1
|
Seidkhani E, Moradi F, Rustamzadeh A, Simorgh S, Shirvalilou S, Mehdizadeh M, Dehghani H, Akbarnejad Z, Motevalian M, Gorgich EAC. Intranasal delivery of sunitinib: A new therapeutic approach for targeting angiogenesis of glioblastoma. Toxicol Appl Pharmacol 2023; 481:116754. [PMID: 37956929 DOI: 10.1016/j.taap.2023.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most vascular among solid tumors, and despite the use of multimodal therapies, the survival of these patients is poor. In order to target angiogenesis in GBM as a promising strategy, an antiangiogenic drug is required. This study was designed to evaluate the effects of sunitinib, a multityrosine kinase inhibitor with tumor proliferation and angiogenesis inhibitory properties, on GBM-bearing rats. Given the ineffective drug delivery to the brain due to the presence of the blood-brain barrier (BBB), intra-nasal (IN) drug delivery has recently been considered as a non-invasive method to bypass BBB. Therefore, in the current study, IN was used as an ideal method for the delivery of sunitinib to the brain, and the effects of this method were also compared to the OR administration of the sunitinib. GBM was induced in the brain of male Wistar rats, and they were randomly divided into 4 groups; IN-STB (sunitinib intranasal delivery), IN-sham (placebo intranasal delivery), OR-STB (sunitinib oral delivery) and OR-sham (placebo oral delivery). After the end of the treatment period, an MRI of animals' brains showed a reduction in tumor growth in the treatment groups. Immunohistochemistry revealed that sunitinib inhibits angiogenesis in GBM in both OR and IN delivery methods. Analysis of liver tissue and enzymes showed that IN delivery of sunitinib had less hepatotoxicity than the OR method. Overall, it was found that IN sunitinib delivery could be used as a potential non-hepatotoxic alternative for the treatment of GBM.
Collapse
Affiliation(s)
- Elham Seidkhani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani
- Department of Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
3
|
Tersalvi G, Beltrani V, Grübler MR, Molteni A, Cristoforetti Y, Pedrazzini G, Treglia G, Biasco L. Positron Emission Tomography in Heart Failure: From Pathophysiology to Clinical Application. J Cardiovasc Dev Dis 2023; 10:220. [PMID: 37233187 PMCID: PMC10218989 DOI: 10.3390/jcdd10050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Imaging modalities are increasingly being used to evaluate the underlying pathophysiology of heart failure. Positron emission tomography (PET) is a non-invasive imaging technique that uses radioactive tracers to visualize and measure biological processes in vivo. PET imaging of the heart uses different radiopharmaceuticals to provide information on myocardial metabolism, perfusion, inflammation, fibrosis, and sympathetic nervous system activity, which are all important contributors to the development and progression of heart failure. This narrative review provides an overview of the use of PET imaging in heart failure, highlighting the different PET tracers and modalities, and discussing fields of present and future clinical application.
Collapse
Affiliation(s)
- Gregorio Tersalvi
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6850 Mendrisio, Switzerland
| | - Vittorio Beltrani
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6850 Mendrisio, Switzerland
| | - Martin R. Grübler
- Department of Cardiology, Regional Hospital Neustadt, 2700 Wiener Neustadt, Austria
- Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alessandra Molteni
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6850 Mendrisio, Switzerland
| | - Yvonne Cristoforetti
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Giovanni Pedrazzini
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Luigi Biasco
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- Division of Cardiology, Azienda Sanitaria Locale Torino 4, 10073 Ospedale di Ciriè, Italy
| |
Collapse
|
4
|
Oikawa M, Ishida T, Takeishi Y. Cancer therapeutics-related cardiovascular dysfunction: Basic mechanisms and clinical manifestation. J Cardiol 2023; 81:253-259. [PMID: 35589463 DOI: 10.1016/j.jjcc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
Although recent advances in cancer treatment improve cancer prognosis, cancer therapeutics-related cardiovascular dysfunction (CTRCD) significantly contributes to the global burden of cardiovascular disease. CTRCD causes two crucial issues: first, premature treatment interruption or discontinuation of chemotherapy; second, the development of congestive heart failure during and after cancer treatment. Thus, early detection and prompt treatment of CTRCD may improve the prognosis in cancer patients. This review covers representative anticancer drugs, including anthracyclines, human epidermal growth factor 2 inhibitors, tyrosine kinase inhibitors, proteasome inhibitors, and immune checkpoint inhibitors. We focus on the molecular mechanisms of CTRCD and various approaches to diagnosis, prevention, monitoring, and treatment.
