1
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Tonkic A, Kumric M, Akrapovic Olic I, Rusic D, Zivkovic PM, Supe Domic D, Sundov Z, Males I, Bozic J. Growth differentiation factor-15 serum concentrations reflect disease severity and anemia in patients with inflammatory bowel disease. World J Gastroenterol 2024; 30:1899-1910. [PMID: 38659482 PMCID: PMC11036493 DOI: 10.3748/wjg.v30.i13.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
BACKGROUND Population of patients with inflammatory bowel disease (IBD) is burdened by various extraintestinal manifestations which substantially contribute to greater morbidity and mortality. Growth-differentiation factor-15 (GDF-15) is often over-expressed under stress conditions, such as inflammation, malignancies, heart failure, myocardial ischemia, and many others. AIM To explore the association between GDF-15 and IBD as serum concentrations of GDF-15 were shown to be an independent predictor of poor outcomes in multiple diseases. An additional aim was to determine possible associations between GDF-15 and multiple clinical, anthropometric and laboratory parameters in patients with IBD. METHODS This cross-sectional study included 90 adult patients diagnosed with IBD, encompassing both Crohn's disease (CD) and ulcerative colitis (UC), and 67 healthy age- and sex-matched controls. All patients underwent an extensive workup, including colonoscopy with subsequent histopathological analysis. Disease activity was assessed by two independent gastroenterology consultants specialized in IBD, employing well-established clinical and endoscopic scoring systems. GDF-15 serum concentrations were determined following an overnight fasting, using electrochemiluminescence immunoassay. RESULTS In patients with IBD, serum GDF-15 concentrations were significantly higher in comparison to the healthy controls [800 (512-1154) pg/mL vs 412 (407-424) pg/mL, P < 0.001], whereas no difference in GDF-15 was found between patients with CD and UC [807 (554-1451) pg/mL vs 790 (509-956) pg/mL, P = 0.324]. Moreover, multiple linear regression analysis showed that GDF-15 levels predict CD and UC severity independent of age, sex, and C-reactive protein levels (P = 0.016 and P = 0.049, respectively). Finally, an association between GDF-15 and indices of anemia was established. Specifically, negative correlations were found between GDF-15 and serum iron levels (r = -0.248, P = 0.021), as well as GDF-15 and hemoglobin (r = -0.351, P = 0.021). Accordingly, in comparison to IBD patients with normal hemoglobin levels, GDF-15 serum levels were higher in patients with anemia (1256 (502-2100) pg/mL vs 444 (412-795) pg/mL, P < 0.001). CONCLUSION For the first time, we demonstrated that serum concentrations of GDF-15 are elevated in patients with IBD in comparison to healthy controls, and the results imply that GDF-15 might be involved in IBD pathophysiology. Yet, it remains elusive whether GDF-15 could serve as a prognostic indicator in these patients.
Collapse
Affiliation(s)
- Ante Tonkic
- Biology of Neoplasms, University of Split School of Medicine, Split 21000, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Ivna Akrapovic Olic
- Department of Gastroenterology, University Hospital of Split, Split 21000, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Split 21000, Croatia
| | - Piero Marin Zivkovic
- Department of Gastroenterology, University Hospital of Split, Split 21000, Croatia
| | - Daniela Supe Domic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Split 21000, Croatia
- Department of Health Studies, University of Split, Split 21000, Croatia
| | - Zeljko Sundov
- Department of Gastroenterology, University Hospital of Split, Split 21000, Croatia
- Department of Internal Medicine, University of Split School of Medicine, Split 21000, Croatia
| | - Ivan Males
- Department of Surgery, University Hospital of Split, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
3
|
Ramasamy J, Jagadish C, Sukumaran A, Varghese J, Mani T, Joseph AJ, Simon EG, Jacob M. Low Serum Hepcidin Levels in Patients with Ulcerative Colitis - Implications for Treatment of Co-existent Iron-Deficiency Anemia. Inflammation 2023; 46:2209-2222. [PMID: 37486527 DOI: 10.1007/s10753-023-01872-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Ulcerative colitis (UC) is often associated with anemia. Hepcidin, the central regulator of iron homeostasis, is known to be induced by inflammation and suppressed by anemia. It is not clear how hepcidin is affected in those with UC, when both inflammation and anemia may co-exist.Such knowledge may hold implications for treatment. Hematological and iron-related parameters, C-reactive protein (CRP), growth differentiation factor 15 (GDF-15) and erythroferrone (ERFE) (erythroid