1
|
Al-Sofi RF, Bergmann MS, Nielsen CH, Andersen V, Skov L, Loft N. The Association between Genetics and Response to Treatment with Biologics in Patients with Psoriasis, Psoriatic Arthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5793. [PMID: 38891983 PMCID: PMC11171831 DOI: 10.3390/ijms25115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic biomarkers could potentially lower the risk of treatment failure in chronic inflammatory diseases (CID) like psoriasis, psoriatic arthritis (PsA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). We performed a systematic review and meta-analysis assessing the association between single nucleotide polymorphisms (SNPs) and response to biologics. Odds ratio (OR) with 95% confidence interval (CI) meta-analyses were performed. In total, 185 studies examining 62,774 individuals were included. For the diseases combined, the minor allele of MYD88 (rs7744) was associated with good response to TNFi (OR: 1.24 [1.02-1.51], 6 studies, 3158 patients with psoriasis or RA) and the minor alleles of NLRP3 (rs4612666) (OR: 0.71 [0.58-0.87], 5 studies, 3819 patients with RA or IBD), TNF-308 (rs1800629) (OR: 0.71 [0.55-0.92], 25 studies, 4341 patients with psoriasis, RA, or IBD), FCGR3A (rs396991) (OR: 0.77 [0.65-0.93], 18 studies, 2562 patients with psoriasis, PsA, RA, or IBD), and TNF-238 (rs361525) (OR: 0.57 [0.34-0.96]), 7 studies, 818 patients with psoriasis, RA, or IBD) were associated with poor response to TNFi together or infliximab alone. Genetic variants in TNFα, NLRP3, MYD88, and FcRγ genes are associated with response to TNFi across several inflammatory diseases. Most other genetic variants associated with response were observed in a few studies, and further validation is needed.
Collapse
Affiliation(s)
- Rownaq Fares Al-Sofi
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 1165 Copenhagen, Denmark
- Copenhagen Research Group for Inflammatory Skin, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Mie Siewertsen Bergmann
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 1165 Copenhagen, Denmark
- Copenhagen Research Group for Inflammatory Skin, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Claus Henrik Nielsen
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Vibeke Andersen
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
- Molecular Diagnostics and Clinical Research Unit, Department of Internal Medicine, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 1165 Copenhagen, Denmark
- Copenhagen Research Group for Inflammatory Skin, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Nikolai Loft
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 1165 Copenhagen, Denmark
- Copenhagen Research Group for Inflammatory Skin, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| |
Collapse
|
2
|
Latini A, De Benedittis G, Conigliaro P, Bonini C, Morgante C, Iacovantuono M, D’Antonio A, Bergamini A, Novelli G, Chimenti MS, Ciccacci C, Borgiani P. The rs11568820 Variant in the Promoter Region of Vitamin D Receptor Gene Is Associated with Clinical Remission in Rheumatoid Arthritis Patients Receiving Tumor Necrosis Factor Inhibitors. Genes (Basel) 2024; 15:234. [PMID: 38397223 PMCID: PMC10887840 DOI: 10.3390/genes15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The vitamin D receptor (VDR), binding to the active form of the vitamin, promotes the transcription of numerous genes involved in the proliferation of immune cells, cytokine production and lymphocyte activation. It is known that vitamin D deficiency can influence the risk of developing rheumatoid arthritis (RA) or modulate its disease activity. The aim of this study was to investigate a possible association between the rs11568820 (C > T) polymorphism in the promoter region of VDR gene and the response to therapy with anti-TNF drugs in patients with RA. A total of 178 consecutive Italian patients with RA treated with anti-TNF, naïve for biological therapy, were recruited. Disease activity data were evaluated using specific indices such as DAS28, CDAI and SDAI, measured at the start of therapy and subsequently at 22, 52, 104 and 240 weeks. A statistically significant association emerged between the rs11568820 variant allele of VDR gene and failure to remission assessed by CDAI and SDAI at 52 weeks, and by DAS28, CDAI and SDAI at 104 weeks of follow-up. Furthermore, the variant allele of this polymorphism was observed more frequently in patients who did not undergo sustained remission calculated by CDAI and SDAI. The variant T allele of rs11568820 in VDR gene is associated with a reduced remission rate with anti-TNFα drugs. These data suggest the role of VDR genetic variability in the response to therapy and in the achievement of remission.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| | - Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Chiara Bonini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Chiara Morgante
