1
|
Omar AM, Elfaky MA, Arold ST, Soror SH, Khayat MT, Asfour HZ, Bamane FH, El-Araby ME. 1 H-Imidazole-2,5-Dicarboxamides as NS4A Peptidomimetics: Identification of a New Approach to Inhibit HCV-NS3 Protease. Biomolecules 2020; 10:E479. [PMID: 32245218 PMCID: PMC7175367 DOI: 10.3390/biom10030479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
The nonstructural (NS) protein NS3/4A protease is a critical factor for hepatitis C virus (HCV) maturation that requires activation by NS4A. Synthetic peptide mutants of NS4A were found to inhibit NS3 function. The bridging from peptide inhibitors to heterocyclic peptidomimetics of NS4A has not been considered in the literature and, therefore, we decided to explore this strategy for developing a new class of NS3 inhibitors. In this report, a structure-based design approach was used to convert the bound form of NS4A into 1H-imidazole-2,5-dicarboxamide derivatives as first generation peptidomimetics. This scaffold mimics the buried amino acid sequence Ile-25` to Arg-28` at the core of NS4A21`-33` needed to activate the NS3 protease. Some of the synthesized compounds (Coded MOC) were able to compete with and displace NS4A21`-33` for binding to NS3. For instance, N5-(4-guanidinobutyl)-N2-(n-hexyl)-1H-imidazole-2,5-dicarboxamide (MOC-24) inhibited the binding of NS4A21`-33` with a competition half maximal inhibitory concentration (IC50) of 1.9 ± 0.12 µM in a fluorescence anisotropy assay and stabilized the denaturation of NS3 by increasing the aggregation temperature (40% compared to NS4A21`-33`). MOC-24 also inhibited NS3 protease activity in a fluorometric assay. Molecular dynamics simulations were conducted to rationalize the differences in structure-activity relationship (SAR) between the active MOC-24 and the inactive MOC-26. Our data show that MOC compounds are possibly the first examples of NS4A peptidomimetics that have demonstrated promising activities against NS3 proteins.
Collapse
Affiliation(s)
- Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.T.K.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mahmoud A. Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia;
| | - Stefan T. Arold
- Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | - Sameh H. Soror
- Center for Scientific Excellence Helwan Structural Biology Research (HSBR), Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt;
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.T.K.)
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Faida H. Bamane
- Department of Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Moustafa E. El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; (A.M.O.); (M.T.K.)
| |
Collapse
|
2
|
Timm J, Kosovrasti K, Henes M, Leidner F, Hou S, Ali A, Kurt-Yilmaz N, Schiffer CA. Molecular and Structural Mechanism of Pan-Genotypic HCV NS3/4A Protease Inhibition by Glecaprevir. ACS Chem Biol 2020; 15:342-352. [PMID: 31868341 PMCID: PMC7747061 DOI: 10.1021/acschembio.9b00675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus, causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well-known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a, and 5a in complex with GLE. Comparison with the highly similar grazoprevir indicated the mechanism of GLE's drastic improvement in potency. We found that, while GLE is highly potent against wild-type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.
Collapse
Affiliation(s)
- Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
El-Araby ME, Omar AM, Soror SH, Arold ST, Khayat MT, Asfour HZ, Bamane F, Elfaky MA. Synthetic bulky NS4A peptide variants bind to and inhibit HCV NS3 protease. J Adv Res 2020; 24:251-259. [PMID: 32373358 PMCID: PMC7195562 DOI: 10.1016/j.jare.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/03/2019] [Accepted: 01/02/2020] [Indexed: 01/21/2023] Open
Abstract
NS4A is a non-structural multi-tasking small peptide that is essential for HCV maturation and replication. The central odd-numbered hydrophobic residues of NS4A (Val-23‘ to Leu-31‘)i are essential for activating NS3 upon NS3/4A protease complex formation. This study aims to design new specific allosteric NS3/4A protease inhibitors by mutating Val-23‘, Ile-25‘, and Ile-29‘ into bulkier amino acids. Pep-15, a synthetic peptide, showed higher binding affinity towards HCV-NS3 subtype-4 than native NS4A. The Kd of Pep-15 (80.0 ± 8.0 nM) was twice as high as that of native NS4A (169 ± 37 nM). The mutant Pep-15 inhibited the catalytic activity of HCV-NS3 by forming an inactive complex. Molecular dynamics simulations suggested that a cascade of conformational changes occurred, especially in the catalytic triad arrangements, thereby inactivating NS3. A large shift in the position of Ser-139 was observed, leading to loss of critical hydrogen bonding with His-57. Even though this study is not a classic drug discovery study—nor do we propose Pep-15 as a drug candidate—it serves as a stepping stone towards developing a potent inhibitor of hitherto untargeted HCV subtypes.