Collapse
Affiliation(s)
- Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, 1-Hikarigaoka, Fukushima, Fukushima prefecture 960-1295, Japan.
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, 1-Hikarigaoka, Fukushima, Fukushima prefecture 960-1295, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, 1-Hikarigaoka, Fukushima, Fukushima prefecture 960-1295, Japan
| |
Collapse
|
5
|
Recent Advances in Cardiovascular Diseases Research Using Animal Models and PET Radioisotope Tracers. Int J Mol Sci 2022; 24:ijms24010353. [PMID: 36613797 PMCID: PMC9820417 DOI: 10.3390/ijms24010353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVD) is a collective term describing a range of conditions that affect the heart and blood vessels. Due to the varied nature of the disorders, distinguishing between their causes and monitoring their progress is crucial for finding an effective treatment. Molecular imaging enables non-invasive visualisation and quantification of biological pathways, even at the molecular and subcellular levels, what is essential for understanding the causes and development of CVD. Positron emission tomography imaging is so far recognized as the best method for in vivo studies of the CVD related phenomena. The imaging is based on the use of radioisotope-labelled markers, which have been successfully used in both pre-clinical research and clinical studies. Current research on CVD with the use of such radioconjugates constantly increases our knowledge and understanding of the causes, and brings us closer to effective monitoring and treatment. This review outlines recent advances in the use of the so-far available radioisotope markers in the research on cardiovascular diseases in rodent models, points out the problems and provides a perspective for future applications of PET imaging in CVD studies.
Collapse
|
6
|
Brandão SR, Carvalho F, Amado F, Ferreira R, Costa VM. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings. Metabolism 2022; 134:155250. [PMID: 35809654 DOI: 10.1016/j.metabol.2022.155250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
Several anticancer agents have been associated with cardiac toxic effects. The currently proposed mechanisms to explain cardiotoxicity differ among anticancer agents, but in fact, the specific modulation is not completely elucidated. Thus, this systematic review aims to provide an integrative perspective of the molecular mechanisms underlying the toxicity of anticancer agents on heart muscle while using a high-throughput technology, mass spectrometry (MS)-based proteomics. A literature search using PubMed database led to the selection of 27 studies, of which 13 reported results exclusively on animal models, 13 on cardiomyocyte-derived cell lines and only one included both animal and a cardiomyocyte line. The reported anticancer agents were the proteasome inhibitor carfilzomib, the anthracyclines daunorubicin, doxorubicin, epirubicin and idarubicin, the antimicrotubule agent docetaxel, the alkylating agent melphalan, the anthracenedione mitoxantrone, the tyrosine kinase inhibitors (TKIs) erlotinib, lapatinib, sorafenib and sunitinib, and the monoclonal antibody trastuzumab. Regarding the MS-based proteomic approaches, electrophoretic separation using two-dimensional (2D) gels coupled with tandem MS (MS/MS) and liquid chromatography-MS/MS (LC-MS/MS) were the most common. Overall, the studies highlighted 1826 differentially expressed proteins across 116 biological processes. Most of them were grouped in larger processes and critically analyzed in the present review. The selection of studies using proteomics on heart muscle allowed to obtain information about the anticancer therapy-induced modulation of numerous proteins in this tissue and to establish connections that have been disregarded in other studies. This systematic review provides interesting points for a comprehensive understanding of the cellular cardiotoxicity mechanisms of different anticancer drugs.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Hallazgos de insuficiencia cardiaca congestiva asociada a cardiotoxicidad por sunitinib en 18F-FDG PET/TC. