1
|
Alkhatib B, Ciarelli J, Ghnenis A, Pallas B, Olivier N, Padmanabhan V, Vyas AK. Early- to mid-gestational testosterone excess leads to adverse cardiac outcomes in postpartum sheep. Am J Physiol Heart Circ Physiol 2024; 327:H315-H330. [PMID: 38819385 DOI: 10.1152/ajpheart.00763.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Cardiovascular dysfunctions complicate 10-20% of pregnancies, increasing the risk for postpartum mortality. Various gestational insults, including preeclampsia are reported to be associated with adverse maternal cardiovascular outcomes. One such insult, gestational hyperandrogenism increases the risk for preeclampsia and other gestational morbidities but its impact on postpartum maternal health is not well known. We hypothesize that gestational hyperandrogenism such as testosterone (T) excess will adversely impact the maternal heart in the postpartum period. Pregnant ewes were injected with T propionate from day 30 to day 90 of gestation (term 147 days). Three months postpartum, echocardiograms, plasma cytokine profiles, cardiac morphometric, and molecular analysis were conducted [control (C) n = 6, T-treated (T) n = 7 number of animals]. Data were analyzed by two-tailed Student's t test and Cohen's effect size (d) analysis. There was a nonsignificant large magnitude decrease in cardiac output (7.64 ± 1.27 L/min vs. 10.19 ± 1.40, P = 0.22, d = 0.81) and fractional shortening in the T ewes compared with C (35.83 ± 2.33% vs. 41.50 ± 2.84, P = 0.15, d = 0.89). T treatment significantly increased 1) left ventricle (LV) weight-to-body weight ratio (2.82 ± 0.14 g/kg vs. 2.46 ± 0.08) and LV thickness (14.56 ± 0.52 mm vs. 12.50 ± 0.75), 2) proinflammatory marker [tumor necrosis factor-alpha (TNF-α)] in LV (1.66 ± 0.35 vs. 1.06 ± 0.18), 3) LV collagen (Masson's Trichrome stain: 3.38 ± 0.35 vs. 1.49 ± 0.15 and Picrosirius red stain: 5.50 ± 0.32 vs. 3.01 ± 0.23), 4) markers of LV apoptosis, including TUNEL (8.3 ± 1.1 vs. 0.9 ± 0.18), bcl-2-associated X protein (Bax)+-to-b-cell lymphoma 2 (Bcl2)+ ratio (0.68 ± 0.30 vs. 0.13 ± 0.02), and cleaved caspase 3 (15.4 ± 1.7 vs. 4.4 ± 0.38). These findings suggest that gestational testosterone excess adversely programs the maternal LV, leading to adverse structural and functional consequences in the postpartum period.NEW & NOTEWORTHY Using a sheep model of human translational relevance, this study provides evidence that excess gestational testosterone exposure such as that seen in hyperandrogenic disorders adversely impacts postpartum maternal hearts.
Collapse
Affiliation(s)
- Bashar Alkhatib
- Department of Pediatrics, Washington University, St Louis, Missouri, United States
| | - Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas Olivier
- Department of Veterinary Medicine, Michigan State University, Lansing, Michigan, United States
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University, St Louis, Missouri, United States
| |
Collapse
|
2
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
3
|
Luo Y, Safabakhsh S, Palumbo A, Fiset C, Shen C, Parker J, Foster LJ, Laksman Z. Sex-Based Mechanisms of Cardiac Development and Function: Applications for Induced-Pluripotent Stem Cell Derived-Cardiomyocytes. Int J Mol Sci 2024; 25:5964. [PMID: 38892161 PMCID: PMC11172775 DOI: 10.3390/ijms25115964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Males and females exhibit intrinsic differences in the structure and function of the heart, while the prevalence and severity of cardiovascular disease vary in the two sexes. However, the mechanisms of this sex-based dimorphism are yet to be elucidated. Sex chromosomes and sex hormones are the main contributors to sex-based differences in cardiac physiology and pathophysiology. In recent years, the advances in induced pluripotent stem cell-derived cardiac models and multi-omic approaches have enabled a more comprehensive understanding of the sex-specific differences in the human heart. Here, we provide an overview of the roles of these two factors throughout cardiac development and explore the sex hormone signaling pathways involved. We will also discuss how the employment of stem cell-based cardiac models and single-cell RNA sequencing help us further investigate sex differences in healthy and diseased hearts.
Collapse
Affiliation(s)
- Yinhan Luo
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Sina Safabakhsh
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| | - Alessia Palumbo
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Céline Fiset
- Research Centre, Montreal Heart Institute, Faculty of Pharmacy, Université de Montréal, Montréal, QC H1T 1C8, Canada;
| | - Carol Shen
- Department of Integrated Sciences, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Jeremy Parker
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Leonard J. Foster
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Zachary Laksman
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| |
Collapse
|
4
|
Lasocka-Koriat Z, Lewicka-Potocka Z, Kaleta-Duss A, Siekierzycka A, Kalinowski L, Lewicka E, Dąbrowska-Kugacka A. Differences in cardiac adaptation to exercise in male and female athletes assessed by noninvasive techniques: a state-of-the-art review. Am J Physiol Heart Circ Physiol 2024; 326:H1065-H1079. [PMID: 38391314 PMCID: PMC11380999 DOI: 10.1152/ajpheart.00756.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Athlete's heart is generally regarded as a physiological adaptation to regular training, with specific morphological and functional alterations in the cardiovascular system. Development of the noninvasive imaging techniques over the past several years enabled better assessment of cardiac remodeling in athletes, which may eventually mimic certain pathological conditions with the potential for sudden cardiac death, or disease progression. The current literature provides a compelling overview of the available methods that target the interrelation of prolonged exercise with cardiac structure and function. However, this data stems from scientific studies that included mostly male athletes. Despite the growing participation of females in competitive sport meetings, little is known about the long-term cardiac effects of repetitive training in this population. There are several factors-biochemical, physiological and psychological, that determine sex-dependent cardiac response. Herein, the aim of this review was to compare cardiac adaptation to endurance exercise in male and female athletes with the use of electrocardiographic, echocardiographic, and biochemical examination, to determine the sex-specific phenotypes, and to improve the healthcare providers' awareness of cardiac remodeling in athletes. Finally, we discuss the possible exercise-induced alternations that should arouse suspicion of pathology and be further evaluated.
