1
|
Mao Q, Liang B, Leng Z, Ma W, Chen Y, Xie Y. Remimazolam ameliorates postoperative cognitive dysfunction after deep hypothermic circulatory arrest through HMGB1-TLR4-NF-κB pathway. Brain Res Bull 2024; 217:111086. [PMID: 39322086 DOI: 10.1016/j.brainresbull.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a complication of deep hypothermic circulatory arrest (DHCA). Various amounts of neurologic dysfunctions have been shown after DHCA, which has often been attributed to systemic inflammatory response syndrome and cerebral ischemia/reperfusion injury. Remimazolam is one of the commonly used anesthetic drugs with protective actions against inflammatory diseases, such as sepsis and cerebral ischemia/reperfusion injury. Here, we determined the protective effect and potential mechanism of action of remimazolam against neuronal damage after DHCA. METHODS A rat model of DHCA was established, and a gradient dosage of remimazolam was administered during cardiopulmonary bypass (CPB). The cognitive function of rats was evaluated by Morris water maze. Hematoxylin and eosin and TUNEL staining were performed to assess hippocampus tissue injury and neuronal apoptosis. Inflammatory cytokines concentration were analyzed by enzyme-linked immunosorbent assay. The protein expression was analyzed using automated electrophoresis western analysis and immunohistochemical analysis. RESULTS The appropriate dosage of remimazolam reduced histologic injury, neuronal apoptosis, microglia activation, and secondary inflammatory cascades, as well as the downregulation of the expression of the HMGB1-TLR4-NF-κB pathway after DHCA, improved the memory and learning abilities in DHCA rats. Further, administration of a TLR4 antagonist TAK-242 had a similar effect to remimazolam, while the TLR4 agonist LPS attenuated the effect of remimazolam. CONCLUSIONS Remimazolam could ameliorate POCD after DHCA through the HMGB1-TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qi Mao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiwei Liang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Leng
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjun Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanhua Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07579-9. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Takahashi K, Yoshikawa Y, Kanda M, Hirata N, Yamakage M. Dexmedetomidine as a cardioprotective drug: a narrative review. J Anesth 2023; 37:961-970. [PMID: 37750978 DOI: 10.1007/s00540-023-03261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Dexmedetomidine (DEX), a highly selective alpha2-adrenoceptors agonist, is not only a sedative drug used during mechanical ventilation in the intensive care unit but also a cardio-protective drug against ischemia-reperfusion injury (IRI). Numerous preclinical in vivo and ex vivo studies, mostly evaluating the effect of DEX pretreatment in healthy rodents, have shown the efficacy of DEX in protecting the hearts from IRI. However, whether DEX can maintain its cardio-protective effect in hearts with comorbidities such as diabetes has not been fully elucidated. Multiple clinical trials have reported promising results, showing that pretreatment with DEX can attenuate cardiac damage in patients undergoing cardiac surgery. However, evidence of the post-treatment effects of DEX in clinical practice remains limited. In this narrative review, we summarize the previously reported evidence of DEX-induced cardio-protection against IRI and clarify the condition of the hearts and the timing of DEX administration that has not been tested. With further investigations evaluating these knowledge gaps, the use of DEX as a cardio-protective drug could be further facilitated in the management of patients undergoing cardiac surgery and might be considered in a broader area of clinical settings beyond cardiac surgery, including patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Kanako Takahashi
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yusuke Yoshikawa
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoyuki Hirata
- Department of Anesthesiology, Kumamoto University, Kumamoto, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
4
|
Liu H, Zhang J, Peng K, Meng X, Shan X, Huo W, Liu H, Lei Y, Ji F. Protocol: dexmedetomidine on myocardial injury after noncardiac surgery-a multicenter, double-blind, controlled trial. Perioper Med (Lond) 2023; 12:57. [PMID: 37951962 PMCID: PMC10638683 DOI: 10.1186/s13741-023-00348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
AIMS Myocardial injury after noncardiac surgery (MINS) is common in elderly patients and considered as an independent predictor of 30-day mortality after noncardiac surgery. Dexmedetomidine possesses cardiac-protective profile. Previous clinical studies have found that perioperative application of dexmedetomidine is associated with decreased 1-year mortality in patients undergoing cardiac surgery. The current study protocol aims to investigate the effects of dexmedetomidine on the incidence of MINS, complications, and 30-day mortality in elderly patients subjected to noncardiac surgery. METHODS A multicenter, randomized, controlled, double-blind, prospective trial is designed to explore cardiac protection of dexmedetomidine in the elderly patients undergoing noncardiac surgery. A total of 960 patients aged over 65 years will be recruited and randomly assigned to dexmedetomidine group (group Dex) and normal saline placebo group (group NS) in a ratio of 1:1. Patients in group Dex will receive a bolus dose of 0.5 μg/kg dexmedetomidine within 10 min before surgical incision, followed by a consistent infusion at the rate of 0.3-0.5 μg/kg/h throughout the operation. Group NS patients will receive the same volume of normal saline. The primary outcome is the incidence of MINS via detecting the hs-TnT level within 3 days after the operation. The secondary outcome includes myocardial ischemic symptoms, the incidence of major adverse cardiovascular events (MACE) in hospital, length of ICU and postoperative hospital stay, the incidence of inhospital complications, and 30-day all-cause mortality. DISCUSSION The results of the current study will illustrate the effect of dexmedetomidine on myocardial injury for elderly patients undergoing major noncardiac surgery. TRIAL REGISTRATION The trial was registered with Chinese Clinical Trial Registry (CHICTR) on Aug 24, 2021 (ChiCTR2100049946, http://www.chictr.org.cn/showproj.aspx?proj=131804 ).
Collapse
Affiliation(s)
- Huayue Liu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Juan Zhang
- Department of Pain Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Ke Peng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Xiaowen Meng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Xisheng Shan
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwen Huo
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Yishan Lei
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Anesthesiology, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Feng L, Guo M, Jin C. Identification of alternative splicing and RNA-binding proteins involved in myocardial ischemia-reperfusion injury. Genome 2023; 66:261-268. [PMID: 37466303 DOI: 10.1139/gen-2022-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Alternative splicing (AS) and RNA-binding proteins (RBPs) have been implicated in various cardiovascular diseases. Yet, a comprehensive understanding of their role in myocardial ischemia-reperfusion injury (MIRI) remains elusive. We aimed to identify potential therapeutic targets for MIRI by studying genome-wide changes in AS events and RBPs. We analyzed RNA-seq data from ischemia-reperfusion mouse models and the control group from the GSE130217 data set using Splicing Site Usage Variation Analysis software. We identified 28 regulated alternative splicing events (RASEs) and 47 differentially expressed RBP (DE-RBP) genes in MIRI. Most variable splicing events were involved in cassette exon, alternative 5' splice, alternative 3' splice, and retained intron types. Gene Ontology and Kyoto Encyclopedia of Genes (KOBAS 2.0 server) and Genomes pathway enrichment analyses showed that the differentially expressed variable splicing and RBP genes were mainly enriched in pathways related to myocardial function. The RBP-RASE network demonstrated a common variance relationship between DE-RBPs and RASEs, indicating that RBPs regulate variable shear events in MIRI. This study systematically identified important alterations in RASEs and RBPs in MIRI, expanding our understanding of the underlying pathogenesis of MIRI.