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Dourado MLC, Dompieri LT, Leitão GM, Mourato FA, Santos RGG, Almeida PJ, Markman B, Melo MDT, Brandão SCS. Aumento de Captação Cardíaca de 18F-FDG Induzida por Quimioterapia em Pacientes com Linfoma: Um Marcador Precoce de Cardiotoxicidade? Arq Bras Cardiol 2022; 118:1049-1058. [PMID: 35703659 PMCID: PMC9345149 DOI: 10.36660/abc.20210463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fundamento Ainda não está estabelecido se a captação de fluorodesoxiglicose no miocárdio ocorre exclusivamente por características fisiológicas ou se representa um desarranjo metabólico causado pela quimioterapia. Objetivo Investigar os efeitos da quimioterapia no coração dos pacientes com linfoma por tomografia por emissão de pósitrons associada a tomografia computadorizada (PET/CT) com 2-[18F]-fluoro-2-desoxi-D-glicose (18F-FDG PET/CT) antes, durante e/ou após a quimioterapia. Métodos Setenta pacientes com linfoma submetidos a 18F-FDG PET/CT foram retrospectivamente analisados. O nível de significância foi de 5%. A captação de 18F-FDG foi avaliada por três medidas: captação máxima no ventrículo esquerdo ( standardized uptake value , SUV max), razão SUV cardíaco / aorta e SUV cardíaco / SUV no fígado. Também foram comparados peso corporal, glicemia de jejum, tempo pós-injeção e dose administrada de 18F-FDG entre os exames. Resultados A idade média foi de 50,4 ± 20,1 anos e 50% dos pacientes eram mulheres. A análise foi realizada em dois grupos – PET/CT basal vs. intermediário e PET/CT basal vs pós-terapia. Não houve diferença significativa entre as variáveis clínicas e do protocolo dos exames entre os diferentes momentos avaliados. Nós observamos um aumento na SUV máxima no ventrículo esquerdo de 3,5±1,9 (basal) para 5,6±4,0 (intermediário), p=0,01, e de 4,0±2,2 (basal) para 6,1±4,2 (pós-terapia), p<0,001. Uma porcentagem de aumento ≥30% na SUV máxima no ventrículo esquerdo ocorreu em mais da metade da amostra. O aumento da SUV cardíaca foi acompanhado por um aumento na razão SUV máxima no ventrículo esquerdo / SUV máxima na aorta e SUV média no ventrículo esquerdo /SUV média no fígado. Conclusão O estudo mostrou um aumento evidente na captação cardíaca de 18F-FDG em pacientes com linfoma, durante e após quimioterapia. A literatura corrobora com esses achados e sugere que a 18F-FDG PET/CT pode ser um exame de imagem sensível e confiável para detectar sinais metabólicos precoces de cardiotoxicidade.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Successful treatment of cancer can be hampered by the attendant risk of cardiotoxicity, manifesting as cardiomyopathy, left ventricle systolic dysfunction and, in some cases, heart failure. This risk can be mitigated if the injury to the heart is detected before the onset to irreversible cardiac impairment. The gold standard for cardiac imaging in cardio-oncology is echocardiography. Despite improvements in the application of this modality, it is not typically sensitive to sub-clinical or early-stage dysfunction. We identify in this review some emerging tracers for detecting incipient cardiotoxicity by positron emission tomography (PET). RECENT FINDINGS Vectors labeled with positron-emitting radionuclides (e.g., carbon-11, fluorine-18, gallium-68) are now available to study cardiac function, metabolism, and tissue repair in preclinical models. Many of these probes are highly sensitive to early damage, thereby potentially addressing the limitations of current imaging approaches, and show promise in preliminary clinical evaluations. The overlapping pathophysiology between cardiotoxicity and heart failure significantly expands the number of imaging tools available to cardio-oncology. This is highlighted by the emergence of radiolabeled probes targeting fibroblast activation protein (FAP) for sensitive detection of dysregulated healing process that underpins adverse cardiac remodeling. The growth of PET scanner technology also creates an opportunity for a renaissance in metabolic imaging in cardio-oncology research.
