1
|
Fabiani E, Velay JL, Younes C, Anton JL, Nazarian B, Sein J, Habib M, Danna J, Longcamp M. Writing letters in two graphic systems: Behavioral and neural correlates in Latin-Arabic biscripters. Neuropsychologia 2023; 185:108567. [PMID: 37084880 DOI: 10.1016/j.neuropsychologia.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Biscriptuality is the ability to read and write using two scripts. Despite the increasing number of biscripters, this phenomenon remains poorly understood. Here, we focused on investigating graphomotor processing in French-Arabic biscripters. We chose the French and Arabic alphabets because they have comparable visuospatial complexity and linguistic features, but differ dramatically in their graphomotor characteristics. In a first experiment we describe the graphomotor features of the two alphabets and showed that while Arabic and Latin letters are produced with the same velocity and fluency, Arabic letters require more pen lifts, contain more right-to-left strokes and clockwise curves, and take longer to write than Latin letters. These results suggest that Arabic and Latin letters are produced via different motor patterns. In a second experiment we used functional magnetic resonance imaging to ask whether writing the two scripts relies upon partially distinct or fully overlapping neural networks, and whether the elements of the previously described handwriting network are recruited to the same extent by the two scripts. We found that both scripts engaged the so-called "writing network", but that within the network, Arabic letters recruited the left superior parietal lobule (SPL) and the left primary motor cortex (M1) more strongly than Latin letters. Both regions have previously been identified as holding scale-invariant representations of letter trajectories. Arabic and Latin letters also activated distinct regions that do not belong to the writing network. Complementary analyses indicate that the differences observed between scripts at the neural level could be driven by the specific graphomotor features of each script. Overall, our results indicate that particular features of the practiced scripts can lead to different motor organization at both the behavioral and brain levels in biscripters.
Collapse
Affiliation(s)
- Elie Fabiani
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | | | - Céleste Younes
- Institut Psychomotricité, Université St Joseph de Beyrouth, Beirut, Lebanon
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Julien Sein
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Michel Habib
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | - Jeremy Danna
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | | |
Collapse
|
2
|
Feng Y, Liang Y, Zhang Y, Duan X, Zhang J, Yan H. Divergent interpersonal neural synchronization patterns in the first, second language and interlingual communication. Sci Rep 2023; 13:8706. [PMID: 37248270 DOI: 10.1038/s41598-023-35923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
An accumulating number of studies have highlighted the importance of interpersonal neural synchronization (INS) between interlocutors in successful verbal communications. The opportunities for communication across different language contexts are rapidly expanding, thanks to the frequent interactions among people all over the world. However, whether the INS changes in different language contexts and how language choice affects the INS remain scarcely explored. The study recruited twenty pairs of participants to communicate in the first language (L1), second language (L2) and interlingual contexts. Using functional near-infrared spectroscopy (fNIRS), we examined the neural activities of interlocutors and analyzed their wavelet transform coherence to assess the INS of dyads. Results showed that as compared to the resting state, stronger INS was observed at the left inferior temporal gyrus, middle temporal gyrus, pre-motor and supplementary motor cortex, dorsolateral prefrontal cortex, and inferior frontal gyrus in L1; at the left middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus in L2; at the left inferior temporal gyrus and inferior frontal gyrus in interlingual context. Additionally, INS at the left inferior frontal gyrus was significantly stronger in L2 than in L1. These findings reveal the differences of the INS in different language contexts and confirm the importance of language choice for the INS changes.
Collapse
Affiliation(s)
- Yanqin Feng
- School of Foreign Languages, Xidian University, Xi'an, China
| | - Yuan Liang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Yi Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Xu Duan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Jie Zhang
- Department of Radiation Medicine, Air Force Military Medical University, Xi'an, China.
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China.