Collapse
Affiliation(s)
- Li Feng
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Min Guo
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chunrong Jin
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
6
|
Chen ZR, Hong Y, Wen SH, Zhan YQ, Huang WQ. Dexmedetomidine Pretreatment Protects Against Myocardial Ischemia/Reperfusion Injury by Activating STAT3 Signaling. Anesth Analg 2023; 137:426-439. [PMID: 37145970 PMCID: PMC10319249 DOI: 10.1213/ane.0000000000006487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Myocardial infarction is a common perioperative complication, and blood flow restoration causes ischemia/reperfusion injury (IRI). Dexmedetomidine (DEX) pretreatment can protect against cardiac IRI, but the mechanism is still insufficiently understood. METHODS In vivo, myocardial ischemia/reperfusion (30 minutes/120 minutes) was induced via ligation and then reperfusion of the left anterior descending coronary artery (LAD) in mice. Intravenous infusion of 10 μg/kg DEX was performed 20 minutes before ligation. Moreover, the α2-adrenoreceptor antagonist Yohimbine and STAT3 inhibitor Stattic were applied 30 minutes ahead of DEX infusion. In vitro, hypoxia/reoxygenation (H/R) with DEX pretreatment for 1 hour was performed in isolated neonatal rat cardiomyocytes. In addition, Stattic was applied before DEX pretreatment. RESULTS In the mouse cardiac ischemia/reperfusion model, DEX pretreatment lowered the serum creatine kinase-MB isoenzyme (CK-MB) levels (2.47 ± 0.165 vs 1.55 ± 0.183; P < .0001), downregulated the inflammatory response ( P ≤ .0303), decreased 4-hydroxynonenal (4-HNE) production and cell apoptosis ( P = .0074), and promoted the phosphorylation of STAT3 (4.94 ± 0.690 vs 6.68 ± 0.710, P = .0001), which could be blunted by Yohimbine and Stattic. The bioinformatic analysis of differentially expressed mRNAs further confirmed that STAT3 signaling might be involved in the cardioprotection of DEX. Upon H/R treatment in isolated neonatal rat cardiomyocytes, 5 μM DEX pretreatment improved cell viability ( P = .0005), inhibited reactive oxygen species (ROS) production and calcium overload (both P ≤ .0040), decreased cell apoptosis ( P = .0470), and promoted STAT3 phosphorylation at Tyr705 (0.102 ± 0.0224 vs 0.297 ± 0.0937; P < .0001) and Ser727 (0.586 ± 0.177 vs 0.886 ± 0.0546; P = .0157), which could be abolished by Stattic. CONCLUSIONS DEX pretreatment protects against myocardial IRI, presumably by promoting STAT3 phosphorylation via the α2-adrenoreceptor in vivo and in vitro.
Collapse
Affiliation(s)
- Zhao-Rong Chen
- From the Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Chinaand
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shi-Hong Wen
- From the Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Chinaand
| | - Ya-Qing Zhan
- From the Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Chinaand
| | - Wen-Qi Huang
- From the Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Chinaand
| |
Collapse
|
7
|
Layton R, Layton D, Beggs D, Fisher A, Mansell P, Stanger KJ. The impact of stress and anesthesia on animal models of infectious disease. Front Vet Sci 2023; 10:1086003. [PMID: 36816193 PMCID: PMC9933909 DOI: 10.3389/fvets.2023.1086003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Stress and general anesthesia have an impact on the functional response of the organism due to the detrimental effects on cardiovascular, immunological, and metabolic function, which could limit the organism's response to an infectious event. Animal studies have formed an essential step in understanding and mitigating infectious diseases, as the complexities of physiology and immunity cannot yet be replicated in vivo. Using animals in research continues to come under increasing societal scrutiny, and it is therefore crucial that the welfare of animals used in disease research is optimized to meet both societal expectations and improve scientific outcomes. Everyday management and procedures in animal studies are known to cause stress, which can not only cause poorer welfare outcomes, but also introduces variables in disease studies. Whilst general anesthesia is necessary at times to reduce stress and enhance animal welfare in disease research, evidence of physiological and immunological disruption caused by general anesthesia is increasing. To better understand and quantify the effects of stress and anesthesia on disease study and welfare outcomes, utilizing the most appropriate animal monitoring strategies is imperative. This article aims to analyze recent scientific evidence about the impact of stress and anesthesia as uncontrolled variables, as well as reviewing monitoring strategies and technologies in animal models during infectious diseases.
Collapse
Affiliation(s)
- Rachel Layton
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia,*Correspondence: Rachel Layton ✉
| | - Daniel Layton
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - David Beggs
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Fisher
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Mansell
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Kelly J. Stanger
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| |
Collapse
|
8
|
Meng XW, Zhang M, Hu JK, Chen XY, Long YQ, Liu H, Feng XM, Ji FH, Peng K. Activation of CCL21-GPR174/CCR7 on cardiac fibroblasts underlies myocardial ischemia/reperfusion injury. Front Genet 2022; 13:946524. [PMID: 36159993 PMCID: PMC9505909 DOI: 10.3389/fgene.2022.946524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The mechanisms underlying myocardial ischemia/reperfusion (I/R) injury are not fully understood. This study aims to explore key candidate genes and potential therapeutic targets for treatment of myocardial I/R injury. Methods: The transcriptional profiles of ventricular myocardium during cardiac arrest, ischemia, and reperfusion were obtained from the Gene Expression Omnibus database. Based on the transcriptional data of GSE6381, functional pathway and process enrichment analyses, protein–protein interaction network, and gene set enrichment analyses were conducted. In the animal experiments, we established the myocardial I/R injury model in mice. We validated the mRNA and protein expression of the key genes using the qPCR and western blots. We further assessed the expression and localization of CCL21 and its receptors using immunofluorescence staining experiments. Results: The microarray analyses identified five key genes (CCL21, XCR1, CXCL13, EDN1, and CASR). Myocardial I/R process in mice resulted in significant myocardial infraction, histological damage, and myocardial apoptosis. The results of qPCR and western blots showed that the expression of CCL21 and CXCL13 were increased following myocardial I/R injury in mice. Furthermore, the immunofluorescence staining results revealed that the expression of GPR174/CCR7 (CCL21 receptors), but not CXCR5 (CXCL13 receptor), was elevated following myocardial I/R injury. Moreover, the activated CCL21-GPR174/CCR7 signaling was located on the cardiac fibroblasts of the myocardium with I/R injury. Conclusion: This study revealed several key factors underlying myocardial I/R injury. Of these, the activation of CCL21-GPR174/CCR7 signaling on cardiac fibroblasts was highlighted, which provides potential therapeutic targets for cardioprotection.
Collapse
Affiliation(s)
- Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Mian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Jun-Kai Hu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Xin-Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Yu-Qin Long
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, Davis Health System, University of California, Davis, Sacramento, CA, United States
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
- *Correspondence: Fu-Hai Ji, ; Ke Peng,
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
- *Correspondence: Fu-Hai Ji, ; Ke Peng,
| |
Collapse
|
9
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
10
|
Role of Keap1-Nrf2/ARE signal transduction pathway in protection of dexmedetomidine preconditioning against myocardial ischemia/reperfusion injury. Biosci Rep 2022; 42:231655. [PMID: 35959640 PMCID: PMC9446386 DOI: 10.1042/bsr20221306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: To explore the role and mechanism of the Kelch sample related protein-1-nuclear factor erythroid-2 related factor 2/antioxidant response element (Keap1-Nrf2/ARE) signaling pathway in protection of dexmedetomidine (DEX) preconditioning against myocardial ischemia/reperfusion injury (MIRI). Methods: A total of 70 male SD rats were randomly divided into seven equal groups (n=10): blank control (S group), ischemia/reperfusion injury (C group), DEX preconditioning (DEX group), tertiary butylhydroquinone (tBHQ) control (tBHQ group), combined tBHQ and DEX preconditioning (tBHQ+DEX group), all-trans retinoic acid (ATRA) control (ATRA group), and combined ATRA and DEX preconditioning (ATRA+DEX group). Serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) concentrations were measured by ELISA kits, and the infarct size (IS) was assessed by Evan’s blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Oxidative stress was assessed through Western blotting for expression of Keap1-Nrf2/ARE pathway members and oxidative stress markers. Results: Cardioprotection of DEX, tBHQ, and tBHQ+DEX preconditioning treatments were shown as lower concentrations of serum CK-MB and cTnI and a smaller IS following MIRI in rats compared with those of MIRI rats without pre-treatment. In addition, tBHQ+DEX preconditioning exhibited stronger myocardial protection compared with DEX preconditioning. Mechanistically, the cardioprotection offered by DEX, tBHQ, and tBHQ+DEX preconditioning treatments was mediated via exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway. Conversely, the protective effects of DEX were diminished by blocking the Keap1-Nrf2/ARE pathway with inhibitor ATRA. Conclusion: DEX preconditioning protects against MIRI by exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway, while inhibition of the Keap1-Nrf2/ARE signal transduction pathway reverses the protective effect of DEX preconditioning on MIRI.