Collapse
Affiliation(s)
- James M. Kelly
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, Belfer Research Building, Room BB-1604, 413 East 69th St, New York, NY 10021 USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021 USA
| | - John W. Babich
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, Belfer Research Building, Room BB-1604, 413 East 69th St, New York, NY 10021 USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021 USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021 USA
| |
Collapse
|
10
|
Cadour F, Thuny F, Sourdon J. New Insights in Early Detection of Anticancer Drug-Related Cardiotoxicity Using Perfusion and Metabolic Imaging. Front Cardiovasc Med 2022; 9:813883. [PMID: 35198613 PMCID: PMC8858802 DOI: 10.3389/fcvm.2022.813883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs, their mechanisms, and their diagnosis for better management. Anthracyclines, anti-vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi) are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of microvascular and metabolic dysfunction allows for better imaging assessment before overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would therefore advance the prevention and patient care. In this review, we provide a comprehensive overview of the cardiotoxic effects of anticancer drugs and describe myocardial perfusion, metabolic, and mitochondrial function imaging approaches to detect them before over LVEF impairment.
Collapse
Affiliation(s)
- Farah Cadour
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Franck Thuny
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, North Hospital, Assistance Publique - Hôpitaux de Marseille, Centre for CardioVascular and Nutrition Research (C2VN), Inserm 1263, Inrae 1260, Marseille, France
| | - Joevin Sourdon
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- *Correspondence: Joevin Sourdon
| |
Collapse
|
11
|
Karlstaedt A, Barrett M, Hu R, Gammons ST, Ky B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci 2021; 6:705-718. [PMID: 34466757 PMCID: PMC8385559 DOI: 10.1016/j.jacbts.2021.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.
Collapse
Key Words
- 99mTc-MIBI, 99mtechnetium-sestamibi
- CVD, cardiovascular disease
- D2-HG, D-2-hydroxyglutarate
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GLS, glutaminase
- HF, heart failure
- IDH, isocitrate dehydrogenase
- IGF, insulin-like growth factor
- MCT1, monocarboxylate transporter 1
- MRS, magnetic resonance spectroscopy
- PDH, pyruvate dehydrogenase
- PET, positron emission tomography
- PI3K, insulin-activated phosphoinositide-3-kinase
- PTM, post-translational modification
- SGLT2, sodium glucose co-transporter 2
- TRF, time-restricted feeding
- [18F]FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose
- cancer
- cardio-oncology
- heart failure
- metabolism
- oncometabolism
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ray Hu
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Thomas Gammons
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie Ky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart Failure With Targeted Cancer Therapies: Mechanisms and Cardioprotection. Circ Res 2021; 128:1576-1593. [PMID: 33983833 DOI: 10.1161/circresaha.121.318223] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncology has seen growing use of newly developed targeted therapies. Although this has resulted in dramatic improvements in progression-free and overall survival, challenges in the management of toxicities related to longer-term treatment of these therapies have also become evident. Although a targeted approach often exploits the differences between cancer cells and noncancer cells, overlap in signaling pathways necessary for the maintenance of function and survival in multiple cell types has resulted in systemic toxicities. In particular, cardiovascular toxicities are of important concern. In this review, we highlight several targeted therapies commonly used across a variety of cancer types, including HER2 (human epidermal growth factor receptor 2)+ targeted therapies, tyrosine kinase inhibitors, immune checkpoint inhibitors, proteasome inhibitors, androgen deprivation therapies, and MEK (mitogen-activated protein kinase kinase)/BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors. We present the oncological indications, heart failure incidence, hypothesized mechanisms of cardiotoxicity, and potential mechanistic rationale for specific cardioprotective strategies.
Collapse
Affiliation(s)
- Virginia S Hahn
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD (V.S.H.)