Collapse
Affiliation(s)
- Zofia Lasocka-Koriat
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- First Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Lewicka-Potocka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
- First Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kaleta-Duss
- Institute for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Ewa Lewicka
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
5
|
Visanji M, Venegas-Pino DE, Werstuck GH. Understanding One Half of the Sex Difference Equation: The Modulatory Effects of Testosterone on Diabetic Cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:551-561. [PMID: 38061627 DOI: 10.1016/j.ajpath.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Diabetes is a prevalent disease, primarily characterized by high blood sugar (hyperglycemia). Significantly higher rates of myocardial dysfunction have been noted in individuals with diabetes, even in those without coronary artery disease or high blood pressure (hypertension). Numerous molecular mechanisms have been identified through which diabetes contributes to the pathology of diabetic cardiomyopathy, which presents as cardiac hypertrophy and fibrosis. At the cellular level, oxidative stress and inflammation in cardiomyocytes are triggered by hyperglycemia. Although males are generally more likely to develop cardiovascular disease than females, diabetic males are less likely to develop diabetic cardiomyopathy than are diabetic females. One reason for these differences may be the higher levels of serum testosterone in males compared with females. Although testosterone appears to protect against cardiomyocyte oxidative stress and exacerbate hypertrophy, its role in inflammation and fibrosis is much less clear. Additional preclinical and clinical studies will be required to delineate testosterone's effect on the diabetic heart.
Collapse
Affiliation(s)
- Mika'il Visanji
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Mirzohreh ST, Panahi P, Zafardoust H, Zavvar M, Fathi N, Dehghan M, Sarbakhsh P. The role of polycystic ovary syndrome in preclinical left ventricular diastolic dysfunction: an echocardiographic approach: a systematic review and meta-analysis. Cardiovasc Endocrinol Metab 2023; 12:e0294. [PMID: 37900050 PMCID: PMC10611352 DOI: 10.1097/xce.0000000000000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of childbearing age, causing hormonal imbalances, reproductive issues, and metabolic disturbances. Women with PCOS have an increased risk of cardiovascular disease due to insulin resistance, obesity, and hyperandrogenism. Detecting impaired left ventricular (LV) function is important in managing this condition. Echocardiography, a non-invasive imaging technique, can effectively detect LV dysfunction. Aim The goal of this systematic review was to assess whether there are any variations in echocardiographic measures between women with PCOS and those without the condition in order to determine the potential impact of PCOS on LV function. Methods This review followed the PRISMA reporting guidelines. A thorough search of databases including PubMed, Scopus, Web of Science, and Cochrane was conducted. The quality of the selected studies was assessed using the Joanna Briggs Institute appraisal instruments. After applying strict eligibility criteria, data were extracted and organized in Microsoft Excel sheets. Review Manager (RevMan) software was used for the analysis. Results Analysis of 29 studies revealed significant differences in echocardiographic measures related to diastolic function between women with PCOS and healthy controls. However, there were no significant differences in measures of systolic function. Conclusion These findings indicate that PCOS may be linked to impaired LV function, thereby increasing the risk of cardiovascular disease. Further research is necessary to better understand this association and its clinical implications. Early detection and management of PCOS could potentially help prevent cardiovascular complications in affected women.
Collapse
Affiliation(s)
- Seyedeh-Tarlan Mirzohreh
- Student Research Committee, Tabriz University of Medical Sciences
- Cardiovascular Research Center, Shahid Madani Heart Center, Tabriz University of Medical Sciences
| | - Padideh Panahi
- Student Research Committee, Tabriz University of Medical Sciences
| | | | - Morteza Zavvar
- Student Research Committee, Tabriz University of Medical Sciences
| | - Nima Fathi
- Student Research Committee, Tabriz University of Medical Sciences
| | - Mahshid Dehghan
- Student Research Committee, Tabriz University of Medical Sciences
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Fu Y, Wang J, Liu C, Liao K, Gao X, Tang R, Fan B, Hong Y, Xiao N, Xiao C, Liu WH. Glycogen synthase kinase 3 controls T-cell exhaustion by regulating NFAT activation. Cell Mol Immunol 2023; 20:1127-1139. [PMID: 37553428 PMCID: PMC10541428 DOI: 10.1038/s41423-023-01075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Cellular immunity mediated by CD8+ T cells plays an indispensable role in bacterial and viral clearance and cancers. However, persistent antigen stimulation of CD8+ T cells leads to an exhausted or dysfunctional cellular state characterized by the loss of effector function and high expression of inhibitory receptors during chronic viral infection and in tumors. Numerous studies have shown that glycogen synthase kinase 3 (GSK3) controls the function and development of immune cells, but whether GSK3 affects CD8+ T cells is not clearly elucidated. Here, we demonstrate that mice with deletion of Gsk3α and Gsk3β in activated CD8+ T cells (DKO) exhibited decreased CTL differentiation and effector function during acute and chronic viral infection. In addition, DKO mice failed to control tumor growth due to the upregulated expression of inhibitory receptors and augmented T-cell exhaustion in tumor-infiltrating CD8+ T cells. Strikingly, anti-PD-1 immunotherapy substantially restored tumor rejection in DKO mice. Mechanistically, GSK3 regulates T-cell exhaustion by suppressing TCR-induced nuclear import of NFAT, thereby in turn dampening NFAT-mediated exhaustion-related gene expression, including TOX/TOX2 and PD-1. Thus, we uncovered the molecular mechanisms underlying GSK3 regulation of CTL differentiation and T-cell exhaustion in anti-tumor immune responses.