regulators of hepcidin) levels were estimated in blood from those with UC and in control subjects. Values for hematological and iron-related parameters showed evidence of iron-deficiency and resultant anemia, in patients with UC. The presence of UC was significantly associated with inflammation. Serum levels of ERFE, but not of GDF-15, were significantly higher in patients with UC than in control patients, while hepcidin levels were significantly lower. Serum hepcidin concentrations in patients with UC correlated positively with serum iron, ferritin and GDF-15, and negatively with serum ERFE. The iron status and serum hepcidin levels in UC patients with co-existent anemia were significantly lower and serum ERFE values significantly higher than in those with UC without anemia. The effect of anemia on hepcidin predominated over that of inflammation in patients with UC, resulting in suppressed hepcidin levels. This effect is possibly mediated through erythroferrone. We suggest that a serum hepcidin-guided approach may be useful to guide use of oral iron supplements to treat co-existent iron-deficiency anemia in patients with UC and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jagadish Ramasamy
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biochemistry, Velammal Medical College Hospital and Research Institute, Madurai, Tamil Nadu, 625009, India
| | - Chinmai Jagadish
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biochemistry, Dr. Chandramma Dayanada Sagar Institute of Medical Education and Research, Deverakaggalahalli, Karnataka, 562112, India
| | - Abitha Sukumaran
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Thenmozhi Mani
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - A J Joseph
- Department of Gastroenterology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632002, India
| | - Ebby George Simon
- Department of Gastroenterology, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632002, India
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, 632002, India.
| |
Collapse
|
4
|
Helman SL, Wilkins SJ, Chan JCJ, Hartel G, Wallace DF, Anderson GJ, Frazer DM. A Decrease in Maternal Iron Levels Is the Predominant Factor Suppressing Hepcidin during Pregnancy in Mice. Int J Mol Sci 2023; 24:14379. [PMID: 37762679 PMCID: PMC10532249 DOI: 10.3390/ijms241814379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
In order to supply adequate iron during pregnancy, the levels of the iron regulatory hormone hepcidin in the maternal circulation are suppressed, thereby increasing dietary iron absorption and storage iron release. Whether this decrease in maternal hepcidin is caused by changes in factors known to regulate hepcidin expression, or by other unidentified pregnancy factors, is not known. To investigate this, we examined iron parameters during pregnancy in mice. We observed that hepatic iron stores and transferrin saturation, both established regulators of hepcidin production, were decreased in mid and late pregnancy in normal and iron loaded dams, indicating an increase in iron utilization. This can be explained by a significant increase in maternal erythropoiesis, a known suppressor of hepcidin production, by mid-pregnancy, as indicated by an elevation in circulating erythropoietin and an increase in spleen size and splenic iron uptake. Iron utilization increased further in late pregnancy due to elevated fetal iron demand. By increasing maternal iron levels in late gestation, we were able to stimulate the expression of the gene encoding hepcidin, suggesting that the iron status of the mother is the predominant factor influencing hepcidin levels during pregnancy. Our data indicate that pregnancy-induced hepcidin suppression likely occurs because of reductions in maternal iron reserves due to increased iron requirements, which predominantly reflect stimulated erythropoiesis in mid-gestation and increased fetal iron requirements in late gestation, and that there is no need to invoke other factors, including novel pregnancy factor(s), to explain these changes.
Collapse
Affiliation(s)
- Sheridan L. Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.L.H.); (J.C.J.C.)
| | - Sarah J. Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia (G.J.A.)
| | - Jennifer C. J. Chan
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.L.H.); (J.C.J.C.)
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia
- School of Nursing, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Daniel F. Wallace
- School of Biomedical Sciences and Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD 4059, Australia;
| | - Gregory J. Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia (G.J.A.)
| | - David M. Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.L.H.); (J.C.J.C.)