| |
Collapse
|
3
|
Chen WC, Huang P. Selective dystextia secondary to a left frontal hemorrhagic infarct. Neurol Sci 2023; 44:749-751. [PMID: 36163578 DOI: 10.1007/s10072-022-06421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Wen-Ching Chen
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Poyin Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Li J, Liu Y, Wang Y, Wang N, Ji Y, Wei T, Bi H, Yang Y. Functional brain networks underlying the interaction between central and peripheral processes involved in Chinese handwriting in children and adults. Hum Brain Mapp 2023; 44:142-155. [PMID: 36005850 PMCID: PMC9783426 DOI: 10.1002/hbm.26055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The neural mechanisms that support handwriting, an important mode of human communication, are thought to be controlled by a central process (responsible for spelling) and a peripheral process (responsible for motor output). However, the relationship between central and peripheral processes has been debated. Using functional magnetic resonance imaging, this study examined the neural mechanisms underlying this relationship in Chinese handwriting in 36 children (mean age = 10.40 years) and 56 adults (mean age = 22.36 years) by manipulating character frequency (a central variable). Brain network analysis showed that character frequency reconfigured functional brain networks known to underlie motor processes, including the somatomotor and cerebellar network, in both children and adults, indicating that central processing cascades into peripheral processing. Furthermore, the network analysis characterized the interaction profiles between motor networks and linguistic-cognitive networks, fully mapping the neural architecture that supports the interaction of central and peripheral processes involved in handwriting. Taken together, these results reveal the neural interface underlying the interaction between central and peripheral processes involved in handwriting in a logographic writing system, advancing our understanding of the neural basis of handwriting.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Liu
- School of Medical HumanitiesCapital Medical UniversityBeijingChina
| | - Yi Wang
- School of Mechanical and Materials EngineeringNorth China University of TechnologyBeijingChina
| | - Nizhuan Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Artificial Intelligence and Neuro‐Informatics Engineering (ARINE) LaboratorySchool of Computer Engineering, Jiangsu Ocean UniversityLianyungangChina
| | - Yuzhu Ji
- Department of Psychology, College of EducationZhejiang University of TechnologyHangzhouChina
| | - Tongqi Wei
- Pan Shuh LibraryInstitute of Psychology, Chinese Academy of SciencesBeijingChina
| | - Hong‐Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
How Characters Are Learned Leaves Its Mark on the Neural Substrates of Chinese Reading. eNeuro 2022; 9:ENEURO.0111-22.2022. [PMID: 36635247 PMCID: PMC9787807 DOI: 10.1523/eneuro.0111-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how the brain functions differently as one learns to read may shed light on the controversial nature of the reading ability of human being. Logographic writing system such as Chinese has been found to rely on specialized neural substrates beyond the reading network of alphabetic languages. The ability to read in Chinese has also been proposed to rely on writing skills. However, it was unclear whether the learning-related alteration of neural responses was language specific or resulted from the more reliance on writing practice during acquisition. This study investigated whether the emergence of typical logographic-specific regions relied on learning by writing. We taught proficient alphabetic language readers Chinese characters and used pre-test and post-test to identify changes in two critical stages of reading, namely, orthographic processing and orthographic-to-phonological mapping. Two typical left hemispheric areas for logographic reading showed increased responses to characters in the brains of proficient alphabetic readers after learning, regardless of whether the learning strategy involved writing practice. Moreover, learning strategy modulated the response magnitude or multivoxel patterns in the left superior parietal lobule, left middle frontal gyrus, and right fusiform gyrus, some of which were task dependent. The findings corroborated a limited role of writing in the emergence of logographic-specific reading network and suggested the heterogeneous nature of different brain regions in this network.
Collapse
|
6
|
Zhang J, Kang L, Li J, Li Y, Bi H, Yang Y. Brain Correlates of Chinese Handwriting and Their Relation to Reading Development in Children: An fMRI Study. Brain Sci 2022; 12:brainsci12121724. [PMID: 36552183 PMCID: PMC9775262 DOI: 10.3390/brainsci12121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Handwriting plays an important role in written communication, reading, and academic success. However, little is known about the neural correlates of handwriting in children. Using functional magnetic resonance imaging (fMRI) and a copying task, we investigated regional brain activation and functional lateralization associated with Chinese handwriting in children (N = 36, 9-11 years old), as well as their relations to reading skills. We found significant activation of the bilateral frontal motor cortices, somatosensory cortex, intraparietal sulcus (IPS), fusiform gyrus (FuG), and cerebellum during handwriting, suggesting that an adult-like brain activation pattern emerges by middle childhood. Moreover, children showed left-lateralized and bilateral activation of motor regions and right-lateralized activation of the FuG and cerebellum during handwriting, suggesting that functional lateralization of handwriting is not fully established by this age. Finally, the activation of Exner's area and the lateralization of the IPS and cerebellum during handwriting were correlated with reading skills, possibly representing a neural link between handwriting and reading in children. Collectively, this study reveals the brain correlates of handwriting and their relation to reading development in Chinese children, offering new insight into the development of handwriting and reading skills.
Collapse
Affiliation(s)
- Jun Zhang
- College of Education, Capital Normal University, Beijing 100048, China
| | - Liying Kang
- College of Preschool Education, Capital Normal University, Beijing 100048, China
- Correspondence: (L.K.); (Y.Y.); Tel.: +86-010-68906533 (L.K.); +86-010-64842728 (Y.Y.)