Collapse
|
11
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Gao F, Wang X, Fan T, Luo Z, Ma M, Hu G, Li Y, Liang Y, Lin X, Xu B. LncRNA LINC00461 exacerbates myocardial ischemia-reperfusion injury via microRNA-185-3p/Myd88. Mol Med 2022; 28:33. [PMID: 35272621 PMCID: PMC8908691 DOI: 10.1186/s10020-022-00452-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) play critically in the pathogenesis of myocardial ischemia-reperfusion (I/R) injury. Thus, it was proposed to investigate the mechanism of LINC00461 in the disease through mediating microRNA-185-3p (miR-185-3p)/myeloid differentiation primary response gene 88 (Myd88) axis. METHODS miR-185-3p, LINC00461 and Myd88 expression in mice with I/R injury was measured. Mice with I/R injury were injected with the gene expression-modified vectors, after which cardiac function, hemodynamics, myocardial enzyme, oxidative stress, and cardiomyocyte apoptosis were analyzed. RESULTS I/R mice showed LINC00461 and Myd88 up-regulation and miR-185-3p down-regulation. Down-regulating LINC00461 or up-regulating miR-185-3p recovered cardiac function, reduced myocardial enzyme levels, and attenuated oxidative stress and cardiomyocyte apoptosis in mice with I/R. miR-185-3p overexpression rescued the promoting effect of LINC00461 upregulation on myocardial injury in I/R mice. CONCLUSION LINC00461 knockdown attenuates myocardial I/R injury via elevating miR-185-3p expression to suppress Myd88 expression.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Xiaochen Wang
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Tingting Fan
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Zhidan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, 400013, China
| | - Mengqing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Guangquan Hu
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Yue Li
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| | - Yi Liang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| | - Banglong Xu
- Department of Cardiology, Economic Development District, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
13
|
Signaling pathways of inflammation in myocardial ischemia/reperfusion injury. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Liu X, Li Y, Kang L, Wang Q. Recent Advances in the Clinical Value and Potential of Dexmedetomidine. J Inflamm Res 2022; 14:7507-7527. [PMID: 35002284 PMCID: PMC8724687 DOI: 10.2147/jir.s346089] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Dexmedetomidine, a highly selective α2-adrenoceptor agonist, has sedative, anxiolytic, analgesic, sympatholytic, and opioid-sparing properties and induces a unique sedative response which shows an easy transition from sleep to wakefulness, thus allowing a patient to be cooperative and communicative when stimulated. Recent studies indicate several emerging clinical applications via different routes. We review recent data on dexmedetomidine studies, particularly exploring the varying routes of administration, experimental implications, clinical effects, and comparative advantages over other drugs. A search was conducted on the PubMed and Web of Science libraries for recent studies using different combinations of the words “dexmedetomidine”, “route of administration”, and pharmacological effect. The current routes, pharmacological effects, and application categories of dexmedetomidine are presented. It functions by stimulating pre- and post-synaptic α2-adrenoreceptors within the central nervous system, leading to hyperpolarization of noradrenergic neurons, induction of an inhibitory feedback loop, and reduction of norepinephrine secretion, causing a sympatholytic effect, in addition to its anti-inflammation, sleep induction, bowel recovery, and sore throat reduction effects. Compared with similar α2-adrenoceptor agonists, dexmedetomidine has both pharmacodynamics advantage of a significantly greater α2:α1-adrenoceptor affinity ratio and a pharmacokinetic advantage of having a significantly shorter elimination half-life. In its clinical application, dexmedetomidine has been reported to present a significant number of benefits including safe sedation for various surgical interventions, improvement of intraoperative and postoperative analgesia, sedation for compromised airways without respiratory depression, nephroprotection and stability of hypotensive hemodynamics, reduction of postoperative nausea and vomiting and postoperative shivering incidence, and decrease of intraoperative blood loss. Although the clinical application of dexmedetomidine is promising, it is still limited and further research is required to enhance understanding of its pharmacological properties, patient selection, dosage, and adverse effects.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yueqin Li
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Li Kang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Yang FY, Zhang L, Zheng Y, Dong H. Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered 2022; 13:1377-1387. [PMID: 34974801 PMCID: PMC8805856 DOI: 10.1080/21655979.2021.2017611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dexmedetomidine (DEX) has been reported to attenuate the ischemia and reperfusion (I/R) induced cardiomyocyte apoptosis. However, mechanisms underlying these protective effect remain to be fully elucidated. Cardiomyocyte apoptosis is associated with ischemic heart disease. Here we investigated the role of DEX in I/R -induced cardiomyocyte apoptosis. Mice and H9c2 cardiomyocyte cells were subjected to cardiomyocyte I/R injury and hypoxia/reoxygenation (H/R) injury, respectively. The roles and mechanisms of DEX on H9c2 cardiomyocyte cells and mice cardiomyocyte cells exposured to H/R or I/R injury were explored. The results showed that DEX attenuates H/R injury-induced H9c2 cell apoptosis and alleviated mitochondrial oxidative stress; it also reduced myocardial infarct size and protected the cardiac function following cardiomyocyte I/R injury. In addition, H/R and I/R injury increased p53 expression and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling in H9c2 cardiomyocyte cells and cardiomyocytes. Targeting p53 expression or FOXO3a/PUMA signaling inhibited cell apoptosis and protected against H/R injury in H9c2 cardiomyocyte cells and cardiomyocytes. Pretreatment with DEX reduced the H/R or I/R injury-induced activation of p53 expression and FOXO3a/PUMA signaling, and alleviated H/R or I/R injury-induced apoptosis and mitochondrial oxidative stress. Therefore, DEX could alleviate H/R- or I/R-induced cardiomyocytes injury by reducing cell apoptosis and blocking p53 expression and FOXO3a/PUMA signaling. Targeting p53 or/and FOXO3a/PUMA signaling could alleviate cardiomyocyte I/R injury.