Collapse
Affiliation(s)
- Yubing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jinjia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chenfeng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xianjun Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ronghan Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Binbin Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changchun Xiao
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
8
|
Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt Pathways as a Potential Target Pathway in Atherosclerosis. J Lipid Atheroscler 2023; 12:223-236. [PMID: 37800111 PMCID: PMC10548192 DOI: 10.12997/jla.2023.12.3.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Yegor S Chegodaev
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| |
Collapse
|
9
|
Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pathway after Voluntary Running. Int J Mol Sci 2023; 24:ijms24043212. [PMID: 36834623 PMCID: PMC9966550 DOI: 10.3390/ijms24043212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Appropriate exercise such as voluntary wheel-running can induce physiological cardiac hypertrophy. Notch1 plays an important role in cardiac hypertrophy; however, the experimental results are inconsistent. In this experiment, we aimed to explore the role of Notch1 in physiological cardiac hypertrophy. Twenty-nine adult male mice were randomly divided into a Notch1 heterozygous deficient control (Notch1+/- CON) group, a Notch1 heterozygous deficient running (Notch1+/- RUN) group, a wild type control (WT CON) group, and a wild type running (WT RUN) group. Mice in the Notch1+/- RUN and WT RUN groups had access to voluntary wheel-running for two weeks. Next, the cardiac function of all of the mice was examined by echocardiography. The H&E staining, Masson trichrome staining, and a Western blot assay were carried out to analyze cardiac hypertrophy, cardiac fibrosis, and the expression of proteins relating to cardiac hypertrophy. After two-weeks of running, the Notch1 receptor expression was decreased in the hearts of the WT RUN group. The degree of cardiac hypertrophy in the Notch1+/- RUN mice was lower than that of their littermate control. Compared to the Notch1+/- CON group, Notch1 heterozygous deficiency could lead to a decrease in Beclin-1 expression and the ratio of LC3II/LC3I in the Notch1+/- RUN group. The results suggest that Notch1 heterozygous deficiency could partly dampen the induction of autophagy. Moreover, Notch1 deficiency may lead to the inactivation of p38 and the reduction of β-catenin expression in the Notch1+/- RUN group. In conclusion, Notch1 plays a critical role in physiologic cardiac hypertrophy through the p38 signaling pathway. Our results will help to understand the underlying mechanism of Notch1 on physiological cardiac hypertrophy.
Collapse
|
10
|
Schafstedde M, Nordmeyer S. The role of androgens in pressure overload myocardial hypertrophy. Front Endocrinol (Lausanne) 2023; 14:1112892. [PMID: 36817598 PMCID: PMC9929540 DOI: 10.3389/fendo.2023.1112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Pressure overload hypertrophy of the left ventricle is a common result of many cardiovascular diseases. Androgens show anabolic effects in skeletal muscles, but also in myocardial hypertrophy. We carefully reviewed literature regarding possible effects of androgens on specific left ventricular hypertrophy in pressure overload conditions excluding volume overload conditions or generel sex differences.
Collapse
Affiliation(s)
- Marie Schafstedde
- Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
- *Correspondence: Sarah Nordmeyer,
| |
Collapse
|
11
|
Schafstedde M, Nordmeyer J, Berger F, Knosalla C, Mertins P, Ziehm M, Kirchner ML, Regitz-Zagrosek V, Kuehne T, Kraus M, Nordmeyer S. Serum dihydrotestosterone levels are associated with adverse myocardial remodeling in patients with severe aortic valve stenosis before and after aortic valve replacement. Am J Physiol Heart Circ Physiol 2022; 323:H949-H957. [PMID: 36206048 PMCID: PMC9621711 DOI: 10.1152/ajpheart.00288.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animal studies show a pivotal role of dihydrotestosterone (DHT) in pressure overload-induced myocardial hypertrophy and dysfunction. The aim of our study was to evaluate the role of DHT levels and myocardial hypertrophy and myocardial protein expression in patients with severe aortic valve stenosis (AS). Forty-three patients [median age 68 (41-80) yr] with severe AS and indication for surgical aortic valve replacement (SAVR) were prospectively enrolled. Cardiac magnetic resonance imaging including analysis of left ventricular muscle mass (LVM), fibrosis and function, and laboratory tests including serum DHT levels were performed before and after SAVR. During SAVR, left ventricular (LV) biopsies were performed for proteomic profiling. Serum DHT levels correlated positively with indexed LVM (LVMi, R = 0.64, P = 0.0001) and fibrosis (R = 0.49, P = 0.0065) and inversely with LV function (R = -0.42, P = 0.005) in patients with severe AS. DHT levels were associated with higher abundance of the hypertrophy (moesin, R = 0.52, P = 0.0083)- and fibrosis (vimentin, R = 0.41, P = 0.039)-associated proteins from LV myocardial biopsies. Higher serum DHT levels preoperatively were associated with reduced LV function (ejection fraction, R = -0.34, P = 0.035; circulatory efficiency, R = -0.46, P = 0.012; and global longitudinal strain, R = 0.49, P = 0.01) and increased fibrosis (R = 0.55, P = 0.0022) after SAVR. Serum DHT levels were associated with adverse myocardial remodeling and higher abundance in hypertrophy- and fibrosis-associated proteins in patients with severe AS. DHT may be a target to prevent or attenuate adverse myocardial remodeling in patients with pressure overload due to AS.NEW & NOTEWORTHY Serum dihydrotestosterone (DHT) levels correlated positively with the degree of hypertrophy, fibrosis, and dysfunction from cardiac magnetic resonance imaging in female and male patients with aortic valve stenosis. Left ventricular proteome profiling had been performed in this patient cohort and an association between serum DHT levels and the abundance of the hypertrophy-associated protein moesin and the fibrosis-associated protein vimentin was found.
