and also proteins devoid of any investigation such as p14, or S phase-related and G2 phase-related proteins. Other chains, such as the cAMP connection with mitochondrial ATP or ERK signaling, the association of Hsps releases with signaling pathways of MAPKs, or the role of different ion channels in regulating various cell processes, require further investigation.
Collapse
Affiliation(s)
- Khadijeh Askaripour
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Poland
| | - Arkadiusz Żak
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
7
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Ronniger M, Aguida B, Stacke C, Chen Y, Ehnert S, Erdmann N, Eschenburg G, Falldorf K, Pooam M, Wing A, Ahmad M. A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering (Basel) 2022; 9:bioengineering9100595. [PMID: 36290562 PMCID: PMC9598188 DOI: 10.3390/bioengineering9100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of extremely low-frequency electromagnetic field (ELF-MF) exposure on living systems have been widely studied at the fundamental level and also claimed as beneficial for the treatment of diseases for over 50 years. However, the underlying mechanisms and cellular targets of ELF-MF exposure remain poorly understood and the field has been plagued with controversy stemming from an endemic lack of reproducibility of published findings. To address this problem, we here demonstrate a technically simple and reproducible EMF exposure protocol to achieve a standardized experimental approach which can be readily adopted in any lab. As an assay system, we chose a commercially available inflammatory model human cell line; its response to magnetic fields involves changes in gene expression which can be monitored by a simple colorimetric reporter gene assay. The cells were seeded and cultured in microplates and inserted into a custom-built, semi-automated incubation and exposure system which accurately controls the incubation (temperature, humidity, CO2) and magnetic-field exposure conditions. A specific alternating magnetic field (<1.0% spatial variance) including far-field reduction provided defined exposure conditions at the position of each well of the microplate. To avoid artifacts, all environmental and magnetic-field exposure parameters were logged in real time throughout the duration of the experiment. Under these extensively controlled conditions, the effect of the magnetic field on the cell cultures as assayed by the standardized operating procedure was highly reproducible between experiments. As we could fully define the characteristics (frequency, intensity, duration) of the pulsed magnetic field signals at the position of the sample well, we were, for the first time, able to accurately determine the effect of changing single ELF-MF parameters such as signal shape, frequency, intensity and duty cycle on the biological response. One signal in particular (10 Hz, 50% duty cycle, rectangular, bipolar, 39.6μT) provided a significant reduction in cytokine reporter gene expression by 37% in our model cell culture line. In sum, the accuracy, environmental control and data-logging capacity of the semi-automated exposure system should greatly facilitate research into fundamental cellular response mechanisms and achieve the consistency necessary to bring ELF-MF/PEMF research results into the scientific mainstream.
Collapse
Affiliation(s)
- Michael Ronniger
- Sachtleben GmbH, 20251 Hamburg, Germany
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| | - Blanche Aguida
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| | | | - Yangmengfan Chen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sabrina Ehnert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | | | | | - Marootpong Pooam
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | | | - Margaret Ahmad
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| |
Collapse
|
9
|
Zhan Y, Zhang Z, Liu Y, Fang Y, Xie Y, Zheng Y, Li G, Liang L, Ding Y. NUPR1 contributes to radiation resistance by maintaining ROS homeostasis via AhR/CYP signal axis in hepatocellular carcinoma. BMC Med 2022; 20:365. [PMID: 36258210 PMCID: PMC9580158 DOI: 10.1186/s12916-022-02554-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is one of the major therapeutic approaches to hepatocellular carcinoma (HCC). Ionizing radiation (IR) inducing the generation of reactive oxygen species (ROS) leads to a promising antitumor effect. However, the dysregulation of the redox system often causes radioresistance and impairs the efficacy of RT. Increasing evidence indicates that nuclear protein 1 (NUPR1) plays a critical role in redox reactions. In this study, we aim to explore the role of NUPR1 in maintaining ROS homeostasis and radioresistance in HCC. METHODS The radioresistant role of NUPR1 was determined by colony formation assay, comet assay in vitro, and xenograft tumor models in vivo. Probes for ROS, apoptosis assay, and lipid peroxidation assay were used to investigate the functional effect of NUPR1 on ROS homeostasis and oxidative stress. RNA sequencing and co-immunoprecipitation assay were performed to clarify the mechanism of NUPR1 inhibiting the AhR/CYP signal axis. Finally, we analyzed clinical specimens to assess the predictive value of NUPR1 and AhR in the radiotherapeutic efficacy of HCC. RESULTS We demonstrated that NUPR1 was upregulated in HCC tissues and verified that NUPR1 increased the radioresistance of HCC in vitro and in vivo. NUPR1 alleviated the generation of ROS and suppressed oxidative stress, including apoptosis and lipid peroxidation by downregulating cytochrome P450 (CYP) upon IR. ROS scavenger N-acetyl-L-cysteine (NAC) and CYP inhibitor alizarin restored the viability of NUPR1-knockdown cells during IR. Mechanistically, the interaction between NUPR1 and aryl hydrocarbon receptor (AhR) promoted the degradation and decreased nuclear translation of AhR via the autophagy-lysosome pathway, followed by being incapable of CYP's transcription. Furthermore, genetically and pharmacologically activating AhR abrogated the radioresistant role of NUPR1. Clinical data suggested that NUPR1 and AhR could serve as novel biomarkers for predicting the radiation response of HCC. CONCLUSIONS Our findings revealed the role of NUPR1 in regulating ROS homeostasis and oxidative stress via the AhR/CYP signal axis upon IR. Strategies targeting the NUPR1/AhR/CYP pathway may have important clinical applications for improving the radiotherapeutic efficacy of HCC.