- School of Biomedical Sciences, Queensland University of Technology, Gardens Point, QLD 4000, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
5
|
Babker A, Talawy T, Bylappa S, Ismail M, Kandakurti P, Gopakumar A. Correlation of Erythroferrone and Hepcidin Hormones with Iron Status Levels in Patients with Iron Deficiency. JOURNAL OF APPLIED HEMATOLOGY 2023. [DOI: 10.4103/joah.joah_63_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
6
|
Chaichompoo P, Nithipongvanitch R, Kheansaard W, Tubsuwan A, Srinoun K, Vadolas J, Fucharoen S, Smith DR, Winichagoon P, Svasti S. Increased autophagy leads to decreased apoptosis during β-thalassaemic mouse and patient erythropoiesis. Sci Rep 2022; 12:18628. [PMID: 36329049 PMCID: PMC9633749 DOI: 10.1038/s41598-022-21249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
β-Thalassaemia results from defects in β-globin chain production, leading to ineffective erythropoiesis and subsequently to severe anaemia and other complications. Apoptosis and autophagy are the main pathways that regulate the balance between cell survival and cell death in response to diverse cellular stresses. Herein, the death of erythroid lineage cells in the bone marrow from both βIVS2-654-thalassaemic mice and β-thalassaemia/HbE patients was investigated. Phosphatidylserine (PS)-bearing basophilic erythroblasts and polychromatophilic erythroblasts were significantly increased in β-thalassaemia as compared to controls. However, the activation of caspase 8, caspase 9 and caspase 3 was minimal and not different from control in both murine and human thalassaemic erythroblasts. Interestingly, bone marrow erythroblasts from both β-thalassaemic mice and β-thalassaemia/HbE patients had significantly increased autophagy as shown by increased autophagosomes and increased co-localization between LC3 and LAMP-1. Inhibition of autophagy by chloroquine caused significantly increased erythroblast apoptosis. We have demonstrated increased autophagy which led to minimal apoptosis in β-thalassaemic erythroblasts. However, increased PS exposure occurring through other mechanisms in thalassaemic erythroblasts might cause rapid phagocytic removal by macrophages and consequently ineffective erythropoiesis in β-thalassaemia.
Collapse
Affiliation(s)
- Pornthip Chaichompoo
- grid.10223.320000 0004 1937 0490Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Ramaneeya Nithipongvanitch
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Wasinee Kheansaard
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Alisa Tubsuwan
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kanitta Srinoun
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.7130.50000 0004 0470 1162Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Jim Vadolas
- grid.452824.dCentre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Suthat Fucharoen
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Duncan R. Smith
- grid.10223.320000 0004 1937 0490Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Pranee Winichagoon
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Saovaros Svasti
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Correnti M, Gammella E, Cairo G, Recalcati S. Iron Mining for Erythropoiesis. Int J Mol Sci 2022; 23:ijms23105341. [PMID: 35628152 PMCID: PMC9140467 DOI: 10.3390/ijms23105341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Iron is necessary for essential processes in every cell of the body, but the erythropoietic compartment is a privileged iron consumer. In fact, as a necessary component of hemoglobin and myoglobin, iron assures oxygen distribution; therefore, a considerable amount of iron is required daily for hemoglobin synthesis and erythroid cell proliferation. Therefore, a tight link exists between iron metabolism and erythropoiesis. The liver-derived hormone hepcidin, which controls iron homeostasis via its interaction with the iron exporter ferroportin, coordinates erythropoietic activity and iron homeostasis. When erythropoiesis is enhanced, iron availability to the erythron is mainly ensured by inhibiting hepcidin expression, thereby increasing ferroportin-mediated iron export from both duodenal absorptive cells and reticuloendothelial cells that process old and/or damaged red blood cells. Erythroferrone, a factor produced and secreted by erythroid precursors in response to erythropoietin, has been identified and characterized as a suppressor of hepcidin synthesis to allow iron mobilization and facilitate erythropoiesis.
Collapse
|
8
|
Grootendorst S, de Wilde J, van Dooijeweert B, van Vuren A, van Solinge W, Schutgens R, van Wijk R, Bartels M. The Interplay between Drivers of Erythropoiesis and Iron Homeostasis in Rare Hereditary Anemias: Tipping the Balance. Int J Mol Sci 2021; 22:ijms22042204. [PMID: 33672223 PMCID: PMC7927117 DOI: 10.3390/ijms22042204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
Rare hereditary anemias (RHA) represent a group of disorders characterized by either impaired production of erythrocytes or decreased survival (i.e., hemolysis). In RHA, the regulation of iron metabolism and erythropoiesis is often disturbed, leading to iron overload or worsening of chronic anemia due to unavailability of iron for erythropoiesis. Whereas iron overload generally is a well-recognized complication in patients requiring regular blood transfusions, it is also a significant problem in a large proportion of patients with RHA that are not transfusion dependent. This indicates that RHA share disease-specific defects in erythroid development that are linked to intrinsic defects in iron metabolism. In this review, we discuss the key regulators involved in the interplay between iron and erythropoiesis and their importance in the spectrum of RHA.