Collapse
Affiliation(s)
- Marie Schafstedde
- 1Department of Congenital Heart Disease and Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany,2Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin, Berlin, Germany,3German Center for Cardiovascular Research (DZHK), Berlin, Germany,4Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Nordmeyer
- 1Department of Congenital Heart Disease and Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Felix Berger
- 1Department of Congenital Heart Disease and Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany,3German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Christoph Knosalla
- 3German Center for Cardiovascular Research (DZHK), Berlin, Germany,5Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum, Berlin, Germany
| | - Philipp Mertins
- 4Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany,6Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Ziehm
- 4Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany,6Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marie-Luise Kirchner
- 4Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany,6Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Vera Regitz-Zagrosek
- 3German Center for Cardiovascular Research (DZHK), Berlin, Germany,7Institute for Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
| | - Titus Kuehne
- 1Department of Congenital Heart Disease and Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany,2Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin, Berlin, Germany,3German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Milena Kraus
- 8Digital Health Center, Hasso Plattner Institute for
Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Sarah Nordmeyer
- 1Department of Congenital Heart Disease and Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany,2Institute of Computer-assisted Cardiovascular Medicine, Charité-Universitätsmedizin, Berlin, Germany,3German Center for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
12
|
Yao M, Rosario ER, Soper JC, Pike CJ. Androgens Regulate Tau Phosphorylation Through Phosphatidylinositol 3-Kinase-Protein Kinase B-Glycogen Synthase Kinase 3β Signaling. Neuroscience 2022:S0306-4522(22)00335-9. [PMID: 35777535 PMCID: PMC9797620 DOI: 10.1016/j.neuroscience.2022.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022]
Abstract
Age-related testosterone depletion in men is a risk factor for Alzheimer's disease (AD). How testosterone modulates AD risk remains to be fully elucidated, although regulation of tau phosphorylation has been suggested as a contributing protective action. To investigate the relationship between testosterone and tau phosphorylation, we first evaluated the effect of androgen status on tau phosphorylation in 3xTg-AD mice. Depletion of endogenous androgens via gonadectomy resulted in increased tau phosphorylation that was prevented by acute testosterone treatment. Parallel alterations in the phosphorylation of both glycogen synthase kinase 3β (GSK3β) and protein kinase B (Akt) suggest possible components of the underlying signaling pathway. To further explore mechanism, primary cultured neurons were treated with a physiological concentration of testosterone or its active metabolite dihydrotestosterone (DHT). Results showed that testosterone and DHT induced significant decreases in phosphorylated tau and significant increases in phosphorylation of Akt and GSK3β. Pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) effectively inhibited androgen-induced increases in Akt and GSK3β phosphorylation, and decreases in tau phosphorylation. In addition, androgen receptor (AR) knock-down by small interfering RNA prevented androgen-induced changes in the phosphorylation of Akt, GSK3β and tau, suggesting an AR-dependent mechanism. Additional experiments demonstrated androgen-induced changes in Akt, GSK3β and tau phosphorylation in AR-expressing PC12 cells but not in AR-negative PC12 cells. Together, these results suggest an AR-dependent pathway involving PI3K-Akt-GSK3β signaling through which androgens can reduce tau phosphorylation. These findings identify an additional protective mechanism of androgens that can improve neural health and inhibit development of AD.
Collapse
Affiliation(s)
- Mingzhong Yao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily R Rosario
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Carroll Soper
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
13
|
Willemars MMA, Nabben M, Verdonschot JAJ, Hoes MF. Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Curr Heart Fail Rep 2022; 19:200-212. [PMID: 35624387 PMCID: PMC9329157 DOI: 10.1007/s11897-022-00555-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review Sex hormones drive development and function of reproductive organs or the development of secondary sex characteristics but their effects on the cardiovascular system are poorly understood. In this review, we identify the gaps in our understanding of the interaction between sex hormones and the cardiovascular system. Recent Findings Studies are progressively elucidating molecular functions of sex hormones in specific cell types in parallel with the initiation of crucial large randomized controlled trials aimed at improving therapies for cardiovascular diseases (CVDs) associated with aberrant levels of sex hormones. Summary In contrast with historical assumptions, we now understand that men and women show different symptoms and progression of CVDs. Abnormal levels of sex hormones pose an independent risk for CVD, which is apparent in conditions like Klinefelter syndrome, androgen insensitivity syndrome, and menopause. Moreover, sex hormone–based therapies remain understudied and may not be beneficial for cardiovascular health.
Collapse
Affiliation(s)
- Myrthe M A Willemars
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Job A J Verdonschot
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Martijn F Hoes
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands. .,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands. .,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
14
|
Osaka N, Mori Y, Terasaki M, Hiromura M, Saito T, Yashima H, Shiraga Y, Kawakami R, Ohara M, Fukui T, Yamagishi SI. Luseogliflozin inhibits high glucose-induced TGF- β2 expression in mouse cardiomyocytes by suppressing NHE-1 activity. J Int Med Res 2022; 50:3000605221097490. [PMID: 35510669 PMCID: PMC9082751 DOI: 10.1177/03000605221097490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Sodium-glucose cotransporter-2 (SGLT2) inhibitors exhibit cardioprotective properties in patients with diabetes. However, SGLT2 is not expressed in the heart, and the underlying molecular mechanisms are not fully understood. We investigated whether the SGLT2 inhibitor luseogliflozin exerts beneficial effects on high glucose-exposed cardiomyocytes via the suppression of sodium-hydrogen exchanger-1 (NHE-1) activity. Methods Mouse cardiomyocytes were incubated under normal or high glucose conditions with vehicle, luseogliflozin, or the NHE-1 inhibitor cariporide. NHE-1 activity and gene expression were evaluated by the SNARF assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis, respectively. Six-week-old male db/db mice were treated with vehicle or luseogliflozin for 6 weeks, and the hearts were collected for histological, RT-PCR, and western blot analyses. Results High glucose increased NHE-1 activity and transforming growth factor (Tgf)-β2 mRNA levels in cardiomyocytes, both of which were inhibited by luseogliflozin or cariporide, whereas their combination showed no additive suppression of Tgf-β2 mRNA levels. Luseogliflozin attenuated cardiac hypertrophy and fibrosis in db/db mice in association with decreased mRNA and protein levels of TGF-β2. Conclusions Luseogliflozin may suppress cardiac hypertrophy in diabetes by reducing Tgf-β2 expression in cardiomyocytes via the suppression of NHE-1 activity.