| | - Kathleen W Zhang
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Lova Sun
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivek Narayan
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J Lenihan
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Bonnie Ky
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Cardiovascular Medicine (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Biostatistics (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
13
|
Sourdon J, Facchin C, Certain A, Viel T, Robin B, Lager F, Marchiol C, Balvay D, Yoganathan T, Favier J, Tharaux PL, Dhaun N, Renault G, Tavitian B. Sunitinib-induced cardiac hypertrophy and the endothelin axis. Am J Cancer Res 2021; 11:3830-3838. [PMID: 33664864 PMCID: PMC7914356 DOI: 10.7150/thno.49837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Anti-angiogenics drugs in clinical use for cancer treatment induce cardiotoxic side effects. The endothelin axis is involved in hypertension and cardiac remodelling, and addition of an endothelin receptor antagonist to the anti-angiogenic sunitinib was shown to reduce cardiotoxicity of sunitinib in mice. Here, we explored further the antidote effect of the endothelin receptor antagonist macitentan in sunitinib-treated animals on cardiac remodeling. Methods: Tumor-bearing mice treated per os daily by sunitinib or vehicle were imaged before and after 1, 3 and 6 weeks of treatment by positron emission tomography using [18F]fluorodeoxyglucose and by echocardiography. Non-tumor-bearing animals were randomly assigned to be treated per os daily by vehicle or sunitinib or macitentan or sunitinib+macitentan, and imaged by echocardiography after 5 weeks. Hearts were harvested for histology and molecular analysis at the end of in vivo exploration. Results: Sunitinib treatment increases left ventricular mass and ejection fraction and induces cardiac fibrosis. Sunitinib also induces an early increase in cardiac uptake of [18F]fluorodeoxyglucose, which is significantly correlated with increased left ventricular mass at the end of treatment. Co-administration of macitentan prevents sunitinib-induced hypertension, increase in ejection fraction and cardiac fibrosis, but fails to prevent increase of the left ventricular mass. Conclusion: Early metabolic changes predict sunitinib-induced cardiac remodeling. Endothelin blockade can prevent some but not all cardiotoxic side-effects of sunitinib, in particular left ventricle hypertrophy that appears to be induced by sunitinib through an endothelin-independent mechanism.
Collapse
|
14
|
Gündoğan C, Erol Ö, Beyhan E, Gürsu RU, Çermik TF. Findings of congestive heart failure associated with sunitinib cardiotoxicity in 18F-FDG PET/CT. Rev Esp Med Nucl Imagen Mol 2021; 41:197-198. [DOI: 10.1016/j.remnie.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
|
15
|
Saraste A, Ståhle M, Roivainen A. Evaluation of cardiac function by nuclear imaging in preclinical studies. J Nucl Cardiol 2020; 27:1328-1330. [PMID: 31292849 DOI: 10.1007/s12350-019-01784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- Heart Center, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland.
| | - Mia Ståhle
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
16
|
Clinical and Research Tools for the Study of Cardiovascular Effects of Cancer Therapy. J Cardiovasc Transl Res 2020; 13:417-430. [PMID: 32472498 DOI: 10.1007/s12265-020-10030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
The expansion of cancer therapeutics has paved the way for improved cancer-related outcomes. Cardiotoxicity from cancer therapy occurs in a small but significant subset of patients, is often poorly understood, and contributes to adverse outcomes at all stages of cancer treatment. Given the often-idiopathic occurrence of cardiotoxicity, novel strategies are needed for risk-stratification and early identification of cancer patients experiencing cardiotoxicity. Clinical and research tools extending from imaging to blood-based biomarkers and pluripotent stem cells are being explored as methods to study the cardiovascular impact of various cancer treatments. Here we provide an overview of tools currently available for evaluation of cardiotoxicity and highlight novel techniques in development aimed at understanding underlying pathophysiologic mechanisms.
Collapse
|
17
|
Affiliation(s)
- Michael A. Biersmith
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
| | - Matthew S. Tong
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
| | - Avirup Guha
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
- Harrington Heart and Vascular InstituteCase Western Reserve UniversityClevelandOH
| | - Orlando P. Simonetti
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
| | - Daniel Addison
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
- Division of Cancer Prevention and ControlDepartment of MedicineCollege of MedicineThe Ohio State UniversityColumbusOH
| |
Collapse
|
18
|
Tong D, Zaha VG. Metabolic Imaging in Cardio-oncology. J Cardiovasc Transl Res 2019; 13:357-366. [PMID: 31696405 DOI: 10.1007/s12265-019-09927-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Tremendous progress in cancer detection and therapy has improved survival. However, cardiovascular complications are a major source of morbidity in cancer survivors. Cardiotoxicity is currently defined by structural myocardial changes and cardiac injury biomarkers. In many instances, such changes are late and irreversible. Therefore, diagnostic modalities that can identify early alterations in potentially reversible biochemical and molecular signaling processes are of interest. This review is focused on emerging translational metabolic imaging modalities. We present in context relevant mitochondrial biology aspects that ground the development and application of these technologies for detection of cancer therapy-related cardiac dysfunction (CTRCD). The application of these modalities may improve the assessment of cardiovascular risk when anticancer treatments with a defined cardiometabolic toxic mechanism are to be used. Also, they may serve as screening tools for cardiotoxicity when novel lines of cancer therapies are applied.