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| | - Maria Iacovantuono
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Arianna D’Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
- School of Medicine, Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
- IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| |
Collapse
|
3
|
Guo H, Li L, Liu B, Lu P, Cao Z, Ji X, Li L, Ouyang G, Nie Z, Lyu A, Lu C. Inappropriate treatment response to DMARDs: A pathway to difficult-to-treat rheumatoid arthritis. Int Immunopharmacol 2023; 122:110655. [PMID: 37481847 DOI: 10.1016/j.intimp.2023.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
In recent years, difficult-to-treat rheumatoid arthritis (D2T RA) has attracted significant attention from rheumatologists due to its poor treatment response and the persistent symptoms or signs experienced by patients. The therapeutic demands of patients with D2T RA are not properly met due to unclear pathogenic causes and a lack of high-quality data for current treatment options, creating considerable management difficulties with this patient population. This review describes the clinical challenges associated with disease-modifying antirheumatic drugs (DMARDs) and explores contributing factors associated with inappropriate response to DMARDs that may lead to D2T RA and related immunological dysregulation. It is now understood that D2T RA is a highly heterogeneous pathological status that involves multiple factors. These factors include but are not limited to genetics, environment, immunogenicity, comorbidities, adverse drug reactions, inappropriate drug application, poor adherence, and socioeconomic status. Besides, these factors may manifest in the selection and utilization of specific DMARDs, either individually or in combination, thereby contributing to inadequate treatment response. Finding these variables may offer hints for enhancing DMARD therapy plans and bettering the condition of D2T RA patients.
Collapse
Affiliation(s)
- Hongtao Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China; Department of Rheumatology, the First Affiliated Hospital of Henan University of TCM, Zhengzhou 450000, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China
| | - Guilin Ouyang
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Zhixin Nie
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Aiping Lyu
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16# Dongzhimen Nei Nan Xiao Jie, Dongcheng District, Beijing 100700, China.
| |
Collapse
|
4
|
De Benedittis G, Latini A, Conigliaro P, Triggianese P, Bergamini A, Novelli L, Ciccacci C, Chimenti MS, Borgiani P. A multilocus genetic study evidences the association of autoimmune-related genes with Psoriatic Arthritis in Italian patients. Immunobiology 2022; 227:152232. [DOI: 10.1016/j.imbio.2022.152232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 01/04/2023]
|
5
|
De Benedittis G, Latini A, Ciccacci C, Conigliaro P, Triggianese P, Fatica M, Novelli L, Chimenti MS, Borgiani P. Impact of TRAF3IP2, IL10 and HCP5 Genetic Polymorphisms in the Response to TNF-i Treatment in Patients with Psoriatic Arthritis. J Pers Med 2022; 12:1094. [PMID: 35887591 PMCID: PMC9319906 DOI: 10.3390/jpm12071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory rheumatic disease. The introduction of therapy with biological drugs is promising, even if the efficacy is very variable. Since the response to drugs is a complex trait, identifying genetic factors associated to treatment response could help define new biomarkers for a more effective and personalized therapy. This study aimed to evaluate the potential role of polymorphisms in genes involved in PsA susceptibility as predictors of therapy efficacy. Nine polymorphisms were analyzed in a cohort of 163 PsA patients treated with TNF-i. To evaluate the treatment response, the DAPsA score was estimated for each patient. The possible association between the selected SNPs and mean values of DAPsA differences, at 22 and 54 weeks from the beginning of the treatment, were evaluated by t-test. Patients carrying the variant allele of TRAF3IP2 seemed to respond better to treatment, both at 22 and 54 weeks. This variant allele was also associated with an improvement in joint involvement. In contrast, patients carrying the IL10 variant allele showed an improvement lower than patients with the wild-type genotype at 54 weeks. Our results suggest that polymorphisms in genes associated with PsA susceptibility could also play a role in TNF-i treatment response.
Collapse
Affiliation(s)
- Giada De Benedittis
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.B.); (A.L.); (P.B.)
| | - Andrea Latini
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.B.); (A.L.); (P.B.)
| | - Cinzia Ciccacci
- UniCamillus–Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (P.T.); (M.F.); (M.S.C.)