Collapse
Affiliation(s)
- Yizhi Zhan
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.,Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanqiao Zhang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuechen Liu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yilin Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guoxin Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
10
|
Huang M, Li P, Chen F, Cai Z, Yang S, Zheng X, Li W. Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med 2022; 12:2187-2198. [PMID: 35929424 PMCID: PMC9939155 DOI: 10.1002/cam4.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Gliomas refer to a group of complicated human brain tumors with a low 5-year survival rate and limited therapeutic options. Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) is a specific magnetic field featuring almost no side effects. However, the application of ELF-PEMF in the treatment of gliomas is rare. This review summarizes five significant underlying mechanisms including calcium ions, autophagy, apoptosis, angiogenesis, and reactive oxygen species, and applications of ELF-PEMF in glioma treatment from a clinical practice perspective. In addition, the prospects of ELF-PEMF in combination with conventional therapy for the treatment of gliomas are reviewed. This review benefits any specialists, especially oncologists, interested in this new therapy because it can help treat patients with gliomas properly.
Collapse
Affiliation(s)
- Mengqian Huang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Chen
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zehao Cai
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shoubo Yang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Gholipour Hamedani B, Goliaei B, Shariatpanahi SP, Nezamtaheri M. An overview of the biological effects of extremely low frequency electromagnetic fields combined with ionizing radiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:50-59. [PMID: 35513112 DOI: 10.1016/j.pbiomolbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
By growing the electrical power networks and electronic devices, electromagnetic fields (EMF) have become an inseparable part of the modern world. Considering the inevitable exposure to a various range of EMFs, especially at extremely low frequencies (ELF-EMF), investigating the biological effects of ELF-EMFs on biological systems became a global issue. The possible adverse consequences of these exposures were studied, along with their potential therapeutic capabilities. Also, their biological impacts in combination with other chemical and physical agents, specifically ionizing radiation (IR), as a co-carcinogen or as adjuvant therapy in combination with radiotherapy were explored. Here, we review the results of several in-vitro and in-vivo studies and discuss some proposed possible mechanisms of ELF-EMFs' actions in combination with IR. The results of these experiments could be fruitful to develop more precise safety standards for environmental ELF-EMFs exposures. Furthermore, it could evaluate the therapeutic capacities of ELF-EMFs alone or as an improver of radiotherapy.
Collapse
Affiliation(s)
- Bahareh Gholipour Hamedani
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryamsadat Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Sołek P, Mytych J, Łannik E, Majchrowicz L, Koszła O, Koziorowska A, Koziorowski M. Cancer on-target: Selective enhancement of 3-bromopyruvate action by an electromagnetic field in vitro. Free Radic Biol Med 2022; 180:153-164. [PMID: 35063649 DOI: 10.1016/j.freeradbiomed.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the leading causes of death in the modern world. Nowadays, most often treatment methods used in clinical oncology are drug therapies applied as monotherapy or combined therapy. Additionally, recent studies focus on developing approaches with the use of a drug in combination with other factors, not only chemical, to improve the probability and magnitude of therapeutic responses and reduce the possibility of chemoresistance. Such a promising factor seems to be an electromagnetic field (EMF) application. Here, we tested the effect of continuous or pulsed EMF on human cancer cells of different origin treated or not with 3-bromopyruvate, a small and powerful alkylating agent with a broad spectrum of anticancer activities. We provide strong evidence suggesting that ELF-EMF potentiates the anti-cancer activity of 3BP in human cancer cells through inhibition of TNFα secretion leading to irreversible p21/p27-dependent G2/M cell cycle arrest and finally cancer cell death. Our findings suggest a novel approach combining pharmacotherapy with ELF-EMF. In conclusion, electromagnetic field seems to be a potential modulator of anti-cancer efficacy of 3BP while combined therapy offers off-target activity. These features contribute to the development of innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 20-093, Lublin, Poland; Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland.
| | - Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland
| | - Ewelina Łannik
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland
| | - Lena Majchrowicz
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 20-093, Lublin, Poland
| | - Anna Koziorowska
- College of Natural Sciences, University of Rzeszow, 35-310, Rzeszow, Poland
| | - Marek Koziorowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland
| |
Collapse
|
13
|
Chen MY, Li J, Zhang N, Waldorff EI, Ryaby JT, Fedor P, Jia Y, Wang Y. In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells. Technol Cancer Res Treat 2022; 21:15330338221124658. [PMID: 36172744 PMCID: PMC9523832 DOI: 10.1177/15330338221124658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Although there have been significant advances in research and treatments over the past decades, cancer remains a leading cause of morbidity and mortality, mostly due to resistance to standard therapies. Pulsed electromagnetic field (PEMF), a newly emerged therapeutic strategy, has been highly regarded as less invasive and almost safe to patients, is now a clinically accepted form to treat diseases including cancer. Breast and lung cancer are the most prevalent forms of human cancers, yet reported investigations on exploring regimes including PEMF are limited. Methods: Intended to examine the anti-tumor effects of a clinically accepted osteogenic PEMF and the possibility of including PEMF in breast and lung cancer treatments, we studied the effects of 2 PEMF signals (PMF1 and PMF2) on breast and lung cancer cell growth and proliferation, as well as the possible underline mechanisms in vitro and in vivo. Results: We found that both signals caused modest but significant growth inhibition (∼5%) in MCF-7 and A549 cancer cells. Interestingly, mice xenograft tumors with A549 cells treated by PEMF were smaller in sizes than controls. However, for mice with MCF-7 tumor implants, treatment with PMF1 resulted in a slight increase (2.8%) in mean tumor size, while PMF2 treated tumors showed a 9% reduction in average size. Furthermore, PEMF increased caspase 3/7 expression levels and percentage of annexin stained cells, indicating the induction of apoptosis. It also increased G0 by 8.5%, caused changes in the expression of genes associated with cell growth suppression, DNA damage, cell cycle arrest, and apoptosis. When cancer cells or xenograft tumors treated with combined PEMF and chemotherapy drugs, PEMF showed growth inhibition effect independent of cisplatin in A549 cells, but with added effect by pemetrexed for the inhibition of MCF-7 growth. Conclusion: Together, our data suggested that clinically used osteogenic PEMF signals moderately suppressed cancer cell growth and proliferation both in vitro and in vivo.
Collapse
Affiliation(s)
- Mike Y Chen
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | - Jing Li
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | - Philip Fedor
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | - Yongsheng Jia
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| | - Yujun Wang
- Division of Neurosurgery, 20220City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
14
|
Masoudi-Khoram N, Abdolmaleki P. Effects of repeated exposure to 50 Hz electromagnetic field on breast cancer cells. Electromagn Biol Med 2021; 41:44-51. [PMID: 34747307 DOI: 10.1080/15368378.2021.1995872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The extremely low frequency electromagnetic field (ELF-EMF) is emerging as a novel approach in cancer treatment. This study evaluated the impact of daily exposure to 50 Hz EMF on breast cancer cells in vitro. The MDA-MB-231 and MCF-7 cells were exposed to EMF (50 Hz 20 mT, for 3 hours per day for up to four days) and examined for cell vaibility. The effect of daily ELF-EMF exposure on cell cycle progression and cell death was further investigated. The result revealed that the consecutive exposure to 50 Hz EMF at 20 mT remarkably decreased the viability of MDA-MB-231 compared to the non-exposed group, while it had no significant effect on MCF-7 cells. The ELF-EMF exposure induced G1 phase arrest along with the increase in sub-G1 cell population in MDA-MB-231. Moreover, repeated exposure to 50 Hz EMF promoted cell cycle progression in MCF-7 by increasing the percentage of cells in the S phase. The fluorescent staining revealed that daily exposure of ELF-EMF induced apoptotic cell death in MDA-MB-231, but no morphological change was observed in MCF-7 cells. The results showed that repeated daily exposure to 50 Hz EMF exhibited anti-proliferative activity against invasive breast cancer cells by impairing cell cycle progression and inducing cell death.
Collapse
Affiliation(s)
- Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Hollenberg AM, Huber A, Smith CO, Eliseev RA. Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair. Sci Rep 2021; 11:19114. [PMID: 34580378 PMCID: PMC8476611 DOI: 10.1038/s41598-021-98625-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.
Collapse
Affiliation(s)
- Alex M Hollenberg
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Aric Huber
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
- University of Rochester Medical Center, 601 Elmwood Ave, Rm 1-8541, Rochester, NY, 14642, USA.
| |
Collapse
|
16
|
Chen X, Xu Y, Jiang L, Tan Q. miRNA-218-5p increases cell sensitivity by inhibiting PRKDC activity in radiation-resistant lung carcinoma cells. Thorac Cancer 2021; 12:1549-1557. [PMID: 33759399 PMCID: PMC8107034 DOI: 10.1111/1759-7714.13939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is a malignancy with the highest mortality rate. Currently, surgery combined with radiotherapy is the first choice in the clinical treatment of lung carcinoma (LC); however, long-term radiotherapy leads to radiation resistance in patients, resulting in treatment failure. METHODS In this study, a new microRNA-218-5p (miRNA-218-5p) was identified, and its function in LC was investigated. RESULTS Reverse transcription quantitative polymerase chain reaction (RT-qPCR) results revealed that miRNA-218-5p was downregulated in LC. Overexpression or inhibition of miRNA-218-5p in LC and targeted binding of protein kinase, DNA-activated, catalytic polypeptide (PRKDC) to miRNA-218-5p were confirmed by comprehensive bioinformatic analysis. Exosomes from A549 and H1299 cells were cocultured with miRNA-218-5p and then cotransfected into radiation-resistant A549R and H1299R cells; the proliferation of radiation-resistant LC cells was found to be effectively inhibited and apoptosis was induced. Overexpression of miRNA-218-5p and X-irradiation could enhance the radiosensitivity of LC cells. Exogenous miRNA-218-5p derived from A549 and H1299 cells could be transfected into radiation-resistant LC cells and could inhibit PRKDC expression, thus accelerating DNA damage, apoptosis, and radiation sensitization of LC cells. CONCLUSIONS miRNA-218-5p could induce apoptosis and enhance the radiosensitivity of LC cells through regulatory activities, thus suggesting its application as a potential target for LC treatment.