Collapse
Affiliation(s)
- Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Anti-glycation Research Section, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Yoshie Shiraga
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Raichi Kawakami
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
15
|
Ferreira C, Trindade F, Ferreira R, Neves JS, Leite-Moreira A, Amado F, Santos M, Nogueira-Ferreira R. Sexual dimorphism in cardiac remodeling: the molecular mechanisms ruled by sex hormones in the heart. J Mol Med (Berl) 2021; 100:245-267. [PMID: 34811581 DOI: 10.1007/s00109-021-02169-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Cláudia Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Department of Cardiology, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal.
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
16
|
Stanisic J, Koricanac G, Culafic T, Romic S, Stojiljkovic M, Kostic M, Ivkovic T, Tepavcevic S. The effects of low-intensity exercise on cardiac glycogenesis and glycolysis in male and ovariectomized female rats on a fructose-rich diet. J Food Biochem 2021; 45:e13930. [PMID: 34494282 DOI: 10.1111/jfbc.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
We previously reported that low-intensity exercise prevented cardiac insulin resistance induced by a fructose-rich diet (FRD). To examine whether low-intensity exercise could prevent the disturbances of key molecules of cardiac glucose metabolism induced by FRD in male and ovariectomized (ovx) female rats, animals were exposed to 10% fructose solution (SF) or underwent both fructose diet and exercise (EF). Exercise prevented a decrease in cardiac GSK-3β phosphorylation induced by FRD in males (p < .001 vs. SF). It also prevented a decrease in PFK-2 phosphorylation in ovx females (p < .001 vs. SF) and increased the expression of PFK-2 in males (p < .05 vs. control). Exercise did not prevent a decrease in plasma membrane GLUT1 and GLUT4 levels in ovx females on FRD. The only effect of exercise on glucose transporters that could be indicated as beneficial is an augmented GLUT4 protein expression in males (p < .05 vs. control). Obtained results suggest that low-intensity exercise prevents harmful effects of FRD towards cardiac glycogenesis in males and glycolysis in ovx females. PRACTICAL APPLICATIONS: Low-intensity exercise, equivalent to brisk walking, was able to prevent disturbances in cardiac glycolysis regulation in ovx female and the glycogen synthesis pathway in male rats. In terms of human health, although molecular mechanisms of beneficial effects of exercise on cardiac glucose metabolism vary between genders, low-intensity running may be a useful non-pharmacological approach in the prevention of cardiac metabolic disorders in both men and postmenopausal women.
Collapse
Affiliation(s)
- Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Diaconu R, Donoiu I, Mirea O, Bălşeanu TA. Testosterone, cardiomyopathies, and heart failure: a narrative review. Asian J Androl 2021; 23:348-356. [PMID: 33433530 PMCID: PMC8269837 DOI: 10.4103/aja.aja_80_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testosterone exerts an important regulation of cardiovascular function through genomic and nongenomic pathways. It produces several changes in cardiomyocytes, the main actor of cardiomyopathies, which are characterized by pathological remodeling, eventually leading to heart failure. Testosterone is involved in contractility, in the energy metabolism of myocardial cells, apoptosis, and the remodeling process. In myocarditis, testosterone directly promotes the type of inflammation that leads to fibrosis, and influences viremia with virus localization. At the same time, testosterone exerts cardioprotective effects that have been observed in different studies. There is increasing evidence that low endogenous levels of testosterone have a negative impact in some cardiomyopathies and a protective impact in others. This review focuses on the interrelationships between testosterone and cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Rodica Diaconu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Ionuţ Donoiu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Oana Mirea
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Tudor Adrian Bălşeanu
- Department of Physiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| |
Collapse
|
18
|
Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol Med 2020; 25:1825-1837. [PMID: 33369146 PMCID: PMC7882969 DOI: 10.1111/jcmm.16205] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women at reproductive age. However, the underlying pathogenic mechanisms have not been completely understood. Hyperandrogenism is an important clinic feature in patients with PCOS, suggesting its pathologic role in the development and progression of PCOS. However, the actual role of androgen and the related signals in PCOS and PCOS-related complications have not yet been clarified. In this review, we surveyed the origin and effects of androgen on PCOS and the related complications, highlighted the cellular signals affecting androgen synthesis and summarized the pathological processes caused by hyperandrogenism. Our review well reveals the important mechanisms referring the pathogenesis of PCOS and provides important clues to the clinic strategies in patients with PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
19
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
20
|
The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N 6-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020; 22:1319-1331. [PMID: 33020597 DOI: 10.1038/s41556-020-0576-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3β and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.
Collapse
|
21
|
Abstract
The finding of "glycogen synthase kinase-3" (GSK-3) was initially identified as a protein kinase that phosphorylate and inhibited glycogen synthase. However, it was soon discovered that GSK-3 also has significant impact in regulation of truly astonishing number of critical intracellular signaling pathways ranging from regulation of cell growth, neurology, heart failure, diabetes, aging, inflammation, and cancer. Recent studies have validated the feasibility of targeting GSK-3 for its vital therapeutic potential to maintain normal myocardial homeostasis, conversely, its loss is incompatible with life as it can abrupt cell cycle and endorse fatal cardiomyopathy. The current study focuses on its expanding therapeutic action in myocardial tissue, concentrating primarily on its role in diabetes-associated cardiac complication, apoptosis and metabolism, heart failure, cardiac hypertrophy, and myocardial infarction. The current report also includes the finding of our previous investigation that has shown the impact of GSK-3β inhibitor against diabetes-associated myocardial injury and experimentally induced myocardial infarction. We have also discussed some recent identified GSK-3β inhibitors for their cardio-protective potential. The crosstalk of various underlying mechanisms that highlight the significant role of GSK-3β in myocardial pathophysiology have been discussed in the present report. For these literatures, we will rely profoundly on our previous studies and those of others to reconcile some of the deceptive contradictions in the literature.