Collapse
Affiliation(s)
- Feng Yun Yang
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lu Zhang
- Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zheng
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - He Dong
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Zhang S, Han L, Wang Y, Liu G, Shi H. The effect of Guizhi decoction on inflammatory response induced by myocardial ischemia. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.32021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Li Han
- Hebei Engineering University, China
| | | | | | | |
Collapse
|
17
|
Bian Z, Liu H, Xu F, Du Y. Ursolic acid protects against anoxic injury in cardiac microvascular endothelial cells by regulating intercellular adhesion molecule-1 and toll-like receptor 4/MyD88/NF-κB pathway. Hum Exp Toxicol 2022; 41:9603271221093626. [PMID: 35438581 DOI: 10.1177/09603271221093626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac microvascular endothelial cells (CMECs) are rapidly damaged after myocardial ischemia or hypoxia. In this study, we intend to explore whether ursolic acid (UA) can protect CMECs against hypoxia/reoxygenation (H/R) injury and to detect related molecular mechanism. METHODS CMECs were subjected to H/R condition in the absence or presence of UA. Cell behaviors were measured by Cell Counting Kit-8, transwell, ELISA and western blot assays. siRNA was applied to reduce ICAM1 expression, then the effect of co-treatment of UA and si-ICAM1 on CMECs has been detected by biological experiments. RESULTS Under H/R stimulation, the proliferation and migration of CMECs were inhibited, as well as the inflammation and oxidative stress were enhanced. UA treatment obviously reversed these H/R-induced injuries and reduced ICAM1 expression. Moreover, knockdown of ICAM1 could alleviate the H/R-induced injuries and strengthen the protective effect of UA on CMECs under H/R condition. Additionally, the protein levels of TLR4, MyD88 and p-P65 NF-κB were obviously increased after H/R stimulation, whereas the addition of UA could alter the phenomena by reducing TLR4, MyD88, and p-P65 NF-κB expression. CONCLUSIONS Our results insinuated that UA could alleviate H/R-induced injuries in CMECs by regulating ICAM1 and TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Zhongrui Bian
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hui Liu
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Fei Xu
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yimeng Du
- Department of Cardiology, 531675the Second Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
18
|
Bu Y, Li WS, Lin J, Wei YW, Sun QY, Zhu SJ, Tang ZS. Electroacupuncture Attenuates Immune-Inflammatory Response in Hippocampus of Rats with Vascular Dementia by Inhibiting TLR4/MyD88 Signaling Pathway. Chin J Integr Med 2021; 28:153-161. [PMID: 34913150 PMCID: PMC8672855 DOI: 10.1007/s11655-021-3350-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Objective To investigate whether electroacupuncture (EA) alleviates cognitive impairment by suppressing the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway, which triggers immune-inflammatory responses in the hippocampus of rats with vascular dementia (VaD). Methods The experiments were conducted in 3 parts and in total the Sprague-Dawley rats were randomly divided into 8 groups by a random number table, including sham, four-vessel occlusion (4-VO), 4-VO+EA, 4-VO+non-EA, sham+EA, 4-VO+lipopolysaccharide (LPS), 4-VO+LPS+EA, and 4-VO+TAK-242 groups. The VaD model was established by the 4-VO method. Seven days later, rats were treated with EA at 5 acupoints of Baihui (DV 20), Danzhong (RN 17), Geshu (BL 17), Qihai (RN 6) and Sanyinjiao (SP 6), once per day for 3 consecutive weeks. Lymphocyte subsets, lymphocyte transformation rates, and inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor α(TNF-α) were measured to assess immune function and inflammation in VaD rats. Transmission electron microscopy was used to observe the ultrastructure of nerve cells in the hippocampus. The levels of TLR4, MyD88, IL-6, and TNF-α were detected after EA treatment. TLR4/MyD88 signaling and cognitive function were also assessed after intracerebroventricular injection of TLR4 antagonist TAK-242 or TLR4 agonist LPS with or without EA. Results Compared with the 4-VO group, EA notably improved immune function of rats in the 4-VO+EA group, inhibited the protein and mRNA expressions of TLR4 and MyD88 in the hippocampus of rats, reduced the expressions of serum IL-6 and TNF-α (all P<0.05 or P<0.01), and led to neuronal repair in the hippocampus. There were no significant differences between the 4-VO+LPS+EA and 4-VO+EA groups, nor between the 4-VO+TAK-242 and 4-VO+EA groups (P>0.05). Conclusions EA attenuated cognitive impairment associated with immune inflammation by inhibition of the TLR4/MyD88 signaling pathway. Thus, EA may be a promising alternative therapy for the treatment of VaD. Electronic Supplementary Material Supplementary material (Appendixes 1–4) is available in the online version of this article at 10.1007/s11655-021-3350-5.
Collapse
Affiliation(s)
- Yu Bu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wen-Shuang Li
- Department of Hematology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ji Lin
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yu-Wei Wei
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiu-Ying Sun
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shi-Jie Zhu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhong-Sheng Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
19
|
The Protective Effects of miR-21-Mediated Fibroblast Growth Factor 1 in Rats with Coronary Heart Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3621259. [PMID: 34901270 PMCID: PMC8654569 DOI: 10.1155/2021/3621259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022]
Abstract
Aim The study is to verify the protective effects of miR-21-mediated fibroblast growth factor 1 (FGF1) against myocardial ischemia in rats with coronary heart disease. Materials and Methods Sprague-Dawley (SD) rat models of myocardial ischemia/reperfusion (MI/R) injury were constructed, and the expression of miR-21 and FGF1 in them was interfered through ischemic postconditioning. The protective effects of miR-21-mediated FGF1 on myocardium of the model rats were analyzed, and the targeted regulatory relationship between miR-21 and FGF1 was verified through myocardial cell experiments to find the mechanism of miR-21. Results MiR-21 and FGF1 with increased expression could protect the cardiac function of model rats and improve their diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR), coronary flow (CF), bax, and bcl-2 levels, but it would also cause further increase of vascular endothelial growth factor (VEGF) and decreased infarct size (INF). In addition, intervention through both miR-21 mimics and recombinant human FGF1 could highlight the above changes. Pearson correlation analysis revealed that the expression of miR-21 was positively correlated with that of FGF1, and both miR-21 and FGF1 were significantly and linearly correlated with DBP, SBP, HR, CF, INF, bax, and bcl-2, but they were not significantly correlated with the VEGF level. The myocardial cell experiment results revealed that upregulation of miR-21 or FGF1 could alleviate apoptosis caused by hypoxia/reoxygenation of myocardial cells, and inhibition of the FGF1 expression could hinder the effect of miR-21 against apoptosis of myocardial cells. Dual luciferase reporter assay revealed that transfection of miR-21-mimics could effectively raise the fluorescence intensity of pmirGLO-FGF1-3′UTR Wt but had no significant effect on that of pmirGLO-FGF1-3′UTR Mut. Conclusion MiR-21 can specifically mediate the expression of FGF1 to relieve MI/R injury, protect the cardiac function, and resist apoptosis.
Collapse
|
20
|
Chu Y, Teng J, Feng P, Liu H, Wang F, Wang H. Dexmedetomidine Attenuates Hypoxia/Reoxygenation Injury of H9C2 Myocardial Cells by Upregulating miR-146a Expression via the MAPK Signal Pathway. Pharmacology 2021; 107:14-27. [PMID: 34718238 DOI: 10.1159/000506814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND OBJECTIVE Dexmedetomidine (Dex) and a number of miRNAs contribute to ischemia/reperfusion injury. We aimed to explore the role of Dex and miR-146a on myocardial cells injured by hypoxia/reoxygenation (H/R). METHOD H9C2 cells were injured by H/R. Cell viability was tested using the cell counting kit-8. Lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels were determined using commercial kits. Flow cytometry was performed to determine apoptosis rate and reactive oxygen species (ROS) level. Protein and mRNA levels were assessed using Western blot and qPCR. RESULTS miR-146a expression and cell viability of H9C2 cells were downregulated under the circumstance of H/R injury. The tendency could be reversed by Dex, which could also upregulate SOD activity and decrease apoptosis, LDH activity, MDA, 78-kDa glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP) levels of H9C2 cells. GRP78, CHOP levels, and cell viability were negatively modulated by miR-146a. Dex elevated cell viability, catalase, MnSOD, and NAD(P)H dehydrogenase (NQO1) levels but suppressed apoptosis rate, GRP78, and CHOP levels by increasing miR-146a expression and downregulating ROS, phosphorylation of p38, and extracellular signal-regulated kinases 1/2 levels. By using SB203580 (SB), the p38 mitogen-activated protein kinase (MAPK) inhibitor, Dex or the inhibition of miR-146 upregulated cell viability but downregulated GRP78 and CHOP levels. CONCLUSION Dex might regulate miR-146a expression, which could further modulate the endoplasmic reticulum stress and oxidative stress and eventually affect the cell viability and apoptosis of myocardial cells injured by H/R via the MAPK signal pathway.