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (P.T.); (M.F.); (M.S.C.)
| | - Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (P.T.); (M.F.); (M.S.C.)
| | - Lucia Novelli
- UniCamillus–Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (P.T.); (M.F.); (M.S.C.)
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.B.); (A.L.); (P.B.)
| |
Collapse
|
6
|
Cai Y, Xu K, Aihaiti Y, Li Z, Yuan Q, Xu J, Zheng H, Yang M, Wang B, Yang Y, Yang Y, Xu P. Derlin-1, as a Potential Early Predictive Biomarker for Nonresponse to Infliximab Treatment in Rheumatoid Arthritis, Is Related to Autophagy. Front Immunol 2022; 12:795912. [PMID: 35046954 PMCID: PMC8762214 DOI: 10.3389/fimmu.2021.795912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Background The goal of this study was to identify potential predictive biomarkers for the therapeutic effect of infliximab (IFX) in Rheumatoid arthritis (RA) and explore the potential molecular mechanism of nonresponse to IFX treatment to achieve individualized treatment of RA. Methods Differential gene expression between IFX responders and nonresponders in the GSE58795 and GSE78068 datasets was identified. Coexpression analysis was used to identify the modules associated with nonresponse to IFX therapy for RA, and enrichment analysis was conducted on module genes. Least absolute shrink and selection operator (LASSO) regression was used to develop a gene signature for predicting the therapeutic effect of IFX in RA, and the area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the signature. Correlation analysis and single-sample gene set enrichment analysis (ssGSEA) were used to explore the potential role of the hub genes. Experimental validation was conducted in synovial tissue and RA fibroblast-like synoviocytes (RA-FLSs). Results A total of 46 common genes were obtained among the two datasets. The yellow-green module was identified as the key module associated with nonresponse to IFX therapy for RA. We identified a 25-gene signature in GSE78068, and the AUC for the signature was 0.831 in the internal validation set and 0.924 in the GSE58795 dataset(external validation set). Derlin-1 (DERL1) was identified as the hub gene and demonstrated to be involved in the immune response and autophagy regulation. DERL1 expression was increased in RA synovial tissue compared with OA synovial tissue, and DERL1-siRNA partially inhibited autophagosome formation in RA-FLSs. Conclusion The 25-gene signature may have potential predictive value for the therapeutic effect of IFX in RA at the beginning of IFX treatment, and autophagy may be involved in nonresponse to IFX treatment. In particular, DERL1 may be associated with the regulation of autophagy.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhijin Li
- Department of Neurosurgery, First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Qiling Yuan
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haishi Zheng
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mingyi Yang
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanni Yang
- Department of Clinical Medicine of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Yin Yang
- Department of Orthopaedics, Xi'an Central Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
7
|
Aluko A, Ranganathan P. Pharmacogenetics of Drug Therapies in Rheumatoid Arthritis. Methods Mol Biol 2022; 2547:527-567. [PMID: 36068476 DOI: 10.1007/978-1-0716-2573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder that can lead to severe joint damage and is often associated with a high morbidity and disability. Disease-modifying anti-rheumatic drugs (DMARDs) are the mainstay of treatment in RA. DMARDs not only relieve the clinical signs and symptoms of RA but also inhibit the radiographic progression of disease and reduce the effects of chronic systemic inflammation. Since the introduction of biologic DMARDs in the late 1990s, the therapeutic range of options for the management of RA has significantly expanded. However, patients' response to these agents is not uniform with considerable variability in both efficacy and toxicity. There are no reliable means of predicting an individual patient's response to a given DMARD prior to initiation of therapy. In this chapter, the current published literature on the pharmacogenetics of traditional DMARDS and the newer biologic DMARDs in RA is highlighted. Pharmacogenetics may help individualize drug therapy in patients with RA by providing reliable biomarkers to predict medication toxicity and efficacy.