Collapse
|
22
|
Effect of DHT-Induced Hyperandrogenism on the Pro-Inflammatory Cytokines in a Rat Model of Polycystic Ovary Morphology. ACTA ACUST UNITED AC 2020; 56:medicina56030100. [PMID: 32120970 PMCID: PMC7142739 DOI: 10.3390/medicina56030100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Polycystic ovary syndrome (PCOS) is one of the most prevalent disorders among women of reproductive age. It is considered as a pro-inflammatory state with chronic low-grade inflammation, one of the key factors contributing to the pathogenesis of this disorder. Polycystic ovary is a well-established criterion for PCOS. The present investigation aimed at finding the role of hyperandrogenism, the most important feature of PCOS, in the development of this inflammatory state. To address this problem, we adopted a model system that developed polycystic ovary morphology (PCOM), which could be most effectively used in order to study the role of non-aromatizable androgen in inflammation in PCOS. Materials and Methods: Six rats were used to induce PCOM in 21-days-old female Wistar albino rats by using a pre-determined release of dihydrotestosterone (DHT), a potent non-aromatizable androgen, achieved by implanting a DHT osmotic pump, which is designed to release a daily dose of 83 μg. Results: After 90 days, the rats displayed irregular estrous cycles and multiple ovarian cysts similar to human PCOS. Elevated serum inflammatory markers such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the presence of a necrotic lesion in the liver, osteoclast in the femur, multinucleated giant cells and lymphocytes in the ovary based on histopathological observation of DHT-treated rats clearly indicated the onset of inflammation in the hyperandrogenic state. Our results show no significant alterations in serum hormones such as luteinizing hormone (LH), follicle stimulating hormone (FSH), insulin, and cortisol between control and hyperandrogenised rats. DHT was significantly elevated as compared to control. mRNA studies showed an increased expression level of TNF-α and IL-1β, further, the mRNA expression of urocortin 1 (Ucn-1) was stupendously elevated in the liver of hyperandrogenised rats. Conclusions: Thus, results from this study provide: (1) a good PCOM model system in order to study the inflammatory changes in PCOS aspects, (2) alteration of inflammatory markers in PCOM rats that could be either due to its direct effect or by the regulation of various inflammatory genes and markers in the liver of hyperandrogenic state suggesting the regulatory role of DHT, and (3) alteration in stress-related protein in the liver of PCOM rats.
Collapse
|
23
|
Wu J, Dai F, Li C, Zou Y. Gender Differences in Cardiac Hypertrophy. J Cardiovasc Transl Res 2019; 13:73-84. [PMID: 31418109 DOI: 10.1007/s12265-019-09907-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Cardiac hypertrophy is an adaptive response to abnormal physiological and pathological stimuli, which can be classified into concentric and eccentric hypertrophy, induced by pressure overload or volume overload, respectively. In both physiological and pathological scenarios, females generally show a more favorable form of hypertrophy compared with their male counterparts. However once established, cardiac hypertrophy is a stronger risk factor for heart failure in females. Pre-menopausal women are better protected against cardiac hypertrophy compared with men, but this protection is abolished following menopause and is partially restored after estrogen replacement therapy. Estrogen exerts its protection by counteracting pro-hypertrophy signaling pathways, whereas androgen mostly plays an opposite role in cardiac hypertrophy. We here summarize the progress in the understanding of sexual dimorphisms in cardiac hypertrophy and highlight recent breakthroughs in the regulatory role of sex hormones and their intricate molecular networks, in order to shed light on gender-oriented therapeutic efficacy for pathological hypertrophy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Dennis PM, Raghanti MA, Meindl RS, Less E, Henthorn E, Devlin W, Murray S, Meehan T, Kutinsky I, Murphy H. Cardiac disease is linked to adiposity in male gorillas (Gorilla gorilla gorilla). PLoS One 2019; 14:e0218763. [PMID: 31242268 PMCID: PMC6594625 DOI: 10.1371/journal.pone.0218763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 01/17/2023] Open
Abstract
Cardiac disease is a major cause of morbidity and mortality for adult gorillas. Previous research indicates a sex-based difference with predominantly males demonstrating evidence of left ventricular hypertrophy. To evaluate these findings, we analyzed serum markers with cardiac measures in a large sample of gorillas. The study sample included 44 male and 25 female gorillas housed at American Association of Zoo and Aquariums (AZA)-accredited zoos. Serum samples were collected from fasted gorillas during routine veterinary health exams and analyzed to measure leptin, adiponectin, IGF-1, insulin, ferritin, glucose, triglycerides, and cholesterol. Cardiac ultrasonography via transthoracic echocardiogram was performed simultaneously. Three echocardiographic parameters were chosen to assess cardiac disease according to parameters established for captive lowland gorillas: left ventricular internal diameter, inter-ventricular septum thickness, and left ventricular posterior wall thickness. Our data revealed that high leptin, low adiponectin, and lowered cholesterol were significantly and positively correlated with measures of heart thickness and age in males but not in females. Lowered cholesterol in this population would be categorized as elevated in humans. High leptin and low adiponectin are indicative of increased adiposity and suggests a potential parallel with human obesity and cardiovascular disease in males. Interestingly, while females exhibited increased adiposity with age, they did not progress to cardiac disease.