Collapse
Affiliation(s)
- Xiaoke Chen
- Shanghai Lung Cancer CenterShanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yuanyuan Xu
- Shanghai Lung Cancer CenterShanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Long Jiang
- Shanghai Lung Cancer CenterShanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Qiang Tan
- Shanghai Lung Cancer CenterShanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
17
|
Xu A, Wang Q, Lv X, Lin T. Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology. Front Oncol 2021; 11:638146. [PMID: 33816280 PMCID: PMC8010190 DOI: 10.3389/fonc.2021.638146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Although the existing therapies have made great progress and significantly improved the prognosis of patients, it is undeniable that these treatment measures still cause some serious side effects. In this context, a new treatment method is needed to address these shortcomings. In recent years, the magnetic fields have been proposed as a novel treatment method with the advantages of less side effects, high efficiency, wide applications, and low costs without forming scars. Previous studies reported that static magnetic fields (SMFs) and low-frequency magnetic fields (LF-MFs, frequency below 300 Hz) exert anti-tumor function, independent of thermal effects. Magnetic fields (MFs) could inhibit cell growth and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation; regulate the immune system; and suppress angiogenesis and metastasis via various signaling pathways. In addition, they are effective in combination therapies: MFs not only promote the absorption of chemotherapy drugs by producing small holes on the surface of cell membrane but also enhance the inhibitory effects by regulating apoptosis and cell cycle related proteins. At present, MFs can be used as drug delivery systems to target magnetic nanoparticles (MNPs) to tumors. This review aims to summarize and analyze the current knowledge of the pre-clinical studies of anti-tumor effects and their underlying mechanisms and discuss the prospects of the application of MF therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Aoshu Xu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Qian Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Xin Lv
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Tingting Lin
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| |
Collapse
|
18
|
Ji MT, Nie J, Nie XF, Hu WT, Pei HL, Wan JM, Wang AQ, Zhou GM, Zhang ZL, Chang L, Li BY. 1α,25(OH) 2D 3 Radiosensitizes Cancer Cells by Activating the NADPH/ROS Pathway. Front Pharmacol 2020; 11:945. [PMID: 32848720 PMCID: PMC7426479 DOI: 10.3389/fphar.2020.00945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The radioresistance of tumors affect the outcome of radiotherapy. Accumulating data suggest that 1α,25(OH)2D3 is a potential anti-oncogenic molecule in various cancers. In the present study, we investigated the radiosensitive effects and underlying mechanisms of 1α,25(OH)2D3 in vitro and in vivo. We found that 1α,25(OH)2D3 enhanced the radiosensitivity of lung cancer and ovarian cancer cells by promoting the NADPH oxidase-ROS-apoptosis axis. Compared to the group that only received radiation, the survival fraction and self-renewal capacity of cancer cells treated with a combination of 1α,25(OH)2D3 and radiation were decreased. Both apoptosis and ROS were significantly increased in the combination group compared with the radiation only group. Moreover, N-acetyl-L-cysteine, a scavenger of intracellular ROS, reversed the apoptosis and ROS induced by 1α,25(OH)2D3, indicating that 1α,25(OH)2D3 enhanced the radiosensitivity of cancer cells in vitro by promoting ROS-induced apoptosis. Moreover, our results demonstrated that 1α,25(OH)2D3 promoted the ROS level via activating NADPH oxidase complexes, NOX4, p22phox, and p47phox. In addition, knockdown of the vitamin D receptor (VDR) abolished the radiosensitization of 1α,25(OH)2D3, which confirmed that 1α,25(OH)2D3 radiosensitized tumor cells that depend on VDR. Similarly, our study also evidenced that vitamin D3 enhanced the radiosensitivity of cancer cells in vivo and extended the overall survival of mice with tumors. In summary, these results demonstrate that 1α,25(OH)2D3 enhances the radiosensitivity depending on VDR and activates the NADPH oxidase-ROS-apoptosis axis. Our findings suggest that 1α,25(OH)2D3 in combination with radiation enhances lung and ovarian cell radiosensitivity, potentially providing a novel combination therapeutic strategy.