Collapse
Affiliation(s)
- Dan Tong
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, USA. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
19
|
Steinhauser J, Wespi P, Kwiatkowski G, Kozerke S. Production of highly polarized [1- 13 C]acetate by rapid decarboxylation of [2- 13 C]pyruvate - application to hyperpolarized cardiac spectroscopy and imaging. Magn Reson Med 2019; 82:1140-1149. [PMID: 31045272 DOI: 10.1002/mrm.27782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE The objective of the present work was to develop and implement an efficient approach to hyperpolarize [1-13 C]acetate and apply it to in vivo cardiac spectroscopy and imaging. METHODS Rapid hydrogen peroxide induced decarboxylation was used to convert hyperpolarized [2-13 C]pyruvate into highly polarized [1-13 C]acetate employing an additional step following rapid dissolution of [2-13 C]pyruvate in a home-built multi-sample dissolution dynamic nuclear polarization system. Phantom dissolution experiments were conducted to determine optimal parameters of the decarboxylation reaction, retaining polarization and T1 of [1-13 C]acetate. In vivo feasibility of detecting [1-13 C]acetate metabolism is demonstrated using slice-selective spectroscopy and multi-echo imaging of [1-13 C]acetate and [1-13 C]acetylcarnitine in the healthy rat heart. RESULTS The first in vivo signal was observed ~23 s after dissolution. At the corresponding time point in the phantom experiments, 97.9 ± 0.4% of [2-13 C]pyruvate were converted into [1-13 C]acetate by the decarboxylation reaction. T1 and polarization of [1-13 C]acetate was determined to be 29.7 ± 1.9% and a 47.7 ± 0.5 s. Polarization levels of [2-13 C]pyruvate and [1-13 C]acetate were not significantly different after transfer to the scanner. In vivo, [1-13 C]acetate and [1-13 C]acetylcarnitine could be detected using spectroscopy and imaging. CONCLUSION Decarboxylation of hyperpolarized [2-13 C]pyruvate enables the efficient production of highly polarized [1-13 C]acetate that is applicable to study short-chain fatty acid metabolism in the in vivo heart.
Collapse
Affiliation(s)
- Jonas Steinhauser
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
O'Farrell AC, Miller IS, Evans R, Alamanou M, Cary M, Mallya Udupi G, Lafferty A, Monsefi N, Cremona M, Prehn JHM, Verheul HM, Gallagher WM, Gehrmann M, Byrne AT. Implementing Reverse Phase Protein Array Profiling as a Sensitive Method for the Early Pre-Clinical Detection of Off-Target Toxicities Associated with Sunitinib Malate. Proteomics Clin Appl 2019; 13:e1800159. [PMID: 30768761 DOI: 10.1002/prca.201800159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/23/2019] [Indexed: 11/12/2022]
Abstract
PURPOSE The tyrosine kinase inhibitor (TKI) sunitinib is a multi-targeted agent approved across multiple cancer indications. Nevertheless, since approval, data has emerged to describe a worrisome side effect profile including hypertension, hand-foot syndrome, fatigue, diarrhea, mucositis, proteinuria, and (rarely) congestive heart failure. It has been hypothesized that the observed multi-parameter toxicity profile is related to "on-target" kinase inhibition in "off-target" tissues. EXPERIMENTAL DESIGN To interrogate off-target effects in pre-clinical studies, a reverse phase protein array (RPPA) approach is employed. Mice are treated with sunitinib (40 mg kg-1 ) for 4 weeks, following which critical organs are removed. The Zeptosens RPPA platform is employed for protein expression analysis. RESULTS Differentially expressed proteins associated with damage and/or stress are found in the majority of organs from treated animals. Proteins differentially expressed in the heart are associated with myocardial hypertrophy, ischaemia/reperfusion, and hypoxia. However, hypertrophy is not evidenced on histology. Mild proteinuria is observed; however, no changes in renal glomerular structure are visible via electron microscopy. In skin, proteins associated with cutaneous inflammation, keratinocyte hyper-proliferation, and increased inflammatory response are differentially expressed. CONCLUSIONS AND CLINICAL RELEVANCE It is posited that pre-clinical implementation of a combined histopathological/RPPA approach provides a sensitive method to mechanistically elucidate the early manifestation of TKI on-target/organ off-target toxicities.