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhen Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (L.K.); (Y.Y.); Tel.: +86-010-68906533 (L.K.); +86-010-64842728 (Y.Y.)
| |
Collapse
|
7
|
Shahab QS, Young IM, Dadario NB, Tanglay O, Nicholas PJ, Lin YH, Fonseka RD, Yeung JT, Bai MY, Teo C, Doyen S, Sughrue ME. A connectivity model of the anatomic substrates underlying Gerstmann syndrome. Brain Commun 2022; 4:fcac140. [PMID: 35706977 PMCID: PMC9189613 DOI: 10.1093/braincomms/fcac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
The Gerstmann syndrome is a constellation of neurological deficits that include agraphia, acalculia, left-right discrimination and finger agnosia. Despite a growing interest in this clinical phenomenon, there remains controversy regarding the specific neuroanatomic substrates involved. Advancements in data-driven, computational modelling provides an opportunity to create a unified cortical model with greater anatomic precision based on underlying structural and functional connectivity across complex cognitive domains. A literature search was conducted for healthy task-based functional MRI and PET studies for the four cognitive domains underlying Gerstmann's tetrad using the electronic databases PubMed, Medline, and BrainMap Sleuth (2.4). Coordinate-based, meta-analytic software was utilized to gather relevant regions of interest from included studies to create an activation likelihood estimation (ALE) map for each cognitive domain. Machine-learning was used to match activated regions of the ALE to the corresponding parcel from the cortical parcellation scheme previously published under the Human Connectome Project (HCP). Diffusion spectrum imaging-based tractography was performed to determine the structural connectivity between relevant parcels in each domain on 51 healthy subjects from the HCP database. Ultimately 102 functional MRI studies met our inclusion criteria. A frontoparietal network was found to be involved in the four cognitive domains: calculation, writing, finger gnosis, and left-right orientation. There were three parcels in the left hemisphere, where the ALE of at least three cognitive domains were found to be overlapping, specifically the anterior intraparietal area, area 7 postcentral (7PC) and the medial intraparietal sulcus. These parcels surround the anteromedial portion of the intraparietal sulcus. Area 7PC was found to be involved in all four domains. These regions were extensively connected in the intraparietal sulcus, as well as with a number of surrounding large-scale brain networks involved in higher-order functions. We present a tractographic model of the four neural networks involved in the functions which are impaired in Gerstmann syndrome. We identified a 'Gerstmann Core' of extensively connected functional regions where at least three of the four networks overlap. These results provide clinically actionable and precise anatomic information which may help guide clinical translation in this region, such as during resective brain surgery in or near the intraparietal sulcus, and provides an empiric basis for future study.
Collapse
Affiliation(s)
- Qazi S. Shahab
- School of Medicine, University of New South Wales, 2052 Sydney, Australia
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney 2000, Australia
| | | | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - R. Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Jacky T. Yeung
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Michael Y. Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | | | | |
Collapse
|
8
|
Li A, Yang R, Qu J, Dong J, Gu L, Mei L. Neural representation of phonological information during Chinese character reading. Hum Brain Mapp 2022; 43:4013-4029. [PMID: 35545935 PMCID: PMC9374885 DOI: 10.1002/hbm.25900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies have revealed that phonological processing of Chinese characters elicited activation in the left prefrontal cortex, bilateral parietal cortex, and occipitotemporal regions. However, it is controversial what role the left middle frontal gyrus plays in Chinese character reading, and whether the core regions (e.g., the left superior temporal gyrus and supramarginal gyrus) for phonological processing of alphabetic languages are also involved in Chinese character reading. To address these questions, the present study used both univariate and multivariate analysis (i.e., representational similarity analysis, RSA) to explore neural representations of phonological information during Chinese character reading. Participants were scanned while performing a reading aloud task. Univariate activation analysis revealed a widely distributed network for word reading, including the bilateral inferior frontal gyrus, middle frontal gyrus, lateral temporal cortex, and occipitotemporal cortex. More importantly, RSA showed that the left prefrontal (i.e., the left middle frontal gyrus and left inferior frontal gyrus) and bilateral occipitotemporal areas (i.e., the left inferior and middle temporal gyrus and bilateral fusiform gyrus) represented phonological information of Chinese characters. These results confirmed the importance of the left middle frontal gyrus and regions in ventral pathway in representing phonological information of Chinese characters.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
| |
Collapse
|
9
|
Lau DKY, Liang Y, Nguyen HA. Measuring Orthographic Knowledge of L2 Chinese Learners in Vietnam Using a Handwriting Task - A Preliminary Report. Front Psychol 2022; 13:784019. [PMID: 35250724 PMCID: PMC8890491 DOI: 10.3389/fpsyg.2022.784019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the current study, the orthographic knowledge required for writing Chinese characters was assessed among participants with L1 Vietnamese background who learn Chinese as a foreign language. A total of 42 undergraduates were recruited. They were invited to participate in a delayed Chinese character copying task consisting of 32 characters. Their Chinese character reading abilities were also obtained using a character naming task. All the tests were conducted online during the pandemic in 2021. Results indicated that the participants' accuracy in the copying task was affected by the familiarity of the characters and the number of strokes of the characters. These effects minimized as reading performance increased. In the inter-stroke interval (ISI) analysis, results indicated a significant boundary effect where ISIs between orthographic units were longer than ISIs within orthographic units, showing the participants' tendency to chunk Chinese characters into functional units when they write. Only high achievers in the reading task demonstrated the use of both large and small grain-size units in writing (i.e., radical-boundary ISI > logographeme-boundary ISI > non-boundary ISI), while the low achievers only used small grain-size units in their writing. We suggest that the delayed copying task incorporated with handwriting measures is an effective method to assess orthographic knowledge of L2 Chinese learners.