Collapse
Affiliation(s)
- Min-Tao Ji
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xue-Fei Nie
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Wen-Tao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Hai-Long Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jian-Mei Wan
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Ai-Qing Wang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Guang-Ming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zeng-Li Zhang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bing-Yan Li
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| |
Collapse
|
19
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
20
|
Xu A, Wang Q, Lin T. Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21082952. [PMID: 32331350 PMCID: PMC7215396 DOI: 10.3390/ijms21082952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a common malignancy threatening women’s health around the world. Despite improved treatments for different subtypes of breast tumors that have been put forward, there still exists a poor therapeutic response and prognosis. Magnetic fields, as a non-invasive therapy, have shown anti-tumor effects in vitro and in vivo; however, the detailed mechanisms involved are still not clear. In this study, we found that in exposure to low-frequency magnetic fields (LF-MFs) with an intensity of 1 mT and frequencies of 50, 125, 200, and 275 Hz, separately, the proliferation of breast cancer cells was inhibited and LF-MF with 200 Hz reached the optimum inhibition effect, on exposure time-dependently. Notably, we found that exposure to LF-MF led to MCF-7 and ZR-75-1 cell apoptosis and cell cycle arrest. Moreover, we also discovered that LF-MF effectively increased the level of reactive oxygen species (ROS), suppressed the PI3K/AKT signaling pathway, and activated glycogen synthase kinase-3β (GSK-3β). We demonstrated that the GSK3β activity contributed to LF-MF-induced cell proliferation inhibition and apoptosis, while the underlying mechanism was associated with the inhibition of PI3K/AKT through increasing the intracellular ROS accumulation. These results indicate that LF-MF with a specific frequency may be an attractive therapy to treat breast cancers.
Collapse
Affiliation(s)
- Aoshu Xu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China; (A.X.); (Q.W.)
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun 130061, China
| | - Qian Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China; (A.X.); (Q.W.)
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun 130061, China
| | - Tingting Lin
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China; (A.X.); (Q.W.)
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun 130061, China
- Correspondence: ; Tel.: +86-135-0081-8835
| |
Collapse
|
21
|
Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging (Albany NY) 2020; 12:3662-3681. [PMID: 32074079 PMCID: PMC7066880 DOI: 10.18632/aging.102836] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
Magnetic field (MF) is being used in antitumor treatment; however, the underlying biological mechanisms remain unclear. In this study, the potency and mechanism of a previously published tumor suppressing MF exposure protocol were further investigated. This protocol, characterized as a 50 Hz electromagnetic field modulated by static MF with time-average intensity of 5.1 mT, when applied for 2 h daily for over 3 consecutive days, selectively inhibited the growth of a broad spectrum of tumor cell lines including lung cancer, gastric cancer, pancreatic cancer and nephroblastoma. The level of intracellular reactive oxygen species (ROS) increased shortly after field exposure and persisted. Subsequently, pronounced DNA damage and activation of DNA repair pathways were identified both in vitro and in vivo. Furthermore, use of free radical scavenger alleviated DNA damage and partially reduced cell death. Finally, this field was found to inhibit cell proliferation, and simultaneously induced two types of programmed cell death, apoptosis and ferroptosis. In conclusion, this tumor suppressing MF could determine cell fate through ROS-induced DNA damage, inducing oxidative stress and activation of the DNA damage repair pathways, eventually lead to apoptosis and ferroptosis, as well as inhibition of tumor growth.
Collapse
|
22
|
Ashdown CP, Johns SC, Aminov E, Unanian M, Connacher W, Friend J, Fuster MM. Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability. Biophys J 2020; 118:1552-1563. [PMID: 32142642 PMCID: PMC7136334 DOI: 10.1016/j.bpj.2020.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Tumor cells express a unique cell surface glycocalyx with upregulation of sulfated glycosaminoglycans and charged glycoproteins. Little is known about how electromagnetic fields interact with this layer, particularly with regard to harnessing unique properties for therapeutic benefit. We applied a pulsed 20-millitesla (mT) magnetic field with rate of rise (dB/dt) in the msec range to cultured tumor cells to assess whether this affects membrane integrity as measured using cytolytic assays. A 10-min exposure of A549 human lung cancer cells to sequential 50- and 385-Hz oscillating magnetic fields was sufficient to induce intracellular protease release, suggesting altered membrane integrity after the field exposure. Heparinase treatment, which digests anionic sulfated glycan polymers, before exposure rendered cells insensitive to this effect. We further examined a non-neoplastic human primary cell line (lung lymphatic endothelial cells) as a typical normal host cell from the lung cancer microenvironment and found no effect of field exposure on membrane integrity. The field exposure was also sufficient to alter proliferation of tumor cells in culture, but not that of normal lymphatic cells. Pulsed magnetic field exposure of human breast cancer cells that express a sialic-acid rich glycocalyx also induced protease release, and this was partially abrogated by sialidase pretreatment, which removes cell surface anionic sialic acid. Scanning electron microscopy showed that field exposure may induce unique membrane “rippling” along with nanoscale pores on A549 cells. These effects were caused by a short exposure to pulsed 20-mT magnetic fields, and future work may examine greater magnitude effects. The proof of concept herein points to a mechanistic basis for possible applications of pulsed magnetic fields in novel anticancer strategies.