Collapse
Affiliation(s)
- Atinuke Aluko
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabha Ranganathan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Spalinger MR, Shawki A, Chatterjee P, Canale V, Santos A, Sayoc-Becerra A, Scharl M, Tremblay ML, Borneman J, McCole DF. Autoimmune susceptibility gene PTPN2 is required for clearance of adherent-invasive Escherichia coli by integrating bacterial uptake and lysosomal defence. Gut 2022; 71:89-99. [PMID: 33563644 PMCID: PMC8666829 DOI: 10.1136/gutjnl-2020-323636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.
Collapse
Affiliation(s)
- Marianne Rebecca Spalinger
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Ali Shawki
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Alina Santos
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| |
Collapse
|
9
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Patricia Castro-Sanchez
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra R Teagle
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonja Prade
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Autoimmune thyroid disorders and rheumatoid arthritis: A bidirectional interplay. Autoimmun Rev 2020; 19:102529. [PMID: 32234405 DOI: 10.1016/j.autrev.2020.102529] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) and autoimmune thyroid disease (AITD) can occur in the same patient in the autoimmune polyglandular syndrome 2. The association of the two conditions has been recognized long-time ago and the prevalence of AITD in patients with RA and vice versa is well assessed. Geographical variation of AITD and related autoantibodies in RA patients is partly due to ethnic and environmental differences of the studied populations. The impacts of thyroid disorders on RA outcome and vice versa are still controversy. In both AITD and RA genetic susceptibility and environmental factors play a synergic role in the development of the diseases. In this review we aimed at investigating the association of AITD and thyroid autoantibodies with RA, the common pathogenic pathways, the correlation with RA disease activity, and influence of the treatment.
Collapse
|
11
|
Laufer VA, Tiwari HK, Reynolds RJ, Danila MI, Wang J, Edberg JC, Kimberly RP, Kottyan LC, Harley JB, Mikuls TR, Gregersen PK, Absher DM, Langefeld CD, Arnett DK, Bridges SL. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum Mol Genet 2020; 28:858-874. [PMID: 30423114 DOI: 10.1093/hmg/ddy395] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Large meta-analyses of rheumatoid arthritis (RA) susceptibility in European (EUR) and East Asian (EAS) populations have identified >100 RA risk loci, but genome-wide studies of RA in African-Americans (AAs) are absent. To address this disparity, we performed an analysis of 916 AA RA patients and 1392 controls and aggregated our data with genotyping data from >100 000 EUR and Asian RA patients and controls. We identified two novel risk loci that appear to be specific to AAs: GPC5 and RBFOX1 (PAA < 5 × 10-9). Most RA risk loci are shared across different ethnicities, but among discordant loci, we observed strong enrichment of variants having large effect sizes. We found strong evidence of effect concordance for only 3 of the 21 largest effect index variants in EURs. We used the trans-ethnic fine-mapping algorithm PAINTOR3 to prioritize risk variants in >90 RA risk loci. Addition of AA data to those of EUR and EAS descent enabled identification of seven novel high-confidence candidate pathogenic variants (defined by posterior probability > 0.8). In summary, our trans-ethnic analyses are the first to include AAs, identified several new RA risk loci and point to candidate pathogenic variants that may underlie this common autoimmune disease. These findings may lead to better ways to diagnose or stratify treatment approaches in RA.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard J Reynolds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria I Danila
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jelai Wang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah C Kottyan
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,United States Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Ted R Mikuls
- VA Nebraska-Western Iowa Health Care System and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Donna K Arnett
- University of Kentucky College of Public Health, Lexington, KY, USA
| | - S Louis Bridges
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Yang MJ, Hou YL, Yang XL, Wang CX, Zhi LX, You CG. Development and application of a PCR-HRM molecular diagnostic method of SNPs linked with TNF inhibitor efficacy. ACTA ACUST UNITED AC 2020; 6:277-286. [PMID: 30511928 DOI: 10.1515/dx-2018-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023]
Abstract
Background Clinical evidence indicates that genetic variations may interfere with the mechanism of drug action. Recently, it has been reported that the single nucleotide polymorphisms (SNPs) of STAT4, PTPN2, PSORS1C1 and TRAF3IP2RA genes are associated with the clinical efficacy of tumor necrosis factor (TNF) inhibitors in the treatment of rheumatoid arthritis (RA) patients. Therefore, the detection of the SNPs linked with TNF inhibitor efficacy may provide an important basis for the treatment of RA. This study intended to establish molecular diagnostic methods for genotyping the linked SNPs based on high resolution melting (HRM) curve analysis. Methods The polymerase chain reaction-HRM (PCR-HRM) curve analysis detecting systems were established by designing the primers of the four SNPs, rs7574865G>T, rs7234029A>G, rs2233945C>A and rs33980500C>T, and the performance and clinical applicability of which were evaluated by using the Sanger sequencing method and genotyping test for 208 clinical samples. Results The self-developed molecular diagnostic methods of PCR-HRM were confirmed to be able to correctly genotype the four SNPs, the sensitivity and specificity of which were 100% in this study. The repeatability and reproducibility tests showed that there is little variable in intra-assay and inter-assay (the coefficient of variation ranged from 0.01% to 0.07%). The slight changes of DNA template and primer concentrations, PCR cycle number and reaction system volume had no significant effect on the genotyping performance of the method. The PCR-HRM assays were also applied to other PCR thermocyclers with HRM function and use different saturation fluorescent dyes. Conclusions The PCR-HRM genotyping method established in this study can be applied to the routine molecular diagnosis of rs7574865, rs7234029, rs2233945 and rs33980500.