Collapse
Affiliation(s)
- Simon Grootendorst
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Jonathan de Wilde
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Birgit van Dooijeweert
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Annelies van Vuren
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
| | - Wouter van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Roger Schutgens
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Marije Bartels
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
- Correspondence:
| |
Collapse
|
9
|
Srole DN, Ganz T. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J Cell Physiol 2020; 236:4888-4901. [PMID: 33372284 DOI: 10.1002/jcp.30247] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Erythroferrone (ERFE) is the main erythroid regulator of hepcidin, the homeostatic hormone controlling plasma iron levels and total body iron. When the release of erythropoietin from the kidney stimulates the production of new red blood cells, it also increases the synthesis of ERFE in bone marrow erythroblasts. Increased ERFE then suppresses hepcidin synthesis, thereby mobilizing cellular iron stores for use in heme and hemoglobin synthesis. Recent mechanistic studies have shown that ERFE suppresses hepcidin transcription by inhibiting bone morphogenetic protein signaling in hepatocytes. In ineffective erythropoiesis, pathological overproduction of ERFE by an expanded population of erythroblasts suppresses hepcidin and causes iron overload, even in non-transfused patients. ERFE may be a useful biomarker of ineffective erythropoiesis and an attractive target for treating its systemic effects.
Collapse
Affiliation(s)
- Daniel N Srole
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Hawula ZJ, Wallace DF, Subramaniam VN, Rishi G. Therapeutic Advances in Regulating the Hepcidin/Ferroportin Axis. Pharmaceuticals (Basel) 2019; 12:ph12040170. [PMID: 31775259 PMCID: PMC6958404 DOI: 10.3390/ph12040170] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
The interaction between hepcidin and ferroportin is the key mechanism involved in regulation of systemic iron homeostasis. This axis can be affected by multiple stimuli including plasma iron levels, inflammation and erythropoietic demand. Genetic defects or prolonged inflammatory stimuli results in dysregulation of this axis, which can lead to several disorders including hereditary hemochromatosis and anaemia of chronic disease. An imbalance in iron homeostasis is increasingly being associated with worse disease outcomes in many clinical conditions including multiple cancers and neurological disorders. Currently, there are limited treatment options for regulating iron levels in patients and thus significant efforts are being made to uncover approaches to regulate hepcidin and ferroportin expression. These approaches either target these molecules directly or regulatory steps which mediate hepcidin or ferroportin expression. This review examines the current status of hepcidin and ferroportin agonists and antagonists, as well as inducers and inhibitors of these proteins and their regulatory pathways.
Collapse
Affiliation(s)
- Zachary J. Hawula
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Daniel F. Wallace
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - V. Nathan Subramaniam
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Correspondence: (V.N.S.); (G.R.)
| | - Gautam Rishi
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia; (Z.J.H.); (D.F.W.)
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Correspondence: (V.N.S.); (G.R.)
| |
Collapse
|
11
|
Abstract
Erythropoiesis is the predominant consumer of iron in humans and other vertebrates. By decreasing the transcription of the gene encoding the iron-regulatory hormone hepcidin, erythropoietic activity stimulates iron absorption, as well as the release of iron from recycling macrophages and from stores in hepatocytes. The main erythroid regulator of hepcidin is erythroferrone (ERFE), synthesized and secreted by erythroblasts in the marrow and extramedullary sites. The production of ERFE is induced by erythropoietin (EPO) and is also proportional to the total number of responsive erythroblasts. ERFE acts on hepatocytes to suppress the production of hepcidin, through an as yet unknown mechanism that involves the bone morphogenetic protein pathway. By suppressing hepcidin, ERFE facilitates iron delivery during stress erythropoiesis but also contributes to iron overload in anemias with ineffective erythropoiesis. Although most of these mechanisms have been defined in mouse models, studies to date indicate that the pathophysiology of ERFE is similar in humans. ERFE antagonists and mimics may prove useful for the prevention and treatment of iron disorders.