Collapse
Affiliation(s)
- Christopher P Ashdown
- VA San Diego Healthcare System, San Diego, California; Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Scott C Johns
- VA San Diego Healthcare System, San Diego, California; Veterans Medical Research Foundation, San Diego, California
| | - Edward Aminov
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Michael Unanian
- School of Electrical Engineering, Columbia University, New York, New York
| | - William Connacher
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - James Friend
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Mark M Fuster
- VA San Diego Healthcare System, San Diego, California; Veterans Medical Research Foundation, San Diego, California; Department of Medicine, Division of Pulmonary & Critical Care, University of California, San Diego, La Jolla, California; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California.
| |
Collapse
|
23
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Kanaparthi A, Kesary SPR, Pujita C, Gopalaiah H. Bio Electro Magnetic Energy Regulation (BEMER) therapy in myofascial pain dysfunction syndrome: A preliminary study. J Oral Biol Craniofac Res 2020; 10:38-42. [PMID: 32090003 DOI: 10.1016/j.jobcr.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 01/26/2023] Open
Abstract
Background Myofacial pain dysfunction syndrome (MPDS) is of the commonest form of orofacial pain encountered in the clinics. Though, many therapies have been suggested in the recent past, still the management of this condition remains a therapeutic problem. The search for newer, relatively safe and effective long term approach lead to the use of magnetic stimulation in pain modulation. Bio Electro Magnetic Energy Regulation is one such modality that has been studied in the musculoskeletal disorders. However, no studies in this regard have been explored in orofacial region. Objectives The objective of the present study was to evaluate the efficacy of BEMER therapy as an adjuvant to relieve pain in myofascial pain dysfunction syndrome. Materials and methods The present randomized comparative study was on 40 patients who were diagnosed with Myofacial pain dysfunction syndrome(MPDS). They were grouped into two groups of 20 each. Group 1 patients were administered analgesic + muscle relaxants & Group 2 was receiving both analgesic + muscle relaxants with BEMER therapy. All the patients were evaluated for pain relief on visual analog scale (VAS) and the mouth opening (MO)was measured using digital vernier callipers. Results The group 2 showed a significant improvement in the symptoms even after 2 months follow up. In group 2 the mean mouth opening was 45.60 ± 3.648(P < 0.05) and 45.50 ± 3.663(P < 0.05); the Mean VAS Score was 3.10 ± 0.912 and 2.90 ± 0.968(P < 0.05) after one month and after two months respectively. The independent t-test, was used for inferential statistics. Conclusion It can be concluded from this study that Combined therapy proved to be more effective in providing long term symptomatic relief compared to conventional pharmacological therapy. BEMER as an adjuvant therapeutic modality proved to be beneficial in the management of MPDS.
Collapse
Affiliation(s)
- Alekhya Kanaparthi
- Department of Oral Medicine and Radiology, MNR Dental College & Hospital, Sangareddy, 502001, India
| | | | - Chada Pujita
- Department of Pedodontics and Preventive Dentistry, MNR Dental College & Hospital, Sangareddy, 502001, India
| | - Hema Gopalaiah
- Department of Oral Medicine and Radiology, MNR Dental College & Hospital, Sangareddy, 502001, India
| |
Collapse
|
25
|
Verginadis II, Karkabounas SC, Simos YV, Velalopoulou AP, Peschos D, Avdikos A, Zelovitis I, Papadopoulos N, Dounousi E, Ragos V, Evangelou AM. Antitumor effects of the electromagnetic resonant frequencies derived from the 1H NMR spectrum of Ph 3Sn(Mercaptonicotinic)SnPh 3 complex. Med Hypotheses 2019; 133:109393. [PMID: 31563097 DOI: 10.1016/j.mehy.2019.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
The aim of this article is to investigate the potential cytotoxic and antitumor effects of the resonant electromagnetic fields (rEMFs) derived from the 1H NMR spectrum of the Ph3Sn(Mercaptonicotinic)SnPh3 complex (SnMNA). The ability of the complex's rEMFs to induce leiomyosarcoma (LMS) cell death and to recess tumor (leiomyosarcoma) development in Wistar rats was evaluated. The effects of the simultaneous administration of the SnMNA complex at extremely low concentrations and exposure to its rEMFs was also investigated. The emission of the 1H NMR spectrum of the complex alone or in a combination with low ineffective doses of the complex decreased LMS cell viability mainly through apoptosis. Moreover, the results from the in vivo experiments showed a significant prolongation of life expectancy in tumor-bearing rats exposed to the rEMFs alongside a deceleration in tumor growth rate. We speculate that the rEMFs of a biologically active substance could exert similar biological effects as the substance itself, mainly when is combined with extremely low ineffective concentrations of the substance.