Collapse
Affiliation(s)
- Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Sameh H Soror
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, P.O. 11795, Cairo, Egypt.,Center for Scientific Excellence Helwan Structural Biology Research (HSBR), Faculty of Pharmacy, Helwan University, Ain Helwan, P.O. 11795, Cairo, Egypt
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faida Bamane
- Department of Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Ezat AA, Elshemey WM. A comparative study of the efficiency of HCV NS3/4A protease drugs against different HCV genotypes using in silico approaches. Life Sci 2018; 217:176-184. [PMID: 30528183 DOI: 10.1016/j.lfs.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the efficacy of Direct Acting Antivirals (DAAs) in the treatment of different Hepatitis C Virus (HCV) genotypes. MAIN METHODS Homology modeling is used to predict the 3D structures of different genotypes while molecular docking is employed to predict genotype - drug interactions (Binding Mode) and binding free energy (Docking Score). KEY FINDINGS Simeprevir (TMC435) and to a lesser degree MK6325 are the best drugs among the studied drugs. The predicted affinity of drugs against genotype 1a is always better than other genotypes. P2-P4 macrocyclic drugs show better performance against genotypes 2, 3 and 5. Macrocyclic drugs are better than linear drugs. SIGNIFICANCE HCV is one of the major health problems worldwide. Until the discovery of DAAs, HCV treatment faced many failures. DAAs target key functional machines of the virus life cycle and shut it down. NS3/4A protease is an important target and several drugs have been designed to inhibit its functions. There are several NS3/4A protease drugs approved by Food and Drug Administration (FDA). Unfortunately, the virus exhibits resistance against these drugs. This study is significant in elucidating that no one drug is able to treat different genotypes with the same efficiency. Therefore, treatment should be prescribed based on the HCV genotype.
Collapse
Affiliation(s)
- Ahmed A Ezat
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | - Wael M Elshemey
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
5
|
Shunmugam L, Ramharack P, Soliman MES. Road Map for the Structure-Based Design of Selective Covalent HCV NS3/4A Protease Inhibitors. Protein J 2017; 36:397-406. [PMID: 28815420 DOI: 10.1007/s10930-017-9736-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the last 2 decades, covalent inhibitors have gained much popularity and is living up to its reputation as a powerful tool in drug discovery. Covalent inhibitors possess many significant advantages including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent exposed substrate-binding domains. However, rapidly mounting concerns over the potential toxicity, highly reactive nature and general lack of selectivity have negatively impacted covalent inhibitor development. Recently, a great deal of emphasis by the pharmaceutical industry has been placed toward the development of novel approaches to alleviate the major challenges experienced through covalent inhibition. This has unexpectedly led to the emergence of "selective" covalent inhibitors. The purpose of this review is not only to provide an overview from literature but to introduce a technical guidance as to how to initiate a systematic "road map" for the design of selective covalent inhibitors which we believe may assist in the design and development of optimized potential selective covalent HCV NS3/4A viral protease inhibitors.
Collapse
Affiliation(s)
- Letitia Shunmugam
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Pritika Ramharack
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa. .,College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, FAMU, Tallahassee, FL, 32307, USA.
| |
Collapse
|