1
|
Pandey A, Wojan C, Feuka A, Craft ME, Manlove K, Pepin KM. The influence of social and spatial processes on the epidemiology of environmentally transmitted pathogens in wildlife: implications for management. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220532. [PMID: 39230447 PMCID: PMC11449208 DOI: 10.1098/rstb.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 09/05/2024] Open
Abstract
Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University , East Lansing, MI 48824, USA
| | - Chris Wojan
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Abigail Feuka
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill , Logan, UT 84322, USA
| | - Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| |
Collapse
|
2
|
Ragonese IG, Sarkar MR, Hall RJ, Altizer S. Extreme heat reduces host and parasite performance in a butterfly-parasite interaction. Proc Biol Sci 2024; 291:20232305. [PMID: 38228180 DOI: 10.1098/rspb.2023.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.
Collapse
Affiliation(s)
- Isabella G Ragonese
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Maya R Sarkar
- College of Biological Sciences, University of Minnesota, St Paul, MN 5455, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Pislak Ocepek M, Glavan G, Verovnik R, Šimenc L, Toplak I. First Detection of Honeybee Pathogenic Viruses in Butterflies. INSECTS 2022; 13:925. [PMID: 36292873 PMCID: PMC9604290 DOI: 10.3390/insects13100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Several pathogens are important causes of the observed pollinator decline, some of which could be transmitted between different pollinator species. To determine whether honeybee viruses can be transmitted to butterflies, a total of 120 butterflies were sampled at four locations in Slovenia. At each location, butterflies from three families (Pieridae, Nymphalidae, Hesperiidae/Lycenidae) and Carniolan honeybees (Apis mellifera carnica) were collected. The RNA of six honeybee viruses, i.e., acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus A (DWV-A), Sacbrood bee virus (SBV), and Lake Sinai virus 3 (LSV3), was detected by a specific quantitative method (RT-PCR). The presence of ABPV, BQCV, LSV3, and SBV was detected in both butterflies and honeybees. All butterfly and bee samples were negative for CBPV, while DWV-A was detected only in honeybees. The viral load in the positive butterfly samples was much lower than in the positive bee samples, which could indicate that butterflies are passive carriers of bee viruses. The percentage of positive butterfly samples was higher when the butterflies were collected at sampling sites with a higher density of apiaries. Therefore, we believe that infected bees are a necessary condition for the presence of viruses in cohabiting butterflies. This is the first study on the presence of pathogenic bee viruses in butterflies.
Collapse
Affiliation(s)
- Metka Pislak Ocepek
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rudi Verovnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Laura Šimenc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Pocius VM, Majewska AA, Freedman MG. The Role of Experiments in Monarch Butterfly Conservation: A Review of Recent Studies and Approaches. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2022; 115:10-24. [PMID: 35069967 PMCID: PMC8764570 DOI: 10.1093/aesa/saab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Monarch butterflies (Danaus plexippus) (Lepidoptera Danaidae Danaus plexippus (Linnaeus)) are an iconic species of conservation concern due to declines in the overwintering colonies over the past twenty years. Because of this downward trend in overwintering numbers in both California and Mexico, monarchs are currently considered 'warranted-but-precluded' for listing under the Endangered Species Act. Monarchs have a fascinating life history and have become a model system in chemical ecology, migration biology, and host-parasite interactions, but many aspects of monarch biology important for informing conservation practices remain unresolved. In this review, we focus on recent advances using experimental and genetic approaches that inform monarch conservation. In particular, we emphasize three areas of broad importance, which could have an immediate impact on monarch conservation efforts: 1) breeding habitat and host plant use, 2) natural enemies and exotic caterpillar food plants, and 3) the utility of genetic and genomic approaches for understanding monarch biology and informing ongoing conservation efforts. We also suggest future studies in these areas that could improve our understanding of monarch behavior and conservation.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | - Micah G Freedman
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Albery GF, Sweeny AR, Becker DJ, Bansal S. Fine‐scale spatial patterns of wildlife disease are common and understudied. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Amy R. Sweeny
- Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | | | - Shweta Bansal
- Department of Biology Georgetown University Washington DC USA
| |
Collapse
|
6
|
Drew GC, Budge GE, Frost CL, Neumann P, Siozios S, Yañez O, Hurst GDD. Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts. THE ISME JOURNAL 2021; 15:2956-2968. [PMID: 33941888 PMCID: PMC8443716 DOI: 10.1038/s41396-021-00977-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
A dynamic continuum exists from free-living environmental microbes to strict host-associated symbionts that are vertically inherited. However, knowledge of the forces that drive transitions in symbiotic lifestyle and transmission mode is lacking. Arsenophonus is a diverse clade of bacterial symbionts, comprising reproductive parasites to coevolving obligate mutualists, in which the predominant mode of transmission is vertical. We describe a symbiosis between a member of the genus Arsenophonus and the Western honey bee. The symbiont shares common genomic and predicted metabolic properties with the male-killing symbiont Arsenophonus nasoniae, however we present multiple lines of evidence that the bee Arsenophonus deviates from a heritable model of transmission. Field sampling uncovered spatial and seasonal dynamics in symbiont prevalence, and rapid infection loss events were observed in field colonies and laboratory individuals. Fluorescent in situ hybridisation showed Arsenophonus localised in the gut, and detection was rare in screens of early honey bee life stages. We directly show horizontal transmission of Arsenophonus between bees under varying social conditions. We conclude that honey bees acquire Arsenophonus through a combination of environmental exposure and social contacts. These findings uncover a key link in the Arsenophonus clades trajectory from free-living ancestral life to obligate mutualism, and provide a foundation for studying transitions in symbiotic lifestyle.