Collapse
Affiliation(s)
- Alice C O'Farrell
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| | - Ian S Miller
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| | - Rhys Evans
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| | - Marina Alamanou
- OncoMark Ltd., NovaUCD, Bellfield, University College Dublin, Dublin 4, D04 V2P1, Ireland
| | - Maurice Cary
- Pathology Experts GmBH, Basel, CH-4108, Switzerland
| | - Girish Mallya Udupi
- OncoMark Ltd., NovaUCD, Bellfield, University College Dublin, Dublin 4, D04 V2P1, Ireland
| | - Adam Lafferty
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| | - Naser Monsefi
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| | - Mattia Cremona
- Beaumont Education Resource Centre, Beaumont Hospital, Dublin 9, D09 YD60, Ireland
| | - Jochen H M Prehn
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, 1081HV, The Netherlands
| | - William M Gallagher
- OncoMark Ltd., NovaUCD, Bellfield, University College Dublin, Dublin 4, D04 V2P1, Ireland.,UCD Cancer Biology and Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 W6F6, Ireland
| | | | - Annette T Byrne
- RCSI Centre for Systems Medicine, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, D02 HX03, Ireland
| |
Collapse
|
21
|
Abstract
Cancer therapy may lead to cardiovascular complications and can promote each aspect of cardiac disease manifestation, such as vascular disease including coronary heart disease, myocardial diseases including heart failure, structural heart diseases including valvular heart diseases, and rhythm disorders. All potential complications of cancer therapy onto the cardiovascular system require imaging for diagnostic workup as well as monitoring of therapy. Transthoracic echocardiography (TTE) is the most frequently used tool for assessment of cardiac function during or after cancer therapy in daily clinical routine. With modern techniques like strain analysis, echocardiography allows to detect a variety of cardiac diseases as caused by cancer therapy even at subclinical stages. For further workup, specific imaging techniques including nuclear imaging are needed in a multimodality imaging approach to in detail characterize the underlying pathophysiology and to improve the management of the patients. Therefore, the field of imaging in cardio-oncology is rapidly growing. This review article will give an overview about existing literature regarding the role of imaging in the diagnostic evaluation and management of therapy in patient with prior or ongoing cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Mahabadi
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Awadalla M, Hassan MZO, Alvi RM, Neilan TG. Advanced imaging modalities to detect cardiotoxicity. Curr Probl Cancer 2018; 42:386-396. [PMID: 30297038 PMCID: PMC6628686 DOI: 10.1016/j.currproblcancer.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022]
Abstract
Recent advances in cancer treatments have significantly improved survival rates, reemphasizing the focus on reducing the potential complications associated with some therapies. Cardiovascular disease associated with chemotherapies is a major cause of morbidity and mortality in cancer survivors. Early detection of cardiotoxicity improves cardiac outcomes among cancer patients. The review will focus on imaging modalities used to assess cardiotoxicity - the cardiovascular consequences of chemotherapies. The review will discuss the benefits and limitations associated with each technique, as well as the guidelines available to help identify at risk patients. We will discuss novel techniques that may help detect earlier signs of cardiotoxicity, directing management that may improve clinical outcomes.