Collapse
Affiliation(s)
- Ioannis I Verginadis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Spyridon Ch Karkabounas
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia P Velalopoulou
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Antonis Avdikos
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Zelovitis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Papadopoulos
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Vasilios Ragos
- Clinic of Maxillofacial Surgery, Medical Department, University of Ioannina, Ioannina 45110, Ioannina, Greece
| | - Angelos M Evangelou
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
26
|
Jooyan N, Goliaei B, Bigdeli B, Faraji-Dana R, Zamani A, Entezami M, Mortazavi SMJ. Direct and indirect effects of exposure to 900 MHz GSM radiofrequency electromagnetic fields on CHO cell line: Evidence of bystander effect by non-ionizing radiation. ENVIRONMENTAL RESEARCH 2019; 174:176-187. [PMID: 31036329 DOI: 10.1016/j.envres.2019.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The rapid rise in global concerns about the adverse health effects of exposure to radiofrequency radiation (RFR) generated by common devices such as mobile phones has prompted scientists to further investigate the biological effects of these environmental exposures. Non-targeted effects (NTEs) are responses which do not need a direct exposure to be expressed and are particularly significant at low energy radiations. Although NTEs of ionizing radiation are well documented, there are scarcely any studies on non-targeted responses such as bystander effect (BE) after exposure to non-ionizing radiation. The main goal of this research is to study possible RFR-induced BE. MATERIAL AND METHODS Chinese hamster ovary cells were exposed to 900 MHz GSM RFR at an average specific absorption rate (SAR) of 2 W/kg for 4, 12 and 24 hours (h). To generate a uniformly distributed electromagnetic field and avoid extraneous RF exposures a cavity was desined and used. Cell membrane permeability, cell redox activity, metabolic and mitotic cell death and DNA damages were analyzed. Then the most effective exposure durations and statistically significant altered parameters were chosen to assess the induction of BE through medium transfer procedure. Furthermore, intra and extra cellular reactive oxygen species (ROS) levels were measured to assess the molecular mechanism of BE induced by non-ionizing radiation. RESULTS No statistically significant alteration was found in cell membrane permeability, cell redox activity, metabolic cell activity and micronuclei (MN) frequency in the cells directly exposed to RFR for 4, 12, or 24 h. However, RFR exposure for 24 h caused a statistically significant decrease in clonogenic ability as well as a statistically significant increase in olive moment in both directly exposed and bystander cells which received media from RFR-exposed cells (conditioned culture medium; CCM). Exposure to RFR also statistically significant elevated both intra and extra cellular levels of ROS. CONCLUSION Our observation clearly indicated the induction of BE in cells treated with CCM. To our knowledge, this is the first report that a non-ionizing radiation (900 MHz GSM RFR) can induce bystander effect. As reported for ionizing radiation, our results proposed that ROS can be a potential molecule in indirect effect of RFR. On the other hand, we found the importance of ROS in direct effect of RFR but in different ways.
Collapse
Affiliation(s)
- Najmeh Jooyan
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Bahareh Bigdeli
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Zamani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Entezami
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran; Department of Diagnostic Imaging, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| |
Collapse
|
27
|
Salinas-Asensio MM, Ríos-Arrabal S, Artacho-Cordón F, Olivares-Urbano MA, Calvente I, León J, Núñez MI. Exploring the radiosensitizing potential of magnetotherapy: a pilot study in breast cancer cells. Int J Radiat Biol 2019; 95:1337-1345. [PMID: 31140889 DOI: 10.1080/09553002.2019.1619951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: To explore the influence of electromagnetic fields (EMFs) on the cell cycle progression of MDA-MB-231 and MCF-7 breast cancer cell lines and to evaluate the radiosensitizing effect of magnetotherapy during therapeutic co-exposure to EMFs and radiotherapy. Material and methods: Cells were exposed to EMFs (25, 50 and 100 Hz; 8 and 10 mT). In the co-treatment, cells were first exposed to EMFs (50 Hz/10 mT) for 30 min and then to ionizing radiation (IR) (2 Gy) 4 h later. Cell cycle progression and free radical production were evaluated by flow cytometry, while radiosensitivity was explored by colony formation assay. Results: Generalized G1-phase arrest was found in both cell lines several hours after EMF exposure. Interestingly, a marked G1-phase delay was observed at 4 h after exposure to 50 Hz/10 mT EMFs. No cell cycle perturbation was observed after repeated exposure to EMFs. IR-derived ROS production was enhanced in EMF-exposed MCF-7 cells at 24 h post-exposure. EMF-exposed cells were more radiosensitive in comparison to sham-exposed cells. Conclusions: These results highlight the potential benefits of concomitant treatment with magnetotherapy before radiotherapy sessions to enhance the effectiveness of breast cancer therapy. Further studies are warranted to identify the subset(s) of patients who would benefit from this multimodal treatment.
Collapse
Affiliation(s)
| | - S Ríos-Arrabal
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - F Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - M A Olivares-Urbano
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - I Calvente
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - J León
- Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain.,Digestive Unit, San Cecilio University Hospital , Granada , Spain.,CIBER of Hepatic and Digestive Diseases (CIBEREHD) , Madrid , Spain
| | - M I Núñez
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain.,CIBER of Epidemiology and Public Health (CIBERESP) , Madrid , Spain.,Biopathology and Regenerative Medicine Institute (IBIMER) , University of Granada, Granada , Spain
| |
Collapse
|
28
|
Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: a mathematical modeling approach to identify the influence of excitation parameters. Int J Radiat Biol 2018; 94:1038-1048. [DOI: 10.1080/09553002.2018.1478162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Hofherr A, Seger C, Fitzpatrick F, Busch T, Michel E, Luan J, Osterried L, Linden F, Kramer-Zucker A, Wakimoto B, Schütze C, Wiedemann N, Artati A, Adamski J, Walz G, Kunji ERS, Montell C, Watnick T, Köttgen M. The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biol 2018; 16:e2005651. [PMID: 30080851 PMCID: PMC6095617 DOI: 10.1371/journal.pbio.2005651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/16/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023] Open
Abstract
Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated Ca2+ signals into respective physiological functions are unknown. Here, we show that the Ca2+-regulated mitochondrial ATP-Mg/Pi solute carrier 25 A 25 (SLC25A25) acts downstream of TRPP2 in an evolutionarily conserved metabolic signaling pathway. We identify SLC25A25 as an essential component in this cilia-dependent pathway using a genome-wide forward genetic screen in Drosophila melanogaster, followed by a targeted analysis of SLC25A25 function in zebrafish left-right patterning. Our data suggest that TRPP2 ion channels regulate mitochondrial SLC25A25 transporters via Ca2+ establishing an evolutionarily conserved molecular link between ciliary signaling and mitochondrial metabolism.