Collapse
Affiliation(s)
- Georgia C Drew
- Department of Zoology, University of Oxford, Oxford, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Giles E Budge
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Crystal L Frost
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Browne E, Driessen MM, Ross R, Roach M, Carver S. Environmental suitability of bare-nosed wombat burrows for Sarcoptes scabiei. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:37-47. [PMID: 34434693 PMCID: PMC8374697 DOI: 10.1016/j.ijppaw.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
Some of the most important pathogens affecting wildlife are transmitted indirectly via the environment. Yet the environmental stages of pathogens are often poorly understood, relative to infection in the host, making this an important research frontier. Sarcoptic mange is a globally widespread disease caused by the parasitic mite Sarcoptes scabiei. The bare-nosed wombat (Vombatus ursinus) is particularly susceptible, and their solitary nature and overlapping use of burrows strongly indicate the importance of environmental transmission. However, due to the challenge of accessing and monitoring within wombat burrows, there has been limited research into their suitability for off-host mite survival and environmental transmission (i.e., to serve as a fomite). We created a model using published laboratory data to predict mite survival times based on temperature and humidity. We then implemented innovative technologies (ground-penetrating radar and a tele-operated robotic vehicle) to map and access wombat burrows to record temperature and relative humidity. We found that the stable conditions within burrows were conducive for off-host survival of S. scabiei, particularly in winter (estimated mite survival of 16.41 ± 0.34 days) and less so in warmer and drier months (summer estimated survival of 5.96 ± 0.37 days). We also compared two areas with higher and lower average mange prevalence in wombats (13.35% and 4.65%, respectively), finding estimated mite survival was slightly higher in the low prevalence area (10.10 and 12.12 days, respectively), contrary to our expectations, suggesting other factors are also important for population prevalence. Our study is the first to demonstrate the suitability of the bare-nosed wombat burrow for off-host mite survival and environmental transmission. Our findings have implications for understanding observed patterns of mange, disease dynamics and disease management for not only bare-nosed wombats, but also other burrow or den-obligate species exposed to S. scabiei via environmental transmission. Wombat burrows are a source of environmental transmission of Sarcoptes scabiei. We used ground-penetrating radar and a robotic vehicle to measure burrow conditions. We estimate S. scabiei can survive 5.96–16.41 days within burrows depending on season. Seasonal variation in environmental survival may influence disease dynamics in wombats.
Collapse
Affiliation(s)
- Elizabeth Browne
- Department of Biological Sciences, University of Tasmania, Australia
| | - Michael M Driessen
- Department of Primary Industries, Parks, Water and Environment, Tasmanian Government, Australia
| | - Robert Ross
- Department of Engineering La Trobe University, Melbourne, Australia
| | - Michael Roach
- University of Tasmania, School of Natural Sciences (Earth Sciences) and ARC Centre of Excellence in Ore Deposits (CODES), Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Australia
| |
Collapse
|
8
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
9
|
Sánchez CA, Ragonese IG, de Roode JC, Altizer S. Thermal tolerance and environmental persistence of a protozoan parasite in monarch butterflies. J Invertebr Pathol 2021; 183:107544. [PMID: 33582107 DOI: 10.1016/j.jip.2021.107544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Many parasites have external transmission stages that persist in the environment prior to infecting a new host. Understanding how long these stages can persist, and how abiotic conditions such as temperature affect parasite persistence, is important for predicting infection dynamics and parasite responses to future environmental change. In this study, we explored environmental persistence and thermal tolerance of a debilitating protozoan parasite that infects monarch butterflies. Parasite transmission occurs when dormant spores, shed by adult butterflies onto host plants and other surfaces, are later consumed by caterpillars. We exposed parasite spores to a gradient of ecologically-relevant temperatures for 2, 35, or 93 weeks. We tested spore viability by feeding controlled spore doses to susceptible monarch larvae, and examined relationships between temperature, time, and resulting infection metrics. We also examined whether distinct parasite genotypes derived from replicate migratory and resident monarch populations differed in their thermal tolerance. Finally, we examined evidence for a trade-off between short-term within-host replication and long-term persistence ability. Parasite viability decreased in response to warmer temperatures over moderate-to-long time scales. Individual parasite genotypes showed high heterogeneity in viability, but differences did not cluster by migratory vs. resident monarch populations. We found no support for a negative relationship between environmental persistence and within-host replication, as might be expected if parasites invest in short-term reproduction at the cost of longer-term survival. Findings here indicate that dormant spores can survive for many months under cooler conditions, and that heat dramatically shortens the window of transmission for this widespread and virulent butterfly parasite.