Collapse
Affiliation(s)
- Dustin Kai-Yan Lau
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuan Liang
- Department of Chinese Language Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Hoang-Anh Nguyen
- Faculty of Chinese Language and Culture, University of Languages and International Studies, VNU, Hanoi, Vietnam
| |
Collapse
|
10
|
Siok WT, Tan LH. Is phonological deficit a necessary or sufficient condition for Chinese reading disability? BRAIN AND LANGUAGE 2022; 226:105069. [PMID: 35021145 DOI: 10.1016/j.bandl.2021.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
While phonological skills have been found to be correlated with reading across different writing systems, recent findings have shown that developmental dyslexia in Chinese individuals has multiple deficits, and no single factor has ever been identified as crucial for learning this writing system. To examine whether a deficit in the phonological or another cognitive domain is a necessary or sufficient condition for Chinese reading disability, this study examined the cognitive profiles of 521 good readers and 502 dyslexic readers in Chinese primary schools using a battery of behavioral measures covering phonological, visual, orthographic, visual-motor coordination and working memory skills. The results showed that among all cognitive measures, phonological skills correlated more strongly with character reading performance but that poor phonological skills did not necessarily or sufficiently lead to poor reading performance in Chinese.
Collapse
Affiliation(s)
- Wai Ting Siok
- Department of Linguistics, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Li Hai Tan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University (Shenzhen), China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
11
|
Li J, Hong L, Bi HY, Yang Y. Functional brain networks underlying automatic and controlled handwriting in Chinese. BRAIN AND LANGUAGE 2021; 219:104962. [PMID: 33984629 DOI: 10.1016/j.bandl.2021.104962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to identify the functional brain networks underlying the distinctions between automatic and controlled handwriting in Chinese. Network-based analysis was applied to functional magnetic resonance imaging data collected while adult participants performed a copying task under automatic and speed-controlled conditions. We found significant differences between automatic and speed-controlled handwriting in functional connectivity within and between the frontoparietal network, default mode network, dorsal attention network, somatomotor network and visual network; these differences reflect the variations in general attentional control and task-relevant visuomotor operations. However, no differences in brain activation were detected between the two handwriting conditions, suggesting that the reorganization of functional networks, rather than the modulation of local brain activation, underlies the dissociations between automatic and controlled handwriting in Chinese. Our findings illustrate the brain basis of handwriting automaticity, shedding new light on how handwriting automaticity may be disrupted in individuals with neurological disorders.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Hong
- Department of Foreign Languages, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Yang Y, Zuo Z, Tam F, Graham SJ, Li J, Ji Y, Meng Z, Gu C, Bi HY, Ou J, Xu M. The brain basis of handwriting deficits in Chinese children with developmental dyslexia. Dev Sci 2021; 25:e13161. [PMID: 34288292 PMCID: PMC9286553 DOI: 10.1111/desc.13161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Abundant behavioral studies have demonstrated high comorbidity of reading and handwriting difficulties in developmental dyslexia (DD), a neurological condition characterized by unexpectedly low reading ability despite adequate nonverbal intelligence and typical schooling. The neural correlates of handwriting deficits remain largely unknown; however, as well as the extent that handwriting deficits share common neural bases with reading deficits in DD. The present work used functional magnetic resonance imaging to examine brain activity during handwriting and reading tasks in Chinese dyslexic children (n = 18) and age-matched controls (n = 23). Compared to controls, dyslexic children exhibited reduced activation during handwriting tasks in brain regions supporting sensory-motor processing (including supplementary motor area and postcentral gyrus) and visual-orthography processing (including bilateral precuneus and right cuneus). Among these regions, the left supplementary motor area and the right precuneus also showed a trend of reduced activation during reading tasks in dyslexics. Moreover, increased activation was found in the left inferior frontal gyrus and anterior cingulate cortex in dyslexics, which may reflect more efforts of executive control to compensate for the impairments of motor and visual-orthographic processing. Finally, dyslexic children exhibited aberrant functional connectivity among brain areas for cognitive control and sensory-motor processes during handwriting tasks. Together, these findings suggest that handwriting deficits in DD are associated with functional abnormalities of multiple brain regions implicated in motor execution, visual-orthographic processing, and cognitive control, providing important implications for the diagnosis and treatment of dyslexia.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhu Ji
- Department of Psychology, College of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zelong Meng
- Department of Psychology, School of Humanities and Social Sciences, Beijing Forestry University, Beijing, China
| | - Chanyuan Gu
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ou
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
13
|