Collapse
Affiliation(s)
- Magid Awadalla
- Cardiac MR PET CT Program, Massachusetts General Hospital, Boston, MA
| | - Malek Z O Hassan
- Cardiac MR PET CT Program, Massachusetts General Hospital, Boston, MA
| | - Raza M Alvi
- Cardiac MR PET CT Program, Massachusetts General Hospital, Boston, MA
| | - Tomas G Neilan
- Cardiac MR PET CT Program, Massachusetts General Hospital, Boston, MA; Cardio-oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
23
|
Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol 2018; 2:13. [PMID: 30202791 PMCID: PMC5988734 DOI: 10.1038/s41698-018-0056-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway (VSP) have been important additions in the therapy of various cancers, especially renal cell carcinoma and colorectal cancer. Bevazicumab, the first VSP to receive FDA approval in 2004 targeting all circulating isoforms of VEGF-A, has become one of the best-selling drugs of all times. The second wave of tyrosine kinase inhibitors (TKIs), which target the intracellular site of VEGF receptor kinases, began with the approval of sorafenib in 2005 and sunitinib in 2006. Heart failure was subsequently noted, in 2-4% of patients on bevacizumab and in 3-8% of patients on VSP-TKIs. The very fact that the single-targeted monoclonal antibody bevacizumab can induce cardiotoxicity supports a pathomechanistic role for the VSP and the postulate of the "vascular" nature of VSP inhibitor cardiotoxicity. In this review we will outline this scenario in greater detail, reflecting on hypertension and coronary artery disease as risk factors for VSP inhibitor cardiotoxicity, but also similarities with peripartum and diabetic cardiomyopathy. This leads to the concept that any preexisting or coexisting condition that reduces the vascular reserve or utilizes the vascular reserve for compensatory purposes may pose a risk factor for cardiotoxicity with VSP inhibitors. These conditions need to be carefully considered in cancer patients who are to undergo VSP inhibitor therapy. Such vigilance is not to exclude patients from such prognostically extremely important therapy but to understand the continuum and to recognize and react to any cardiotoxicity dynamics early on for superior overall outcomes.
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
24
|
Early assessment of dosimetric and biological differences of total marrow irradiation versus total body irradiation in rodents. Radiother Oncol 2017; 124:468-474. [PMID: 28778346 DOI: 10.1016/j.radonc.2017.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/15/2017] [Accepted: 07/15/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE To develop a murine total marrow irradiation (TMI) model in comparison with the total body irradiation (TBI) model. MATERIALS AND METHODS Myeloablative TMI and TBI were administered in mice using a custom jig, and the dosimetric differences between TBI and TMI were evaluated. The early effects of TBI/TMI on bone marrow (BM) and organs were evaluated using histology, FDG-PET, and cytokine production. TMI and TBI with and without cyclophosphamide (Cy) were evaluated for donor cell engraftment and tissue damage early after allogeneic hematopoietic cell transplantation (HCT). Stromal derived factor-1 (SDF-1) expression was evaluated. RESULTS TMI resulted in similar dose exposure to bone and 50% reduction in dose to bystander organs. BM histology was similar between the groups. In the non-HCT model, TMI mice had significantly less acute intestinal and lung injury compared to TBI. In the HCT model, recipients of TMI had significantly less acute intestinal injury and spleen GVHD, but increased early donor cell engraftment and BM:organ SDF-1 ratio compared to TBI recipients. CONCLUSIONS The expected BM damage was similar in both models, but the damage to other normal tissues was reduced by TMI. However, BM engraftment was improved in the TMI group compared to TBI, which may be due to enhanced production of SDF-1 in BM relative to other organs after TMI.
Collapse
|
25
|
Sourdon J, Lager F, Viel T, Balvay D, Moorhouse R, Bennana E, Renault G, Tharaux PL, Dhaun N, Tavitian B. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism. Theranostics 2017; 7:2757-2774. [PMID: 28824714 PMCID: PMC5562214 DOI: 10.7150/thno.19551] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach.
Collapse
Affiliation(s)
- Joevin Sourdon
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Franck Lager
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Thomas Viel
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Daniel Balvay
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Rebecca Moorhouse
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Evangeline Bennana
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
- 3P5 proteomics facility, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Bertrand Tavitian
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
- Service de Radiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|