Collapse
Affiliation(s)
- Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, USA.
| |
Collapse
|
12
|
Abstract
Hepcidin, the main regulator of iron metabolism, is synthesized and released by hepatocytes in response to increased body iron concentration and inflammation. Deregulation of hepcidin expression is a common feature of genetic and acquired iron disorders: in Hereditary Hemochromatosis (HH) and iron-loading anemias low hepcidin causes iron overload, while in Iron Refractory Iron Deficiency Anemia (IRIDA) and anemia of inflammation (AI), high hepcidin levels induce iron-restricted erythropoiesis. Hepcidin expression in the liver is mainly controlled by the BMP-SMAD pathway, activated in a paracrine manner by BMP2 and BMP6 produced by liver sinusoidal endothelial cells. The BMP type I receptors ALK2 and ALK3 are responsible for iron-dependent hepcidin upregulation and basal hepcidin expression, respectively. Characterization of animal models with genetic inactivation of the key components of the pathway has suggested the existence of two BMP/SMAD pathway branches: the first ALK3 and HH proteins dependent, responsive to BMP2 for basal hepcidin activation, and the second ALK2 dependent, activated by BMP6 in response to increased tissue iron. The erythroid inhibitor of hepcidin Erythroferrone also impacts on the liver BMP-SMAD pathway although its effect is blunted by pathway hyper-activation. The liver BMP-SMAD pathway is required also in inflammation to cooperate with JAK2/STAT3 signaling for full hepcidin activation. Pharmacologic targeting of BMP-SMAD pathway components or regulators may improve the outcome of both genetic and acquired disorders of iron overload and deficiency by increasing or inhibiting hepcidin expression.
Collapse
|
13
|
Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133:51-58. [PMID: 30401707 PMCID: PMC6318430 DOI: 10.1182/blood-2018-07-815928] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
β-Thalassemia (BT) is an inherited genetic disorder that is characterized by ineffective erythropoiesis (IE), leading to anemia and abnormal iron metabolism. IE is an abnormal expansion of the number of erythroid progenitor cells with unproductive synthesis of enucleated erythrocytes, leading to anemia and hypoxia. Anemic patients affected by BT suffer from iron overload, even in the absence of chronic blood transfusion, suggesting the presence of ≥1 erythroid factor with the ability to modulate iron metabolism and dietary iron absorption. Recent studies suggest that decreased erythroid cell differentiation and survival also contribute to IE, aggravating the anemia in BT. Furthermore, hypoxia can also affect and increase iron absorption. Understanding the relationship between iron metabolism and IE could provide important insights into the BT condition and help to develop novel treatments. In fact, genetic or pharmacological manipulations of iron metabolism or erythroid cell differentiation and survival have been shown to improve IE, iron overload, and anemia in animal models of BT. Based on those findings, new therapeutic approaches and drugs have been proposed; clinical trials are underway that have the potential to improve erythrocyte production, as well as to reduce the iron overload and organ toxicity in BT and in other disorders characterized by IE.
Collapse
Affiliation(s)
- Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Iron overload cardiomyopathy (IOC) is an important predictor of prognosis in a significant number of patients with hereditary hemochromatosis and hematologic diseases. Its prevalence is increasing because of improved treatment strategies, which significantly improve life expectancy. We will review diagnosis, treatment, and recent findings in the field. RECENT FINDINGS The development of preclinical translational disease models during the last years have helped our understanding of specific disease pathophysiological pathways that might eventually change the outcomes of these patients. SUMMARY IOC is an overlooked disease because of the progressive silent disease pattern and the lack of physicians' expertise. It mainly affects patients with hemochromatosis and hematologic diseases and its prevalence is expected to increase with the improvement in life expectancy of hematologic disorders. Early diagnosis of IOC in patients at risk by means of biochemical parameters and cardiac imaging can lead to early treatment and improved prognosis. The mainstay of treatment of IOC is conventional heart failure treatment, combined with phlebotomies or iron chelation in the context of anemia. The development of preclinical models has provided a comprehensive look into specific pathophysiological pathways with potential treatment strategies that must be sustained by future randomized trials.