Yan X, Perkins K, Cao F. A hierarchical deficit model of reading disability: Evidence from dynamic causal modelling analysis. Neuropsychologia 2021; 154:107777. [PMID: 33549584 DOI: 10.1016/j.neuropsychologia.2021.107777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Deficits have been documented in visuo-orthographic processing as well as phonological retrieval/manipulation during visual word reading in individuals with reading disability (RD); however, the relationship between these deficits remains unclear. Previously, we found that during word reading, visuo-orthographic deficit appears to be a neural signature of RD, but deficits in phonological retrieval/manipulation appears to be a consequence of being RD (Cao et al., 2020). Therefore, in the current study, we directly tested the hypothesis that during visual word reading, deficit in phonological retrieval/manipulation may result from weakened input from visuo-orthographic regions, and that this relationship tends to be universal across languages. We conducted a dynamic causal modelling analysis of fMRI data from Chinese-English bilingual children (9-11 years, N = 78) with or without RD during a visual word rhyming judgment task. We found a weaker connection from the left inferior temporal gyrus (ITG) to the left dorsal inferior frontal gyrus (dIFG) in children with RD and reading controls than the connection found in age controls for both Chinese and English. This finding suggests that the phonological deficit at the dIFG may result from weak input from the visuo-orthographic region and this connection appears to be responsive to reading level rather than RD, because the reading-control children were similar to children with RD. We also found that the left ITG was selectively connected with language-specific regions (i.e., the left inferior parietal lobe (IPL) for Chinese and the left ventral inferior frontal gyrus (vIFG) for English) depending on the language being processed; however, this language selectivity was reduced in children with RD, suggesting that decreased language specialization is associated with RD. Using a double control design, our study suggests that during reading, the visuo-orthographic deficit of RD constrains the development of the connection from orthography to phonology and to other language-specific processing due to distorted quantity and quality of reading.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen University, China
| | | | - Fan Cao
- Department of Psychology, Sun Yat-Sen University, China.
| |
Collapse
|
14
|
Yin Y, Zhang Q. Chinese characters are read using not only visual but also writing motor information. Psychophysiology 2020; 58:e13696. [PMID: 33140864 DOI: 10.1111/psyp.13696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
It has been suggested that mature reading systems consist of both a visual analysis decoding system and a motor gesture decoding system that facilitates reading by processing writing motor information. However, there is still uncertainty about the mechanisms and effectiveness of the latter system when reading Chinese characters. This study therefore aimed to provide empirical neural evidence for this phenomenon using a writing video as prompt in a delayed sequential same/different judgment task. We investigated whether and how the orthographic processing of target characters was modulated by the writing direction of the prompt (forward vs. backward) and the character repetition (repeat vs. nonrepeat) between the prompt and target characters. The results indicated that (a) the N170 component was more negative under the forward condition than under the backward condition; and (b) both writing direction and character repetition modulated the centro-parietal N200 component. These writing-direction effects were specific to Chinese characters--they did not apply to Korean characters, which are visually similar to Chinese characters but unfamiliar to the participants. These results suggest that the experience of learning Chinese might establish a motor gesture decoding system for reading, which begins to perform general orthographic representation at an early stage and works together with the visual analysis decoding system to achieve deep orthographic processing.
Collapse
Affiliation(s)
- Yulong Yin
- Department of Psychology, Renmin University of China, Beijing, China
| | - Qingfang Zhang
- Department of Psychology, Renmin University of China, Beijing, China
| |
Collapse
|
15
|
Feng X, Altarelli I, Monzalvo K, Ding G, Ramus F, Shu H, Dehaene S, Meng X, Dehaene-Lambertz G. A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife 2020; 9:54591. [PMID: 33118931 PMCID: PMC7669264 DOI: 10.7554/elife.54591] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/26/2020] [Indexed: 01/12/2023] Open
Abstract
Are the brain mechanisms of reading acquisition similar across writing systems? And do similar brain anomalies underlie reading difficulties in alphabetic and ideographic reading systems? In a cross-cultural paradigm, we measured the fMRI responses to words, faces, and houses in 96 Chinese and French 10-year-old children, half of whom were struggling with reading. We observed a reading circuit which was strikingly similar across languages and consisting of the left fusiform gyrus, superior temporal gyrus/sulcus, precentral and middle frontal gyri. Activations in some of these areas were modulated either by language or by reading ability, but without interaction between those factors. In various regions previously associated with dyslexia, reading difficulty affected activation similarly in Chinese and French readers, including the middle frontal gyrus, a region previously described as specifically altered in Chinese. Our analyses reveal a large degree of cross-cultural invariance in the neural correlates of reading acquisition and reading impairment.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Irene Altarelli
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,Université de Paris, LaPsyDÉ, CNRS, Paris, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, China
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Effective Connectivity Study Guiding the Neuromodulation Intervention in Figurative Language Comprehension Using Optical Neuroimaging. Neural Plast 2020; 2020:8882207. [PMID: 33082780 PMCID: PMC7559246 DOI: 10.1155/2020/8882207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