Collapse
Affiliation(s)
- Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Claudia Seger
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fiona Fitzpatrick
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Tilman Busch
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elisabeth Michel
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jingting Luan
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lea Osterried
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Frieder Linden
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Albrecht Kramer-Zucker
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Barbara Wakimoto
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Conny Schütze
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Terry Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
30
|
Benedetti MG, Cavazzuti L, Mosca M, Fusaro I, Zati A. Bio-Electro-Magnetic-Energy-Regulation (BEMER) for the treatment of type I complex regional pain syndrome: A pilot study. Physiother Theory Pract 2018; 36:498-506. [DOI: 10.1080/09593985.2018.1491661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Lorenzo Cavazzuti
- Physical Medicine and Rehabilitation Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- Orthopaedic and Traumatologic Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Isabella Fusaro
- Physical Medicine and Rehabilitation Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Zati
- Physical Medicine and Rehabilitation Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
31
|
Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5801209. [PMID: 29770167 PMCID: PMC5892229 DOI: 10.1155/2018/5801209] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
Abstract
Radioresistance is one of the primary causes responsible for therapeutic failure and recurrence of cancer. It is well documented that reactive oxygen species (ROS) contribute to the initiation and development of gastric cancer (GC), and the levels of ROS are significantly increased in patients with GC accompanied with abnormal expressions of multiple inflammatory factors. It is also well documented that ROS can activate cancer cells and inflammatory cells, stimulating the release of a variety of inflammatory cytokines, which subsequently mediates the tumor microenvironment (TME) and promotes cancer stem cell (CSC) maintenance as well as renewal and epithelial-mesenchymal transition (EMT), ultimately resulting in radioresistance and recurrence of GC.
Collapse
|
32
|
Meijer DKF, Geesink HJH. Favourable and Unfavourable EMF Frequency Patterns in Cancer: Perspectives for Improved Therapy and Prevention. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jct.2018.93019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC. Human Pulmonary 3D Models For Translational Research. Biotechnol J 2018; 13:1700341. [PMID: 28865134 PMCID: PMC7161817 DOI: 10.1002/biot.201700341] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Lung diseases belong to the major causes of death worldwide. Recent innovative methodological developments now allow more and more for the use of primary human tissue and cells to model such diseases. In this regard, the review covers bronchial air-liquid interface cultures, precision cut lung slices as well as ex vivo cultures of explanted peripheral lung tissue and de-/re-cellularization models. Diseases such as asthma or infections are discussed and an outlook on further areas for development is given. Overall, the progress in ex vivo modeling by using primary human material could make translational research activities more efficient by simultaneously fostering the mechanistic understanding of human lung diseases while reducing animal usage in biomedical research.
Collapse
Affiliation(s)
- Katja Zscheppang
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Johanna Berg
- Department of BiotechnologyTechnical University of BerlinGustav‐Meyer‐Allee 25Berlin 13335Germany
| | - Sarah Hedtrich
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Leonie Verheyen
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Darcy E. Wagner
- Helmholtz Zentrum Munich, Lung Repair and Regeneration Unit, Comprehensive Pneumology CenterMember of the German Center for Lung ResearchMunichGermany
| | - Norbert Suttorp
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Stefan Hippenstiel
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Andreas C. Hocke
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| |
Collapse
|
34
|
Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O 2- and H 2O 2. Sci Rep 2017; 7:14544. [PMID: 29109418 PMCID: PMC5673962 DOI: 10.1038/s41598-017-14983-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
Recently, we identified a specific extremely low-frequency pulsed electromagnetic field (ELF-PEMF) that supports human osteoblast (hOBs) function in an ERK1/2-dependent manner, suggesting reactive oxygen species (ROS) being key regulators in this process. Thus, this study aimed at investigating how ELF-PEMF exposure can modulate hOBs function via ROS. Our results show that single exposure to ELF-PEMF induced ROS production in hOBs, without reducing intracellular glutathione. Repetitive exposure (>3) to ELF-PEMF however reduced ROS-levels, suggesting alterations in the cells antioxidative stress response. The main ROS induced by ELF-PEMF were •O2− and H2O2, therefore expression/activity of antioxidative enzymes related to these ROS were further investigated. ELF-PEMF exposure induced expression of GPX3, SOD2, CAT and GSR on mRNA, protein and enzyme activity level. Scavenging •O2− and H2O2 diminished the ELF-PEMF effect on hOBs function (AP activity and mineralization). Challenging the hOBs with low amounts of H2O2 on the other hand improved hOBs function. In summary, our data show that ELF-PEMF treatment favors differentiation of hOBs by producing non-toxic amounts of ROS, which induces antioxidative defense mechanisms in these cells. Thus, ELF-PEMF treatment might represent an interesting adjunct to conventional therapy supporting bone formation under oxidative stress conditions, e.g. during fracture healing.
Collapse
|