Collapse
Affiliation(s)
| | - Josep Comín-Colet
- Community Heart Failure Unit, IDIBELL, Heart Disease Institute, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
15
|
El Gendy FM, El-Hawy MA, Shehata AMF, Osheba HE. Erythroferrone and iron status parameters levels in pediatric patients with iron deficiency anemia. Eur J Haematol 2018; 100:356-360. [PMID: 29282766 DOI: 10.1111/ejh.13021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the link between serum erythroferrone (ERFE) levels and iron status parameters in pediatric patients with iron deficiency anemia. METHODS The study consisted of 66 children (36 with iron deficiency anemia and 30 healthy age- and gender-matched controls) who were investigated for serum levels of iron, total iron-binding capacity (TIBC) using automated chemistry analyzer, serum ferritin using electrochemiluminescence immunoassay and ERFE by specific enzyme-linked immunosorbent assay (ELISA) kit. RESULTS Serum erythroferrone levels in iron deficiency anemia patients (191.55 ± 83.74 pg/mL) were significantly higher than those in control group (42.22 ± 16.55 pg/mL) (P < .001). In iron deficiency anemia patients, serum erythroferrone concentrations correlated negatively with hemoglobin concentration (r = -.39; P = .01), serum iron (r = -.63; P < .001), transferrin saturation (r = -.66; P < .001), and serum ferritin (r = -.46; P = .004) while positive correlation was observed between serum erythroferrone concentrations and TIBC (r = .62; P < .001) CONCLUSION: The newly identified erythroferrone hormone may act as physiological hepcidin suppressor in cases with iron deficiency anemia, and so it may serve as a specific promising target of therapy in such cases.
Collapse
Affiliation(s)
- Fady M El Gendy
- Pediatrics Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Mahmoud A El-Hawy
- Pediatrics Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Amira M F Shehata
- Clinical and Chemical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Hanaa E Osheba
- Pediatrics Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| |
Collapse
|
16
|
The relationship between systemic iron homeostasis and erythropoiesis. Biosci Rep 2017; 37:BSR20170195. [PMID: 29097483 PMCID: PMC5705776 DOI: 10.1042/bsr20170195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Red blood cell production (erythropoiesis) is the single largest consumer of iron in the body; this need is satisfied by maintaining a sensitive regulation of iron levels. The level of erythropoietic demand regulates the expression of the iron hormone hepcidin and thus iron absorption. Erythropoiesis-mediated regulation of hepcidin is an area of increasing importance and recent studies have identified a number of potential regulatory proteins. This review summarizes our current knowledge about these candidate erythroid regulators of hepcidin and the relation between transferrin receptors and erythropoiesis.
Collapse
|
17
|
Kawabata H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol 2017; 107:31-43. [PMID: 29134618 DOI: 10.1007/s12185-017-2365-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Hereditary hemochromatosis (HH) is a group of genetic iron overload disorders that manifest with various symptoms, including hepatic dysfunction, diabetes, and cardiomyopathy. Classic HH type 1, which is common in Caucasians, is caused by bi-allelic mutations of HFE. Severe types of HH are caused by either bi-allelic mutations of HFE2 that encodes hemojuvelin (type 2A) or HAMP that encodes hepcidin (type 2B). HH type 3, which is of intermediate severity, is caused by bi-allelic mutations of TFR2 that encodes transferrin receptor 2. Mutations of SLC40A1 that encodes ferroportin, the only cellular iron exporter, causes either HH type 4A (loss-of-function mutations) or HH type 4B (gain-of-function mutations). Studies on these gene products uncovered a part of the mechanisms of the systemic iron regulation; HFE, hemojuvelin, and TFR2 are involved in iron sensing and stimulating hepcidin expression, and hepcidin downregulates the expression of ferroportin of the target cells. Phlebotomy is the standard treatment for HH, and early initiation of the treatment is essential for preventing irreversible organ damage. However, because of the rarity and difficulty in making the genetic diagnosis, a large proportion of patients with non-HFE HH might have been undiagnosed; therefore, awareness of this disorder is important.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa-ken, 920-0293, Japan.
| |
Collapse
|
18
|
Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life 2017; 69:399-413. [DOI: 10.1002/iub.1629] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- George Papanikolaou
- Department of Nutrition and DieteticsSchool of Health Science and Education, Harokopion UniversityAthens Greece
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of MedicineMcGill UniversityMontreal Quebec Canada
| |
Collapse
|