The current study is aimed at establishing links between brain network examination and neural plasticity studies measured by optical neuroimaging. Sixteen healthy subjects were recruited from the University of Macau to test the Granger Prediction Estimation (GPE) method to investigate brain network connectivity during figurative language comprehension. The method is aimed at mapping significant causal relationships across language brain networks, captured by functional near-infrared spectroscopy measurements (fNIRS): (i) definition of regions of interest (ROIs) based on significant channels extracted from spatial activation maps; (ii) inspection of significant causal relationships in temporal resolution, exploring the experimental task agreement; and (iii) early identification of stronger causal relationships that guide neuromodulation intervention, targeting impaired connectivity pathways. Our results propose top-down mechanisms responsible for perceptive-attention engagement in the left anterior frontal cortex and bottom-up mechanism in the right hemispheres during the semantic integration of figurative language. Moreover, the interhemispheric directional flow suggests a right hemisphere engagement in decoding unfamiliar literal sentences and fine-grained integration guided by the left hemisphere to reduce ambiguity in meaningless words. Finally, bottom-up mechanisms seem activated by logographic-semantic processing in literal meanings and memory storage centres in meaningless comprehension. To sum up, our main findings reveal that the Granger Prediction Estimation (GPE) integrated strategy proposes an effective link between assessment and intervention, capable of enhancing the efficiency of the treatment in language disorders and reducing the neuromodulation side effects.
Collapse
|
17
|
Cao F, Yan X, Yan X, Zhou H, Booth JR. Reading Disability in Chinese Children Learning English as an L2. Child Dev 2020; 92:e126-e142. [PMID: 32864778 DOI: 10.1111/cdev.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To examine whether there are common or specific deficits of reading disability (RD) in first (L1) and second languages (L2), Chinese children (9-11 years, N = 76) with or without RD who learn English as an L2 were studied during a visual word rhyming judgment task. Evidence was found for common deficits in L1 and L2 in visuo-orthographic processes in left inferior temporal gyrus and left precuneus, as well as in phonological processes in left dorsal inferior frontal gyrus as children with RD showed less activation than controls in both languages. Furthermore, the visuo-orthographic deficit appears to be a RD effect, whereas the phonological deficit appears to be a reading/performance effect. Some weak evidence for language specific effects was also found.
Collapse
|
18
|
Ma J, Wu Y, Sun T, Cai L, Fan X, Li X. Neural substrates of bilingual processing in a logographic writing system: An fMRI study in Chinese Cantonese-Mandarin bilinguals. Brain Res 2020; 1738:146794. [DOI: 10.1016/j.brainres.2020.146794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
19
|
The N200 enhancement effect in reading Chinese is modulated by actual writing. Neuropsychologia 2020; 142:107462. [DOI: 10.1016/j.neuropsychologia.2020.107462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 01/23/2023]
|
20
|
Zhou W, Kwok VPY, Su M, Luo J, Tan LH. Children's neurodevelopment of reading is affected by China's language input system in the information era. NPJ SCIENCE OF LEARNING 2020; 5:3. [PMID: 32284879 PMCID: PMC7125128 DOI: 10.1038/s41539-020-0062-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Communications through electronic devices require knowledge in typewriting, typically with the pinyin input method in China. Yet, the over utilization of the pronunciation-based pinyin input method may violate the traditional learning processes of written Chinese, which involves abundant visual orthographic analysis of characters and repeated writing. We used functional magnetic resonance imaging to examine the influence of pinyin typing on reading neurodevelopment of intermediate Chinese readers (age 9-11). We found that, relative to less frequent pinyin users, more frequent pinyin users showed an overall weaker pattern of cortical activations in the left middle frontal gyrus, left inferior frontal gyrus, and right fusiform gyrus in performing reading tasks. In addition, more frequent pinyin typists had relatively less gray matter volume in the left middle frontal region, a site known to be crucial for Chinese reading. This study demonstrates that Chinese children's brain development in the information era is affected by the frequent use of the pinyin input method.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037 China
| | - Veronica P. Y. Kwok
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060 China
| | - Mengmeng Su
- College of Elementary Education, Capital Normal University, Beijing, 100037 China
| | - Jin Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037 China
| | - Li Hai Tan
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060 China
| |
Collapse
|
21
|
Yang Y, Tam F, Graham SJ, Sun G, Li J, Gu C, Tao R, Wang N, Bi HY, Zuo Z. Men and women differ in the neural basis of handwriting. Hum Brain Mapp 2020; 41:2642-2655. [PMID: 32090433 PMCID: PMC7294055 DOI: 10.1002/hbm.24968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
There is an ongoing debate about whether, and to what extent, males differ from females in their language skills. In the case of handwriting, a composite language skill involving language and motor processes, behavioral observations consistently show robust sex differences but the mechanisms underlying the effect are unclear. Using functional magnetic resonance imaging (fMRI) in a copying task, the present study examined the neural basis of sex differences in handwriting in 53 healthy adults (ages 19–28, 27 males). Compared to females, males showed increased activation in the left posterior middle frontal gyrus (Exner's area), a region thought to support the conversion between orthographic and graphomotor codes. Functional connectivity between Exner's area and the right cerebellum was greater in males than in females. Furthermore, sex differences in brain activity related to handwriting were independent of language material. This study identifies a novel neural signature of sex differences in a hallmark of human behavior, and highlights the importance of considering sex as a factor in scientific research and clinical applications involving handwriting.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Guochen Sun