Collapse
Affiliation(s)
- Mei-Juan Yang
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Yan-Long Hou
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Xiao-Lan Yang
- Department of Clinical Laboratory, The First People's Hospital of Baiyin, Baiyin, P.R. China
| | - Chun-Xia Wang
- Department of Clinical Laboratory, The First People's Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Li-Xia Zhi
- Department of Clinical Laboratory, The Second People's Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Chong-Ge You
- Department of Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, No. 82 Cuiyingmen Road, Lanzhou, Gansu, 730000, P.R. China, Phone: +86-0931-8943093
| |
Collapse
|
13
|
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet 2019; 10:1104. [PMID: 31798626 PMCID: PMC6863924 DOI: 10.3389/fgene.2019.01104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Takahashi K, Nakamura H, Watanabe A, Majima T, Koiwa M, Kamada T, Takai S. Polymorphism in Organic Anion-Transporting Polypeptide Gene Related to Methotrexate Response in Rheumatoid Arthritis Treatment. J NIPPON MED SCH 2019; 86:149-158. [PMID: 31292326 DOI: 10.1272/jnms.jnms.2019_86-303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methotrexate (MTX) is still the first-choice drug for the treatment of rheumatoid arthritis (RA). In Japan, MTX doses of up to 16 mg/week were approved in 2011. In this study, we aimed to identify the gene polymorphisms that can predict therapeutic effects of MTX in Japanese patients in current clinical settings. METHODS This study involved 171 patients with RA (all Japanese nationals, age 63.5±10.0 years) who had been administered MTX. The analyzed polymorphisms included 82 single nucleotide polymorphisms (SNPs) involved in the MTX pharmacological pathway or in the pathogenesis of RA. Responders were patients who showed high sustained remission or low disease activity with MTX or conventional disease-modifying anti-rheumatic drugs (DMARDs) treatment beyond 6 months. Non-responders were patients who showed moderate or high disease activity, who were prescribed biological DMARDs. A logistic model was constructed with Responder/Non-responder as the target variable, and minor allele frequency was set as an explanatory variable. RESULTS None of the 82 SNPs targeted for analysis met the Bonferroni significance threshold of 6.098×10-4. However, we identified SLCO1B1 rs11045879 as an SNP that might yield significant results if the number of patients were to be increased (P=0.015). CONCLUSIONS The rs11045879 minor allele in the SLCO1B1 gene is a potential predictor of non-responders to MTX treatment among Japanese RA patients. In future collaborative research, we will investigate whether the association with SLCO1B1 polymorphism is significant by performing statistical analysis with a larger study population.