Collapse
Affiliation(s)
- Yi Chu
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Jiwei Teng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Pin Feng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Hui Liu
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Fangfang Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Haiyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Li H, Liu J, Shi H. Effect of Dexmedetomidine on Perioperative Hemodynamics and Myocardial Protection in Thoracoscopic-Assisted Thoracic Surgery. Med Sci Monit 2021; 27:e929949. [PMID: 34341325 PMCID: PMC8348991 DOI: 10.12659/msm.929949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study aimed to clarify the protective role of dexmedetomidine in thoracoscopic-assisted thoracic surgery (TATS), including control of the intraoperative heart rate, blood pressure, and myocardial injury markers. MATERIAL AND METHODS The patients who underwent TATS were divided into 2 equal groups: the dexmedetomidine group (dexmedetomidine pumped at 0.5 µg/kg for >10 min before the administration of anesthesia and at 0.5 µg/kg in the maintenance period) and the control group (pumped normal saline for >10 min before the administration of anesthesia). The data recorded for each patient were heart rate (preoperative, maximum intraoperative, and minimum intraoperative), systolic and diastolic blood pressure, intraoperative hemodynamic data, and intraoperative cardiovascular drugs administered. An enzyme-linked immunosorbent assay was performed to assess the postoperative levels of cardiac troponin I (cTnI), creatine kinase isoenzyme, myoglobin, and N-terminal pro-B-type natriuretic peptide (NT-proBNP). RESULTS There were no significant differences in the age, sex, body height, body weight, American Society of Anesthesiologists classification grade, resection mode, operation time, ejection fraction, basal heart rate, and systolic and diastolic blood pressure of the 2 groups. In the dexmedetomidine group, the patients' maximum intraoperative heart rate and diastolic pressure decreased, and the postoperative hospital stay period was shorter. The postoperative peripheral blood test for the dexmedetomidine group showed higher NT-proBNP levels and lower cTnI levels. CONCLUSIONS Preoperative administration of dexmedetomidine can benefit hemodynamic stability, protect the cardiovascular system in the intraoperative and postoperative periods, and shorten postoperative hospitalization.
Collapse
Affiliation(s)
- Hua Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, China (mainland)
| | - Ji Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, China (mainland)
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, China (mainland)
| |
Collapse
|
22
|
Weng X, Shi W, Zhang X, Du J. Dexmedetomidine attenuates H2O2-induced apoptosis of rat cardiomyocytes independently of antioxidant enzyme expression. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.repce.2020.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Yang YF, Wang H, Song N, Jiang YH, Zhang J, Meng XW, Feng XM, Liu H, Peng K, Ji FH. Dexmedetomidine Attenuates Ischemia/Reperfusion-Induced Myocardial Inflammation and Apoptosis Through Inhibiting Endoplasmic Reticulum Stress Signaling. J Inflamm Res 2021; 14:1217-1233. [PMID: 33833544 PMCID: PMC8020464 DOI: 10.2147/jir.s292263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS)-mediated myocardial inflammation and apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine has been used clinically with sedative, analgesic, and anti-inflammatory properties. This study aimed to determine the effects of dexmedetomidine pretreatment on inflammation, apoptosis, and the expression of ERS signaling during myocardial I/R injury. Methods Rats underwent myocardial ischemia for 30 min and reperfusion for 6 h, and H9c2 cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury (OGD for 12 h and reoxygenation for 3 h). Dexmedetomidine was administered prior to myocardial ischemia in rats or ODG in cardiomyocytes. In addition, the α2-adrenergic receptor antagonist (yohimbine) or the PERK activator (CCT020312) was given prior to dexmedetomidine treatment. Results Dexmedetomidine pretreatment decreased serum levels of cardiac troponin I, reduced myocardial infarct size, alleviated histological structure damage, and improved left ventricular function following myocardial I/R injury in rats. In addition, dexmedetomidine pretreatment increased cell viability and reduced cytotoxicity following OGD/R injury in cardiomyocytes. Mechanistically, the cardioprotection offered by dexmedetomidine was mediated via the inhibition of inflammation and apoptosis through downregulating the expression of the ERS signaling pathway, including glucose-regulated protein 78 (GRP78), protein kinase R-like endoplasmic reticulum kinase (PERK), C/EBP homologous protein (CHOP), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6). Conversely, the protective effects of dexmedetomidine were diminished by blocking the α2 adrenergic receptors with yohimbine or promoting PERK phosphorylation with CCT020312. Conclusion Dexmedetomidine pretreatment protects the hearts against I/R injury via inhibiting inflammation and apoptosis through downregulation of the ERS signaling pathway. Future clinical studies are needed to confirm the cardioprotective effects of dexmedetomidine in patients at risk of myocardial I/R injury.
Collapse
Affiliation(s)
- Yu-Fan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Nan Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ya-Hui Jiang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jun Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah Health, Salt Lake City, UT, USA.,Transitional Residency Program, Intermountain Medical Center, Murray, UT, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Weng X, Shi W, Zhang X, Du J. Dexmedetomidine attenuates H 2O 2-induced apoptosis of rat cardiomyocytes independently of antioxidant enzyme expression. Rev Port Cardiol 2021; 40:273-281. [PMID: 33715922 DOI: 10.1016/j.repc.2020.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Dexmedetomidine is a highly selective alpha-2 adrenoceptor agonist that has sedative and analgesic properties and myocardial protective effects. However, the mechanism underlying the protective effect of dexmedetomidine on cardiomyocytes remains unknown. This study mainly aimed to investigate the effects of dexmedetomidine on the generation of reactive oxygen species (ROS) in cardiomyocytes and whether it inhibits the apoptosis of cardiomyocytes by affecting antioxidant enzyme expression. METHODS Neonatal rat cardiomyocytes were pretreated with dexmedetomidine (100 nM) for 24 h. The cardiomyocytes were then incubated with 200 μM hydrogen peroxide solution (H2O2) for 4 h. PCR assay was used to determine the mRNA expression of antioxidant enzymes. Western blot assay was used to determine the protein expression of antioxidant enzymes. Fluorescence microscopy with the MitoSOX probe was used to detect the formation of ROS in cardiomyocytes, and fluorescence-activated cell sorting with annexin V/PI was used to determine the number of apoptotic cardiomyocytes. RESULTS Dexmedetomidine reduced ROS generation and antioxidant enzymes levels in cardiomyocytes before H2O2 stimulation (p<0.05). However, ROS generation and apoptosis in cardiomyocytes were significantly increased after H2O2 treatment, and dexmedetomidine pretreatment markedly inhibited the changes (p<0.05). CONCLUSION For the first time, to the best of our knowledge, our study shows that dexmedetomidine has a protective effect on cardiomyocytes through inhibition of ROS-induced apoptosis, and more importantly, this effect is independent of antioxidant enzyme mRNA and protein expression.
Collapse
Affiliation(s)
- Xiaojian Weng
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Wenjiao Shi
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Xiaodan Zhang
- Department of Intensive Care Unit, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China.
| | - Jianer Du
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| |
Collapse
|
25
|
Chen W, Wang Y, Pan Z, Chen X, Luo D, Wang H. Protective effects of dexmedetomidine on the ischemic myocardium in patients undergoing rheumatic heart valve replacement surgery. Exp Ther Med 2021; 21:427. [PMID: 33747166 PMCID: PMC7967827 DOI: 10.3892/etm.2021.9844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to compare the effects of two methods of dexmedetomidine (Dex) administration on myocardial injury, inflammation and stress in ischemic myocardium during rheumatic heart valve replacement. In total, 90 patients were included in the present study and were divided into the following three groups: i) Dex group (1.0 µg/kg Dex pre-administered 10 min prior to anesthesia, then 0.5 µg/kg/h Dex for maintenance); ii) Dex pre-conditioning group (Pre-Dex; 1.0 µg/kg Dex administered 10 min prior to anesthesia, then saline for maintenance); and iii) control group (saline 10 min prior to anesthesia and saline during maintenance), with 30 patients in each group. Heart rate (HR) and mean artery pressure (MAP) were recorded at eight time-points: i) T1, pre-medication; ii) T2, 10 min post-medication; iii) T3, immediately post-intubation; iv) T4, upon skin incision; v) T5, upon sawing the sternum; vi) T6, immediately post-cardiopulmonary bypass; vii) T7, immediately post-operation; and viii) T8, 24 h post-operation. The serum cardiac troponin I (cTnI), interleukin (IL)-8, IL-10 and malondialdehyde (MDA) levels were also detected at T1, T6, T7 and T8. Blood glucose levels were detected at T1, T5, T6 and T7. In comparison with the control group, patients in the Dex group exhibited a significant increase in cardiac function, as indicated by an increase in HR, MAP and IL-10 levels, and a significant decrease in cTnI, IL-8, MDA and glucose levels. Both Dex perfusion and Dex preconditioning were able to reduce myocardial injury, inflammation, oxidative stress and stress response in rheumatic heart valve replacement surgery. However, Dex perfusion during the whole surgery was more effective than Dex preconditioning treatment. The study was registered with the Chinese Clinical Trial Registry (ChiCTR; no. ChiCTR-INR-17011955).