Collapse
Affiliation(s)
- Cecilia A Sánchez
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Isabella G Ragonese
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | | | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Carratalà A, Bachmann V, Julian TR, Kohn T. Adaptation of Human Enterovirus to Warm Environments Leads to Resistance against Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11292-11300. [PMID: 32875801 DOI: 10.1021/acs.est.0c03199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sunlight, temperature, and microbial grazing are among the environmental factors promoting the inactivation of viral pathogens in surface waters. Globally, these factors vary across time and space. The persistence of viral pathogens, and ultimately their ecology and dispersion, hinges on their ability to withstand the environmental conditions encountered. To understand how virus populations evolve under changing environmental conditions, we experimentally adapted echovirus 11 (E11) to four climate regimes. Specifically, we incubated E11 in lake water at 10 and 30 °C and in the presence and absence of sunlight. Temperature was the main driver of adaptation, resulting in an increased thermotolerance of the 30 °C adapted populations, whereas the 10 °C adapted strains were rapidly inactivated at higher temperatures. This finding is consistent with a source-sink model in which strains emerging in warm climates can persist in temperate regions, but not vice versa. A microbial risk assessment revealed that the enhanced thermotolerance increases the length of time in which there is an elevated probability of illness associated with swimming in contaminated water. Notably, 30 °C-adapted viruses also exhibited an increased tolerance toward disinfection by free chlorine. Viruses adapting to warm environments may thus become harder to eliminate by common disinfection strategies.
Collapse
Affiliation(s)
- Anna Carratalà
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Virginie Bachmann
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf8600, Switzerland
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4051, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Majewska AA, Sims S, Schneider A, Altizer S, Hall RJ. Multiple transmission routes sustain high prevalence of a virulent parasite in a butterfly host. Proc Biol Sci 2019; 286:20191630. [PMID: 31480975 PMCID: PMC6742984 DOI: 10.1098/rspb.2019.1630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding factors that allow highly virulent parasites to reach high infection prevalence in host populations is important for managing infection risks to human and wildlife health. Multiple transmission routes have been proposed as one mechanism by which virulent pathogens can achieve high prevalence, underscoring the need to investigate this hypothesis through an integrated modelling-empirical framework. Here, we examine a harmful specialist protozoan infecting monarch butterflies that commonly reaches high prevalence (50–100%) in resident populations. We integrate field and modelling work to show that a combination of three empirically-supported transmission routes (vertical, adult transfer and environmental transmission) can produce and sustain high infection prevalence in this system. Although horizontal transmission is necessary for parasite invasion, most new infections post-establishment arise from vertical transmission. Our study predicts that multiple transmission routes, coupled with high parasite virulence, can reduce resident host abundance by up to 50%, suggesting that the protozoan could contribute to declines of North American monarchs.
Collapse
Affiliation(s)
- Ania A Majewska
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Biology, Emory University, Atlanta, GA, USA
| | - Stuart Sims
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna Schneider
- Wisconsin Department of Natural Resources, Madison, WI, USA
| | - Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Martin G, Becker DJ, Plowright RK. Environmental Persistence of Influenza H5N1 Is Driven by Temperature and Salinity: Insights From a Bayesian Meta-Analysis. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
13
|
Daversa DR, Fenton A, Dell AI, Garner TWJ, Manica A. Infections on the move: how transient phases of host movement influence disease spread. Proc Biol Sci 2018; 284:rspb.2017.1807. [PMID: 29263283 PMCID: PMC5745403 DOI: 10.1098/rspb.2017.1807] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes.
Collapse
Affiliation(s)
- D R Daversa
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - A Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - A I Dell
- National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA.,Department of Biology, Washington University in St Louis, 1 Brookings Dr, St Louis, MO 63130, USA
| | - T W J Garner
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - A Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|