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Tianjin, China
| | - Junjun Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chanyuan Gu
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Nizhuan Wang
- Artificial Intelligence and Neuro-informatics Engineering (ARINE) Laboratory, School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Neergaard KD, Luo J, Huang CR. Phonological network fluency identifies phonological restructuring through mental search. Sci Rep 2019; 9:15984. [PMID: 31690737 PMCID: PMC6831682 DOI: 10.1038/s41598-019-52433-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/12/2019] [Indexed: 11/18/2022] Open
Abstract
We investigated network principles underlying mental search through a novel phonological verbal fluency task. Post exclusion, 95 native-language Mandarin speakers produced as many items that differed by a single lexical tone as possible within one minute. Their verbal productions were assessed according to several novel graded fluency measures, and network science measures that accounted for the structure, cohesion and interconnectedness of lexical items. A multivariate regression analysis of our participants' language backgrounds included their mono- or multi-lingual status, English proficiency, and fluency in other Chinese languages/dialects. Higher English proficiency predicted lower error rates and greater interconnectedness, while higher fluency in other Chinese languages/dialects revealed lower successive similarity and lower network coherence. This inverse relationship between English and other Chinese languages/dialects provides evidence of the restructuring of the phonological mental lexicon.
Collapse
Affiliation(s)
- Karl David Neergaard
- University of Macau, Department of English, Macau S.A.R., China.
- Aix-Marseille University, Laboratoire Parole et Langage, Aix-en-Provence, 13100, France.
| | - Jin Luo
- University of Groningen, Erasmus+ Mundus Joint Master Degree in Clinical Linguistics, 9712, Groningen, The Netherlands
| | - Chu-Ren Huang
- The Hong Kong Polytechnic University, Department of Chinese and Bilingual Studies, Hong Kong S.A.R., China
| |
Collapse
|
23
|
Yang Y, Zhang J, Meng ZL, Qin L, Liu YF, Bi HY. Neural Correlates of Orthographic Access in Mandarin Chinese Writing: An fMRI Study of the Word-Frequency Effect. Front Behav Neurosci 2018; 12:288. [PMID: 30555308 PMCID: PMC6284029 DOI: 10.3389/fnbeh.2018.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Writing is an essential tool for human communication and involves multiple linguistic, cognitive, and motor processes. Chinese, a logographic writing system, differs remarkably from the writing systems of alphabetic languages. The neural substrates of Chinese writing are largely unknown. Using functional magnetic resonance imaging (fMRI) in a copying task, this study probed the neural underpinnings of orthographic access during Mandarin Chinese writing by employing the word-frequency effect. The results showed that writing low-frequency characters evoked greater activation in the bilateral superior/middle/inferior frontal gyrus, superior/inferior parietal lobule, and fusiform gyrus than writing high-frequency characters. Moreover, psychophysiological interaction (PPI) analysis demonstrated that the word-frequency effect modulated functional connectivity within the frontal-occipital networks and the parietal-occipital networks. Together, these findings illustrate the neural correlates of orthographic access for Mandarin Chinese writing, shedding new light on the cognitive architecture of writing across various writing systems.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jun Zhang
- Jiangxi Institute of Education Sciences, Nanchang, China.,School-family Partnership Research Center, Graduate School of Education, Peking University, Beijing, China
| | - Ze-Long Meng
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Liu
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Siok WT, Liu CY. Differential impacts of different keyboard inputting methods on reading and writing skills. Sci Rep 2018; 8:17183. [PMID: 30464303 PMCID: PMC6249315 DOI: 10.1038/s41598-018-35268-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/31/2018] [Indexed: 11/08/2022] Open
Abstract
Nowadays, typewriting has become an important mode of written communication. A report that typewriting may hinder Chinese children's reading development has sparked substantial concern about whether typing on electronic devices would increase the rate of reading disorders, wherein children used a pronunciation-based input system that associates alphabet letters with phonemes in standard Chinese (Putonghua) and may conflict with the traditional visuomotor-based learning processes for written Chinese. If orthographic-based input methods that require good awareness of the orthographic structure of characters are used, different outcomes might be observed. This study examined the impact of participants' experience in different typewriting methods on the literacy abilities of fluent Chinese-English bilingual readers. We found that orthographic-based typewriting measures correlated positively with Chinese reading measures, whereas pronunciation-based typewriting measures did not correlate with Chinese reading measures but correlated positively with English reading and spelling performance. Orthographic-based typewriters also performed better than pronunciation-based typewriters in Chinese reading and dictation when their age, typewriting skills and pre-University language ability were statistically controlled. Our findings based on two contrastive writing systems suggest that typewriting methods that tally with the learning principles of a writing system should be used to promote and preserve literacy skills in the digital era.