Collapse
Affiliation(s)
- Wei Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhiguo Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiyuan Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Dihuan Luo
- Department of Anesthesiology, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
26
|
Hernández-Avalos I, Flores-Gasca E, Mota-Rojas D, Casas-Alvarado A, Miranda-Cortés AE, Domínguez-Oliva A. Neurobiology of anesthetic-surgical stress and induced behavioral changes in dogs and cats: A review. Vet World 2021; 14:393-404. [PMID: 33776304 PMCID: PMC7994130 DOI: 10.14202/vetworld.2021.393-404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The anesthetic-surgical stress response consists of metabolic, neuroendocrine, hemodynamic, immunological, and behavioral adaptations through chemical mediators such as the adrenocorticotropic hormone, growth hormone, antidiuretic hormone, cortisol, aldosterone, angiotensin II, thyroid-stimulating hormone, thyroxine, triiodothyronine, follicle-stimulating hormone, luteinizing hormone, catecholamines, insulin, interleukin (IL)-1, IL-6, tumor necrosis factor-alpha, and prostaglandin E-2. Behavioral changes include adopting the so-called prayer posture, altered facial expressions, hyporexia or anorexia, drowsiness, sleep disorders, restriction of movement, licking or biting the injured area, and vocalizations. Overall, these changes are essential mechanisms to counteract harmful stimuli. However, if uncontrolled surgical stress persists, recovery time may be prolonged, along with increased susceptibility to infections in the post-operative period. This review discusses the neurobiology and most relevant organic responses to pain and anesthetic-surgical stress in dogs and cats. It highlights the role of stress biomarkers and their influence on autonomous and demeanor aspects and emphasizes the importance of understanding and correlating all factors to provide a more accurate assessment of pain and animal welfare in dogs and cats throughout the surgical process.
Collapse
Affiliation(s)
- I Hernández-Avalos
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - E Flores-Gasca
- Department of Veterinary Surgery, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - D Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - A Casas-Alvarado
- Master in Agricultural Sciences. Animal Welfare, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - A E Miranda-Cortés
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - A Domínguez-Oliva
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| |
Collapse
|
27
|
Wang D, Lin Q, Du M, Zheng G, Xu W, Zhang H, Liu K. Protective effect of dexmedetomidine on perioperative myocardial injury in patients with Stanford type-A aortic dissection. ACTA ACUST UNITED AC 2021; 66:1638-1644. [PMID: 33331570 DOI: 10.1590/1806-9282.66.12.1638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the protective effect and mechanism of dexmedetomidine (Dex) on perioperative myocardial injury in patients with Stanford type-A aortic dissection (AD). METHODS Eighty-six patients with Stanford type-A AD were randomly divided into Dex and control groups, with 43 cases in each group. During the surgery, the control group received the routine anesthesia, and the Dex group received Dex treatment based on routine anesthesia. The heart rate (HR) and mean arterial pressure (MAP) were recorded before Dex loading (t0), 10 min after Dex loading (t1), at the skin incision (t2), sternum sawing (t3), before cardiopulmonary bypass (t4), at the extubation (t5), and at end of surgery (t6). The blood indexes were determined before anesthesia induction (T0) and postoperatively after 12h (T1), 24h (T2), 48h (T3), and 72h (T4). RESULTS At t2 and t3, the HR and MAP in the Dex group were lower than in the control group (P < 0.05). Compared with the control group, in the Dex group at T1, T2, and T3, the serum creatine kinase-MB, cardiac troponin-I, C-reactive protein, and tumor necrosis factor-α levels were decreased, and the interleukin-10 level, the serum total superoxide dismutase, and total anti-oxidant capability increased, while the myeloperoxidase and malondialdehyde levels decreased (all P < 0.05). CONCLUSIONS Dex treatment may alleviate perioperative myocardial injury in patients with Stanford type-A AD by resisting inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Dalong Wang
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Quan Lin
- Department of Administration, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Meiqing Du
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Guanrong Zheng
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Weimin Xu
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Haishan Zhang
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Ke Liu
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying 257000, China
| |
Collapse
|
28
|
Chang Y, Xing L, Zhou W, Zhang W. Up-regulating microRNA-138-5p enhances the protective role of dexmedetomidine on myocardial ischemia-reperfusion injury mice via down-regulating Ltb4r1. Cell Cycle 2021; 20:445-458. [PMID: 33509010 DOI: 10.1080/15384101.2021.1878330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both microRNAs (miRs) and dexmedetomidine (Dex) have been verified to exert functional roles in myocardial ischemia-reperfusion injury (MI/RI). Given that, we concretely aim to discuss the effects of Dex and miR-138-5p on ventricular remodeling in mice affected by MI/RI via mediating leukotriene B4 receptor 1 (Ltb4r1). MI/RI mouse model was established by ligating left anterior descending coronary artery. The cardiac function, inflammatory factors and collagen fiber contents were detected after Dex/miR-138-5p/Ltb4r1 treatment. MiR-138-5p and Ltb4r1 expression in myocardial tissues were tested by RT-qPCR and western blot assay. The target relationship between miR-138-5p and Ltb4r1 was verified by online software prediction and luciferase activity assay. MiR-138-5p was down-regulated while Ltb4r1 was up-regulated in myocardial tissues of MI/RI mice. Dex improved cardiac function, alleviated myocardial damage, reduced inflammatory factor contents, collagen fibers, and Ltb4r1 expression while increased miR-138-5p expression in myocardial tissues of mice with MI/RI. Restored miR-138-5p and depleted Ltb4r1 improved cardiac function, abated inflammatory factor contents, myocardial damage, and content of collagen fibers in MI/RI mice. MiR-138-5p directly targeted Ltb4r1. The work evidence that Dex could ameliorate ventricular remodeling of MI/RI mice by up-regulating miR-138-3p and down-regulating Ltb4r1. Thus, Dex and miR-138-3p/Ltb4r1 may serve as potential targets for the ventricular remodeling of MI/RI.