Collapse
Affiliation(s)
- Kenji Takahashi
- Department of Orthopaedic Surgery, International University of Health and Welfare Hospital
| | | | - Atsushi Watanabe
- Division of Personalized Genetic Medicine, Nippon Medical School Hospital
| | | | - Masahito Koiwa
- Department of Orthopaedic Surgery, Shuwa General Hospital
| | | | - Shinro Takai
- Department of Orthopaedic Surgery, Nippon Medical School
| |
Collapse
|
15
|
Chang HH, Ho CH, Tomita B, Silva AA, Sparks JA, Karlson EW, Rao DA, Lee YC, Ho IC. Utilizing a PTPN22 gene signature to predict response to targeted therapies in rheumatoid arthritis. J Autoimmun 2019; 101:121-130. [PMID: 31030958 PMCID: PMC6556429 DOI: 10.1016/j.jaut.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
Abstract
Despite the development of several targeted therapies for rheumatoid arthritis (RA), there is still no reliable drug-specific predictor to assist rheumatologists in selecting the most effective targeted therapy for each patient. Recently, a gene signature caused by impaired induction of PTPN22 in anti-CD3 stimulated peripheral blood mononuclear cells (PBMC) was observed in healthy at-risk individuals. However, the downstream target genes of PTPN22 and the molecular mechanisms regulating its expression are still poorly understood. Here we report that the PTPN22 gene signature is also present in PBMC from patients with active RA and can be reversed after effective treatment. The expression of PTPN22 correlates with that of more than 1000 genes in Th cells of anti-CD3 stimulated PBMC of healthy donors and is inhibited by TNFα or CD28 signals, but not IL-6, through distinct mechanisms. In addition, the impaired induction of PTPN22 in PBMC of patients with active RA can be normalized in vitro by several targeted therapies. More importantly, the in vitro normalization of PTPN22 expression correlates with clinical response to the targeted therapies in a longitudinal RA cohort. Thus, in vitro normalization of PTPN22 expression by targeted therapies can potentially be used to predict clinical response.
Collapse
Affiliation(s)
- Hui-Hsin Chang
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ching-Huang Ho
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Beverly Tomita
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Andrea A Silva
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jeffrey A Sparks
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Elizabeth W Karlson
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Deepak A Rao
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Yvonne C Lee
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - I-Cheng Ho
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
16
|
Challenges in the treatment of Rheumatoid Arthritis. Autoimmun Rev 2019; 18:706-713. [PMID: 31059844 DOI: 10.1016/j.autrev.2019.05.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease characterized by a heterogeneous clinical response to the different treatments. Some patients are difficult to treat and do not reach the treatment targets as clinical remission or low disease activity. Known negative prognostic factors, such as the presence of auto-antiantibodies and joint erosion, the presence of a genetic profile, comorbidities and extra-articular manifestations, pregnancy or a pregnancy wish may concur to the treatment failure. In this review we aimed at identify difficult to treat RA patients and define the optimal therapeutic and environmental targets. Genetic markers of severity such as HLA-DRB1, TRAF1, PSORS1C1 and microRNA 146a are differently associated with joint damage; other gene polymorphisms seem to be associated with response to biologic disease modifying anti-rheumatic drugs (bDMARDs). The presence of comorbidities and/or extra-articular manifestations may influence the therapeutic choice; overweight and obese patients are less responsive to TNF inhibitors. In this context the patient profiling can improve the clinical outcome. Targeting different pathways, molecules, and cells involved in the pathogenesis of RA may in part justify the lack response of some patients. An overview of the future therapeutic targets, including bDMARDs (inhibitors of IL-6, GM-CSF, matrix metalloproteinases, chemokines) and targeted synthetic DMARDs (filgotinib, ABT-494, pefacitinib, decernotinib), and environmental targets is addressed. Environmental factors, such as diet and cigarette smoke, may influence susceptibility to autoimmune diseases and interfere with inflammatory pathways. Mediterranean diet, low salt intake, cocoa, curcumin, and physical activity seem to show beneficial effects, however studies of dose finding, safety and efficacy in RA need to be performed.
Collapse
|
17
|
Abstract
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| |
Collapse
|
18
|
Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, Akiyama M, Ikezaki H, Furusyo N, Shimizu S, Yamamoto K, Hirata M, Okada R, Kawai S, Kawaguchi M, Nishida Y, Shimanoe C, Ibusuki R, Takezaki T, Nakajima M, Takao M, Ozaki E, Matsui D, Nishiyama T, Suzuki S, Takashima N, Kita Y, Endoh K, Kuriki K, Uemura H, Arisawa K, Oze I, Matsuo K, Nakamura Y, Mikami H, Tamura T, Nakashima H, Nakamura T, Kato N, Matsuda K, Murakami Y, Matsubara T, Naito M, Kubo M, Kamatani Y, Shinomiya N, Yokota M, Wakai K, Okada Y, Matsuo H. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol 2019; 2:115. [PMID: 30993211 PMCID: PMC6453927 DOI: 10.1038/s42003-019-0339-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023] Open
Abstract
Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10-8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci-TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A-are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout.