Collapse
Affiliation(s)
- Wai Ting Siok
- Department of Linguistics, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.
| | - Chun Yin Liu
- Department of Linguistics, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
| |
Collapse
|
25
|
Kao HS, Lam SP, Kao TT. Chinese calligraphy handwriting (CCH): a case of rehabilitative awakening of a coma patient after stroke. Neuropsychiatr Dis Treat 2018; 14:407-417. [PMID: 29440902 PMCID: PMC5798538 DOI: 10.2147/ndt.s147753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION This study investigated the efficacy of Chinese calligraphy handwriting (CCH) for the awakening of patients under a vegetative state after stroke. The theories, the instrument, and the treatment protocols were reported. A single case of a severe stroke patient who was in a coma state for 2 years is presented in this study. The objectives were to apply finger writing as a new method to awaken a stroke patient in a coma state and to test the effect of this method in improving the patient's vegetative states over time. CASE PRESENTATION A 55-year-old man suffered a severe stroke in 2004 which left him in a coma for 2 years without any systematic rehabilitation. A culture-based finger-writing method of visual-spatial intervention was then applied to improve his condition. The writing tasks involved aided viewing and finger tracing of sets of innovative characters with enriched visual-spatial and movement characteristics. Following regular treatment protocols involving diverse movement and sensory feedback, the patient was awakened after 12 months. As a consequence, the patient showed significant behavioral changes favoring enhanced focusing, alertness, visual scan, visual span, and quickened visual and motor responses. The treatment continued for another 12 months. As the treatment progressed, we gradually observed improvements in his attention span and mental concentration. His eye ball movements - the left eye in particular - were quickened and showed wider visual angularity in his focal vision. Currently, the patient can now watch television, engage in improved visual sighting, and focus on visual-spatial and cognitive-linguistic materials. CONCLUSION This CCH method of training by finger tracking has shown its effectiveness in awakening the patient from his coma state and in producing long-term, clinical outcomes that were similar from those that took place 10 years ago. This finding supports the efficacy of the system for clinical improvement of the patient's conditions.
Collapse
Affiliation(s)
- Henry Sr Kao
- Calligraphy Therapy Laboratory, Shenzhen Institute of Neuroscience, Shenzhen, China
| | | | - Tin Tin Kao
- Department of Geography.,Department of Psychology, University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Li Y, Zhang L, Xia Z, Yang J, Shu H, Li P. The Relationship between Intrinsic Couplings of the Visual Word Form Area with Spoken Language Network and Reading Ability in Children and Adults. Front Hum Neurosci 2017; 11:327. [PMID: 28690507 PMCID: PMC5481365 DOI: 10.3389/fnhum.2017.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Reading plays a key role in education and communication in modern society. Learning to read establishes the connections between the visual word form area (VWFA) and language areas responsible for speech processing. Using resting-state functional connectivity (RSFC) and Granger Causality Analysis (GCA) methods, the current developmental study aimed to identify the difference in the relationship between the connections of VWFA-language areas and reading performance in both adults and children. The results showed that: (1) the spontaneous connectivity between VWFA and the spoken language areas, i.e., the left inferior frontal gyrus/supramarginal gyrus (LIFG/LSMG), was stronger in adults compared with children; (2) the spontaneous functional patterns of connectivity between VWFA and language network were negatively correlated with reading ability in adults but not in children; (3) the causal influence from LIFG to VWFA was negatively correlated with reading ability only in adults but not in children; (4) the RSFCs between left posterior middle frontal gyrus (LpMFG) and VWFA/LIFG were positively correlated with reading ability in both adults and children; and (5) the causal influence from LIFG to LSMG was positively correlated with reading ability in both groups. These findings provide insights into the relationship between VWFA and the language network for reading, and the role of the unique features of Chinese in the neural circuits of reading.
Collapse
Affiliation(s)
- Yu Li
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China.,Department of Cognitive Science and ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, NSW, Australia
| | - Linjun Zhang
- Faculty of Linguistic Sciences and KIT-BLCU MEG Laboratory for Brain Science, Beijing Language and Culture UniversityBeijing, China
| | - Zhichao Xia
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Jie Yang
- Department of Cognitive Science and ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, NSW, Australia
| | - Hua Shu
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Ping Li
- Department of Psychology and Center for Brain, Behavior and Cognition, Pennsylvania State University University Park, PA, United States
| |
Collapse
|