Collapse
Affiliation(s)
- Yanzi Chang
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Lika Xing
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wenjuan Zhou
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, Chief Physician, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
29
|
Dexmedetomidine Resists Intestinal Ischemia-Reperfusion Injury by Inhibiting TLR4/MyD88/NF-κB Signaling. J Surg Res 2020; 260:350-358. [PMID: 33383282 DOI: 10.1016/j.jss.2020.11.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 09/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intestinal ischemia/reperfusion (I/R) is a common clinical problem that occurs during various clinical pathological processes. Dexmedetomidine (DEX), a widely used anesthetic adjuvant agent, can induce protection against intestinal I/R in vivo; however, the underlying mechanism is not fully understood. In the present study, we aimed to investigate the protective effects of DEX and examine whether its mechanism was associated with the TLR4/MyD88/NF-κB signaling pathway. METHODS Sprague-Dawley rats were pretreated with DEX and then subjected to I/R-induced intestinal injury. In vivo, intestinal histopathological examination and scoring were performed, the levels of serum intestinal fatty acid-binding protein (I-FABP), intestinal tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and expression levels of TLR4, MyD88, and NF-κB in the intestine were determined. In in vitro experiments, the human colon carcinoma cell line (Caco-2) was incubated with DEX before deprivation/reoxygenation (OGD/R) treatment. The cell viability of Caco-2 cells, the levels of lactate dehydrogenase (LDH), TNF-α, and IL-1β in the supernatant, as well as protein expression of TLR4, MyD88, and NF-κB in Caco-2 cells, were measured. Statistical analysis was performed using SPSS version 21.0. RESULTS DEX preconditioning significantly reduced the intestinal pathological Chiu's score, serum I-FABP, intestinal TNF-α, IL-1β levels, and the protein expression of TLR4, MyD88, and NF-κB in the rats with intestinal I/R injury. Similarly, in vitro, DEX pretreatment protected against OGD/R-induced Caco-2 cell damage and inhibited TLR4/MyD88/NF-κB signaling, as evidenced by increased cell viability, decreased LDH activity, reduced TNF-α and IL-1β levels, as well as downregulated TLR4, MyD88, and NF-κB protein levels. CONCLUSIONS Our findings suggested that DEX could reduce intestinal I/R injury in rats and OGD/R damage in Caco-2 cells, and this protection might be attributed to antiinflammatory effects and inhibition of the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
30
|
Ta Na HS, An M, Zhang T, Deni W, Hou L, Jin K. Dexmedetomidine inhibits microglial activation through SNHG14/HMGB1 pathway in spinal cord ischemia-reperfusion injury mice. Int J Neurosci 2020; 132:77-88. [PMID: 33045891 DOI: 10.1080/00207454.2020.1835901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Microglial activation is an essential pathological mechanism of spinal cord ischemia-reperfusion injury (SCIRI). Previous studies showed dexmedetomidine (DEX) could alleviate SCIRI while the mechanism was not clear. This study aims to investigate the role of DEX in microglial activation and clarify the underlying mechanism. METHODS The motion function of mice was quantified using the Basso Mouse Scale for Locomotion. The expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) was determined by qRT-PCR. The expression of high-mobility group box 1 (HMGB1) was measured by western blot. The activation of microglia was evaluated by the expression of ED-1 and the levels of TNF-α and IL-6. The interplay between SNHG14 and HMGB1 was confirmed with RNA pull-down and RIP assay. The stability of HMGB1 was measured by ubiquitination assay and cycloheximide-chase assay. RESULTS DEX inhibited microglial activation and down-regulated SNHG14 expression in SCIRI mice and oxygen and glucose deprivation/reoxygenation (OGD/R)-treated primary microglia. Functionally, SNHG14 overexpression reversed the inhibitory effect of DEX on OGD/R-induced microglial activation. Further investigation confirmed that SNHG14 bound to HMGB1, positively regulated HMGB1 expression by enhancing its stability. In addition, the silence of HMGB1 eliminated the pro-activation impact of SNHG14 overexpression on DEX-treated microglia under the OGD/R condition. Finally, in vivo experiments showed SNHG14 overexpression abrogated the therapeutic effect of DEX on SCIRI mice by up-regulating HMGB1. CONCLUSION DEX accelerated HMGB1 degradation via down-regulating SNHG14, thus inhibiting microglial activation in SCIRI mice.
Collapse
Affiliation(s)
- Ha Sen Ta Na
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, PR China
| | - Min An
- Department of Anesthesiology, Second Affiliated Hospital of Inner Mongolia Medical College, Hohhot, Inner Mongolia, PR China
| | - Tianwen Zhang
- Department of Anesthesiology, Inner Mongolia Autonomous Region International Mongolian Hospital, Hohhot, Inner Mongolia, PR China
| | - Wuyuner Deni
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, PR China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, Fujian, PR China
| | - Kai Jin
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, Fujian, PR China.,Department of Thyroid Neoplasms Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, PR China
| |
Collapse
|
31
|
Wang W, Xu H, Lin H, Molnar M, Ren H. The role of the cholinergic anti-inflammatory pathway in septic cardiomyopathy. Int Immunopharmacol 2020; 90:107160. [PMID: 33243604 DOI: 10.1016/j.intimp.2020.107160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
Septic cardiomyopathy (SCM)is common in septic patients and results in cardiovascular failure. The pathogenesis of SCM is complicated, and patients with SCM have high mortality because current treatment methods are limited. The cholinergic anti-inflammatory pathway (CAP) modulates inflammatory responses through vagus nerve stimulation that leads to the release of acetylcholine (ACh), which binds to the alpha7 nicotinic acetylcholine receptor (α7nAChR). Moreover, α7nAChR activation by its agonists at the tissue level inhibits inflammatory mediators and regulates the function of immune cells in sepsis. Therefore, the α7nAChR can maintain balance of the inflammatory-immune response in sepsis. CAP has been elucidated as a critical regulator of anti-inflammation in many diseases, including rheumatoid arthritis, inflammatory boweldisease and SCM. Additionally, some clinical and preclinical trials show therapeutic potential via regulating CAP. There are excellent studies regarding the beneficial role of CAP activation, especially α7nAChR, in experimental SCM. This review aims to discuss the CAP in attenuating inflammation and the potential role of α7nAChR activation in regulating immune and reducing inflammation in SCM.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Xu
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huan Lin
- Department of Intensive Care Unit, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Megan Molnar
- College of Medicine, SUNY Upstate Medical University, Syracuse, USA.
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
32
|
Gao Y, Kang K, Liu YS, Li NN, Han QY, Liu HT, Kong WL, Zhang X, Huang R, Yang ZY, Qi ZD, Zheng JB, Li M, Wang HL, Li JY, Liu RJ, Wang SC, Zhang WH, Zhao MY, Yu KJ. Mechanisms of Renal-Splenic Axis Involvement in Acute Kidney Injury Mediated by the α7nAChR-NF-κB Signaling Pathway. Inflammation 2020; 44:746-757. [PMID: 33141376 DOI: 10.1007/s10753-020-01374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Abstract
This study aimed to investigate the effect of splenectomy on dexmedetomidine-activated cholinergic anti-inflammatory pathway-mediated alleviation of LPS-induced AKI. A mouse model of septic kidney injury was established in C57BL/6 mice. A total of 30 C57BL/6 mice were randomly divided into the control group, LPS group, dexmedetomidine + LPS group, splenectomy group, splenectomy + LPS group, and splenectomy + dexmedetomidine + LPS group. The pathological effects in kidney tissues in each group were analyzed by HE staining. Apoptosis in each group was examined by the TUNEL method. Cr and Cys-C levels in each group were measured by ELISA. The expression levels of IL-6, NF-κB p65, Caspase-3, the antiapoptotic protein Bcl-2, the proapoptotic protein Bax, and α7nAChR in each group were measured by qRT-PCR and Western blotting. Dexmedetomidine alone reduced apoptosis in kidney tissue; however, apoptosis was increased after splenectomy in mice treated with dexmedetomidine. Splenectomy reduced the production of proinflammatory cytokines in circulation and had a protective effect on the kidney. Splenectomy inhibited dexmedetomidine-mediated activation of the α7nAChR pathway. Dexmedetomidine effectively alleviated LPS-induced kidney injury, and splenectomy inhibited the anti-inflammatory, antiapoptotic, and renoprotective effects of dexmedetomidine. The kidney-spleen axis is mediated by the α7nAChR-NF-κB signaling pathway and is involved in the development of AKI.