Collapse
Affiliation(s)
- Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 466-8560 Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115 USA
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, 816-0804 Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498 Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Norihiro Furusyo
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, 830-0011 Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of Urology, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, 849-8501 Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, 849-8501 Japan
| | - Rie Ibusuki
- International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544 Japan
| | - Toshiro Takezaki
- International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544 Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8602 Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8602 Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, 520-2192 Japan
| | - Yoshikuni Kita
- Department of Nursing, Tsuruga City College of Nursing, Fukui, 914-8501 Japan
| | - Kaori Endoh
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503 Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503 Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717 Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717 Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655 Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, 734-8553 Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871 Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| |
Collapse
|
19
|
Chen CP, Lin SP, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Chen WL, Wang W. A 13-year-old girl with 18p deletion syndrome presenting Turner syndrome-like clinical features of short stature, short webbed neck, low posterior hair line, puffy eyelids and increased carrying angle of the elbows. Taiwan J Obstet Gynecol 2018; 57:583-587. [PMID: 30122583 DOI: 10.1016/j.tjog.2018.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE We report a 13-year-old girl with 18p deletion syndrome presenting Turner syndrome-like clinical features. CASE REPORT A 13-year-old girl was referred for genetic counseling of Turner syndrome-like clinical features of short stature, short webbed neck, low posterior hair line, puffy eyelids and increased carrying angle of the elbows. The girl also had mild intellectual disability, psychomotor developmental delay, speech disorder, high-arched palate, hypertelorism and mid-face hypoplasia. Cytogenetic analysis of the girl revealed a karyotype of 46,XX,del(18) (p11.2). The parental karyotypes were normal. Array comparative genomic hybridization analysis on the DNA extracted from the peripheral blood revealed a 13.93-Mb deletion of 18p11.32-p11.21 or arr 18p11.32p11.21 (148,993-14,081,858) × 1.0 [GRCh37 (hg19)] encompassing 52 Online Mendelian Inheritance in Man (OMIM) genes including USP14, TYMS, SMCHD1, TGIF1, LAMA1, TWSG1, GNAL and PTPN2. Polymorphic DNA marker analysis revealed a maternal origin of the deletion. CONCLUSION Females with Turner syndrome-like clinical features in association with intellectual disability, facial dysmorphism and psychomotor developmental delay should be suspected of having chromosome deletion syndromes.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Shuan-Pei Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Early Childhood Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
20
|
Eektimmerman F, Swen JJ, Böhringer S, Huizinga TW, Kooloos WM, Allaart CF, Guchelaar HJ. Pathway analysis to identify genetic variants associated with efficacy of adalimumab in rheumatoid arthritis. Pharmacogenomics 2017. [PMID: 28639493 DOI: 10.2217/pgs-2017-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM About 30% of rheumatoid arthritis patients have no clinical benefit from TNF inhibitors. Genome-wide association (GWA) and candidate gene studies tested several putative genetic variants for TNF inhibitor efficacy with inconclusive results. Therefore, this study applied a systematic pathway analysis. PATIENTS & METHODS A total of 325 rheumatoid arthritis patients treated with adalimumab were genotyped for 223 SNPs. We tested the association between SNPs and European League Against Rheumatism response and remission at 14 weeks under the additive genetic model using logistic regression. RESULTS A total of 3 SNPs located in CD40LG (rs1126535), TANK (rs1267067) and VEGFA (rs25648) showed association with both end points. TNFAIP3 (rs2230926) had the strongest effect related to European League Against Rheumatism response. CONCLUSION This exploratory study suggests that TNFAIP3, CD40LG, TANK and VEGFA play a role in the response to adalimumab treatment.
Collapse
Affiliation(s)
- Frank Eektimmerman
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Böhringer
- Department of Medical Statistics & Bio-Informatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Wj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter M Kooloos
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelia F Allaart
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|