Collapse
Affiliation(s)
- Patricia M. Dennis
- Cleveland Metroparks Zoo, Cleveland, Ohio, United States of America
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (PD); (MAR)
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
- * E-mail: (PD); (MAR)
| | - Richard S. Meindl
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Elena Less
- Cleveland Metroparks Zoo, Cleveland, Ohio, United States of America
| | - Eric Henthorn
- Fortis College Cuyahoga Falls, Ohio, United States of America
| | - William Devlin
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America
- Beaumont Michigan Heart Group, Troy, Michigan, United States of America
| | - Suzan Murray
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, United States of America
| | - Thomas Meehan
- Brookfield Zoo, Brookfield, Illinois, United States of America
| | - Ilana Kutinsky
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America
- Beaumont Michigan Heart Group, Troy, Michigan, United States of America
| | - Hayley Murphy
- Great Ape Heart Project based at Zoo Atlanta, Zoo Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Wang L, Zhu Y, Liu X, Chao Z, Wang Y, Zhong T, Guo J, Zhan S, Li L, Zhang H. Glycogen synthase kinase 3β (GSK3β) regulates the expression of MyHC2a in goat skeletal muscle satellite cells (SMSCs). Anim Sci J 2019; 90:1042-1049. [PMID: 31237073 DOI: 10.1111/asj.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase beta (GSK3β) plays an important role in skeletal muscle growth, regeneration, and repair. However, the mechanism of GSK3β regulating MyHC2a expression is currently not clear. In this study, GSK3β inhibition promoted skeletal muscle satellite cells (SMSCs) differentiation and increased expression of MyoD, MyoG, MyHC1, and MyHC2a genes. Then we cloned approximately 1.1 kb of goat MyHC2a gene promoter. The deletion fragment (-514/+55) of MyHC2a promoter exhibited the highest level of promoter activity, and a NFATc2 element in this region was responsible for MyHC2a promoter activity. Treatment of SB216713 significantly decreased the transcriptional activity of the fragment (-514/+55). Furthermore, GSK3β inhibition had no effect on the luciferase activity of MyHC2a promoter after mutating the NFATc2-binding site. These results demonstrated that GSK3β inhibition promoted SMSCs differentiation and regulated the MyHC2a gene expression through NFATc2 in goat-differentiated SMSCs.
Collapse
Affiliation(s)
- Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yuehua Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xin Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, P.R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
26
|
Fan C, Li Y, Yang H, Cui Y, Wang H, Zhou H, Zhang J, Du B, Zhai Q, Wu D, Chen X, Guo H. Tamarixetin protects against cardiac hypertrophy via inhibiting NFAT and AKT pathway. J Mol Histol 2019; 50:343-354. [PMID: 31111288 DOI: 10.1007/s10735-019-09831-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
Cardiac hypertrophy is a compensatory response in reaction to mechanical load that reduces wall stress by increasing wall thickness. Chronic hypertrophic remodeling involves cardiac dysfunction that will lead to heart failure and ultimately death. Studies have been carried out on cardiac hypertrophy for years, whereas the mechanisms have not been well defined. Tamarixetin (TAM), a natural flavonoid derivative of quercetin, have been demonstrated possessing anti-oxidative and anti-inflammatory effects on multiple diseases. However, little is known about the function of TAM on the development of cardiac hypertrophy. Here, we found TAM could alleviate pressure-overload-induced cardiac hypertrophy in transverse aortic constriction (TAC) mouse model, assessed by ventricular weight/body weight, lung weight/body weight, echocardiographic parameters, as well as myocyte cross-sectional area and the expression of ANP, BNP and Myh7. In vitro, TAM showed a dose dependent inhibitory effect on phenylephrine-induced hypertrophy in H9c2 cardiomyocytes. Furthermore, TAM reversed cardiac remodeling of stress overloaded heart by suppressing apoptosis and the expression of fibrotic-related genes, reduced oxidative stress and ROS production both in vivo and in vitro. In addition, TAM could negatively modulate TAC-induced nuclear translocation of NFAT and the activation of PI3K/AKT signaling pathways. Therefore, these data indicate for the first time that TAM has a protective effect on experimental cardiac hypertrophy and might be a novel candidate for the treatment of cardiac hypertrophy in clinic.
Collapse
Affiliation(s)
- Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yuan Li
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Hui Yang
- Department of Cardiology, Feicheng Mining Central Hospital, Feicheng, 271600, People's Republic of China
| | - Yuqian Cui
- Center for Reproductive Medicine, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Jianning Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Binfeng Du
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Qian Zhai
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaomei Chen
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People's Republic of China. .,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
27
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Beaumont C, Walsh‐Wilkinson É, Drolet M, Roussel É, Melançon N, Fortier É, Harpin G, Beaudoin J, Arsenault M, Couet J. Testosterone deficiency reduces cardiac hypertrophy in a rat model of severe volume overload. Physiol Rep 2019; 7:e14088. [PMID: 31054220 PMCID: PMC6499867 DOI: 10.14814/phy2.14088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to characterize if the development of cardiac hypertrophy (CH) caused by severe left ventricle (LV) volume overload (VO) from chronic aortic valve regurgitation (AR) in male rats was influenced by androgens. We studied Wistar rats with/without orchiectomy (Ocx) either sham-operated (S) or with severe AR for 26 weeks. Loss of testosterone induced by Ocx decreased general body growth. Cardiac hypertrophy resulting from AR was relatively more important in intact (non-Ocx) animals than in Ocx ones compared to their respective S group (60% vs. 40%; P = 0.019). The intact AR group had more LV dilation, end-diastolic LV diameter being increased by 37% over S group and by 17% in AROcx rats (P < 0.0001). Fractional shortening (an index of systolic function) decreased only by 15% in AROcx compared to 26% for intact AR animals (P = 0.029). Changes in LV gene expression resulting from CH were more marked in intact rats than in AROcx animals, especially for genes linked to extracellular matrix remodeling and energy metabolism. The ratio of hydroxyacyl-Coenzyme A dehydrogenase activity over hexokinase activity, an index of the shift of myocardial substrate use toward glucose from the preferred fatty acids, was significantly decreased in the AR group but not in AROcx. Finally, pJnk2 LV protein content was more abundant in AR than in AROcx rats, indicating decreased activation of this stress pathway in the absence of androgens. In summary, testosterone deficiency in rats with severe LV VO resulted in less CH and a normalization of the LV gene expression profile.
Collapse
Affiliation(s)
- Catherine Beaumont
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Élisabeth Walsh‐Wilkinson
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Marie‐Claude Drolet
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Élise Roussel
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Nicolas Melançon
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Émile Fortier
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Geneviève Harpin
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Jonathan Beaudoin
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Marie Arsenault
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| | - Jacques Couet
- Groupe de recherche sur les valvulopathiesCentre de RechercheInstitut universitaire de cardiologie et de pneumologie de QuébecUniversité LavalQuebec CityCanada
| |
Collapse
|
29
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
30
|
Chistiakov DA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Role of androgens in cardiovascular pathology. Vasc Health Risk Manag 2018; 14:283-290. [PMID: 30410343 PMCID: PMC6198881 DOI: 10.2147/vhrm.s173259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular effects of android hormones in normal and pathological conditions can lead to either positive or negative effects. The reason for this variation is unknown, but may be influenced by gender-specific effects of androids, heterogeneity of the vascular endothelium, differential expression of the androgen receptor in endothelial cells (ECs) and route of androgen administration. Generally, androgenic hormones are beneficial for ECs because these hormones induce nitric oxide production, proliferation, motility, and growth of ECs and inhibit inflammatory activation and induction of procoagulant, and adhesive properties in ECs. This indeed prevents endothelial dysfunction, an essential initial step in the development of vascular pathologies, including atherosclerosis. However, androgens can also activate endothelial production of some vasoconstrictors, which can have detrimental effects on the vascular endothelium. Androgens also activate proliferation, migration, and recruitment of endothelial progenitor cells (EPCs), thereby contributing to vascular repair and restoration of the endothelial layer. In this paper, we consider effects of androgen hormones on EC and EPC function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia,
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia,
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia, .,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia,
| |
Collapse
|
31
|
Duran J, Lagos D, Pavez M, Troncoso MF, Ramos S, Barrientos G, Ibarra C, Lavandero S, Estrada M. Ca 2+/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy. Front Pharmacol 2017; 8:604. [PMID: 28955223 PMCID: PMC5601904 DOI: 10.3389/fphar.2017.00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/21/2017] [Indexed: 11/25/2022] Open
Abstract
Testosterone is known to induce cardiac hypertrophy through androgen receptor (AR)-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and myocyte-enhancer factor 2 (MEF2) play key roles in promoting cardiac myocyte growth. In order to gain mechanistic insights into the action of androgens on the heart, we investigated how testosterone affects CaMKII and MEF2 in cardiac myocyte hypertrophy by performing studies on cultured rat cardiac myocytes and hearts obtained from adult male orchiectomized (ORX) rats. In cardiac myocytes, MEF2 activity was monitored using a luciferase reporter plasmid, and the effects of CaMKII and AR signaling pathways on MEF2C were examined by using siRNAs and pharmacological inhibitors targeting these two pathways. In the in vivo studies, ORX rats were randomly assigned to groups that were administered vehicle or testosterone (125 mg⋅kg-1⋅week-1) for 5 weeks, and plasma testosterone concentrations were determined using ELISA. Cardiac hypertrophy was evaluated by measuring well-characterized hypertrophy markers. Moreover, western blotting was used to assess CaMKII and phospholamban (PLN) phosphorylation, and MEF2C and AR protein levels in extracts of left-ventricle tissue from control and testosterone-treated ORX rats. Whereas testosterone treatment increased the phosphorylation levels of CaMKII (Thr286) and phospholambam (PLN) (Thr17) in cardiac myocytes in a time- and concentration-dependent manner, testosterone-induced MEF2 activity and cardiac myocyte hypertrophy were prevented upon inhibition of CaMKII, MEF2C, and AR signaling pathways. Notably, in the hypertrophied hearts obtained from testosterone-administered ORX rats, both CaMKII and PLN phosphorylation levels and AR and MEF2 protein levels were increased. Thus, this study presents the first evidence indicating that testosterone activates MEF2 through CaMKII and AR signaling. Our findings suggest that an orchestrated mechanism of action involving signal transduction and transcription pathways underlies testosterone-induced cardiac myocyte hypertrophy.
Collapse
Affiliation(s)
- Javier Duran
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Daniel Lagos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Mario Pavez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Mayarling F Troncoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Sebastián Ramos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Genaro Barrientos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Cristian Ibarra
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad Medicina, Universidad de ChileSantiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, DallasTX, United States
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| |
Collapse
|
32
|
Abstract
The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function.
Collapse
|
33
|
Ting WJ, Huang CY, Jiang CH, Lin YM, Chung LC, Shen CY, Pai P, Lin KH, Viswanadha VP, Liao SC. Treatment with 17β-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity. Int J Mol Sci 2017; 18:ijms18030629. [PMID: 28335423 PMCID: PMC5372642 DOI: 10.3390/ijms18030629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
Estrogen receptor α (ERα) and estrogen receptor β (ERβ) play important roles in cardiovascular disease (CVD) prevention. Recently, these estrogen receptors were reconsidered as an important treatment target of obesity leading to CVD. In this study, 17β-estradiol (17β-E) replacement therapy applied to high-fat diet-induced obese C57B male mice and ovariectomized (OVX) rats were evaluated, and the protective effects against high-fat diet-induced obesity were assessed in C57B mouse hearts. The results showed that 17β-E treatment activated both ERα and ERβ, and ERβ levels increased in a dose-dependent manner in high-fat diet C57B mouse cardiomyocytes following 17β-E treatment. Notably, an almost 16% reduction in body weight was observed in the 17β-E-treated (12 μg/kg/day for 60 days) high-fat diet-induced obese C57B male mice. These results suggested that 17β-E supplements may reduce CVD risk due to obesity.
Collapse
Affiliation(s)
- Wei-Jen Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan 511518, China.
- Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, 500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Chong-He Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan 511518, China.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, 135 Nanxiao Street, Changhua 50006, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9 Sha-Luen Hu, Hou-Loung Town, Miaoli 35664, Taiwan.
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, China Nan University of Pharmacy & Science, 60, Section 1, Erren Road, Rende District, Tainan 71710, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, 23 Pingguang Road, Pingtung 91202, Taiwan.
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | | | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|