Collapse
Affiliation(s)
- Yang Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yan-Song Liu
- Department of Critical Care Medicine, The Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Na-Na Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Qiu-Yuan Han
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hai-Tao Liu
- Department of Critical Care Medicine, The Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wei-Lan Kong
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Xing Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhen-Yu Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhi-Dong Qi
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jun-Bo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ming Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hong-Liang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jia-Yu Li
- Department of Critical Care Medicine, The Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Rui-Jin Liu
- Department of Critical Care Medicine, The Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Si-Cong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei-Hua Zhang
- Department of Pathophysiology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China. .,The Centre for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| | - Ming-Yan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China.
| | - Kai-Jiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China. .,Institute of Critical Care Medicine in Sino Russian Medical Research Center of Harbin Medical University, 150 Haping Road, Harbin, 150081, China.
| |
Collapse
|
33
|
Dexmedetomidine: What's New for Pediatrics? A Narrative Review. J Clin Med 2020; 9:jcm9092724. [PMID: 32846947 PMCID: PMC7565844 DOI: 10.3390/jcm9092724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, despite the lack of approved pediatric labelling, dexmedetomidine’s (DEX) use has become more prevalent in pediatric clinical practice as well as in research trials. Its respiratory-sparing effects and bioavailability by various routes are only some of the valued features of DEX. In recent years the potential organ-protective effects of DEX, with the possibility for preserving neurocognitive function, has put it in the forefront of clinical and bench research. This comprehensive review focused on the pediatric literature but presents relevant, supporting adult and animal studies in order to detail the recent growing body of literature around the pharmacology, end-organ effects, organ-protective effects, alternative routes of administration, synergetic effects, and clinical applications, with considerations for the future.
Collapse
|
34
|
Zhong Y, Li YP, Yin YQ, Hu BL, Gao H. Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol 2020; 86:106768. [PMID: 32679539 DOI: 10.1016/j.intimp.2020.106768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Dexmedetomidine (DEX) was reported to protect heart against ischemic-reperfusion (IR) but the mechanism herein remains elusive. This study aims to explore the mechanism of DEX on pyroptosis induced by myocardial ischemic reperfusion (MIR). METHODS MIR rat models were established and injected DEX or miR-29b agomir/antagomir separately. The possible effect of DEX or miR-29b on myocardial cells was assessed according to measurement on creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), interleukin-1β (IL-1β) and interleukin-18 (IL-18), myocardial infarction size, myocardial injury and apoptosis. Western blot determined the expression levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-caspase-1. Hypoxia/reoxygenation (H/R) cell model was established. The lactate dehydrogenase (LDH) content released by myocardial cells was examined. The relation between miR-29b and FoxO3a was confirmed by dual luciferase reporter gene assay. FoxO3a or ARC level was elevated in H/R myocardial cells to detect its effect on pyroptosis. RESULTS MIR rat models were successfully established, in which cell pyroptosis was triggered as evidenced by increased expression levels of NLRP3, ASC and cleaved-caspase-1. Rats with DEX precondition had attenuated cell pyroptosis and ameliorated inflammatory response. FoxO3a was a target of miR-29b. MiR-29b agomir or miR-29b antagomir could inhibit or promote the protective effect of DEX on MIR. Overexpression of FoxO3a/ARC axis could suppress myocardial pyroptosis induced by H/R. CONCLUSION DEX could ameliorate MIR injury (MIRI) and H/R injury in rats and inhibit H/R induced pyroptosis in myocardial cells via down-regulating miR-29b to activate FoxO3a/ARC axis.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yi-Ping Li
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yong-Qiang Yin
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Bai-Long Hu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Hong Gao
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|
35
|
Peng K, Liu H, Yan B, Meng XW, Song SY, Ji FH, Xia Z. Inhibition of cathepsin S attenuates myocardial ischemia/reperfusion injury by suppressing inflammation and apoptosis. J Cell Physiol 2020; 236:1309-1320. [PMID: 32657442 DOI: 10.1002/jcp.29938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury leads to high mortality and morbidity due to the incomplete understanding of the underlying mechanism and the consequent lack of effective therapy. The present study revealed and validated key candidate genes in relation to inflammation and apoptosis pathways underlying myocardial I/R injury. Cathepsin S was identified as the top hub protein based on the protein-protein interaction analysis, and, thus, its role during myocardial I/R injury was further investigated. Myocardial I/R in mice resulted in significantly increased levels of myocardial injury biomarkers (cardiac troponin I, lactic dehydrogenase, and creatinine kinase-MB) and inflammatory cytokines (interleukin-1β [IL-1β], IL-6, and tumor necrosis factor-α), elevated apoptosis rate, and upregulated protein expression of cleaved caspase-8, cleaved caspase-3, and cleaved poly ADP-ribose polymerase. These abovementioned changes were blocked by two different selective cathepsin S inhibitors, LY3000328 or MIV-247. Moreover, Kaplan-Meier survival plot showed that cathepsin S inhibition improved 21-day survival rate following myocardial I/R injury. This study demonstrated that the inhibition of cathepsin S alleviated myocardial I/R-induced injury by suppressing inflammation and apoptosis, which may be used in clinical applications of cardioprotection.
Collapse
Affiliation(s)
- Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California
| | - Bin Yan
- Department of Intervention and Cell Therapy, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California.,Department of Anesthesiology, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
36
|
Huoxin Pill Attenuates Cardiac Inflammation by Suppression of TLR4/NF- κB in Acute Myocardial Ischemia Injury Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7905902. [PMID: 32695212 PMCID: PMC7368223 DOI: 10.1155/2020/7905902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 01/11/2023]
Abstract
Huoxin Pill (HXP), a traditional Chinese medicine, has been prescribed widely in the treatment of coronary heart disease, angina pectoris, and other diseases. However, the possible protective mechanisms of HXP on myocardial ischemia remain unclear. In the current study, we investigated the effects and potential mechanism of HXP on myocardial ischemia and cardiac inflammation and the activation of TLR4/NF-κB pathway. Determination of electrocardiogram, echocardiography, and heart weight index (HWI) indicated that HXP treatment obviously attenuated the elevation of ST-segment, end-diastolic volume, and HWI in the AMI rat model. Enzyme-linked immunosorbent assay (ELISA) demonstrated that Huoxin Pill treatment significantly decreased the levels of CTnT, CK-MB, MDA, IL-6, and TNF-α, while it increased SOD content in serum of the AMI rat model. Moreover, hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining revealed that HXP treatment alleviated pathological change, infiltration of inflammatory cells, levels of IL-6 and TNF-α, and expression of TLR4 and p-NF-κB in cardiac tissues of the AMI rat model. In conclusion, HXP treatment significantly improves cardiac function and attenuates cardiac inflammation by suppressing the activation of TLR4/NF-κB pathway in the ISO-induced AMI rat model. This study provides insights into the potential of HXP on prevention and treatment of AMI.
Collapse
|
37
|
Dexmedetomidine Ameliorates Lung Injury Induced by Intestinal Ischemia/Reperfusion by Upregulating Cannabinoid Receptor 2, Followed by the Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6120194. [PMID: 32655771 PMCID: PMC7327571 DOI: 10.1155/2020/6120194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Intestinal ischemia/reperfusion (I/R) is a clinical emergency, which often causes lung injury with high morbidity and mortality. Although dexmedetomidine has been identified to have a protective effect on lung injury caused by intestinal I/R, its specific mechanism is still elucidated. In recent years, the cannabinoid (CB2) receptor pathway has been found to be involved in I/R injury of some organs. In the current study, we investigated whether the CB2 receptor pathway contributes to the protective effect of dexmedetomidine on the intestinal I/R-induced lung injury in rats. Dexmedetomidine treatment upregulated the expression of CB2 receptor and suppressed the I/R-induced increases in lung injury scores, inflammatory cell infiltration, lung wet/dry ratio, MPO activity, MDA level, inflammatory cytokines, and caspase-3 expression while augmenting SOD activity and Bcl-2 expression, indicating attenuation of lung injury. Dexmedetomidine treatment also increased the expression of Akt. The protective effects of dexmedetomidine treatment were reversed by the CB2 receptor antagonist AM630 or the PI3K inhibitor wortmannin. And the CB2 receptor antagonist AM630 also downregulated the expression of Akt. Thus, our findings suggest that treatment with dexmedetomidine provides a protective role against lung injury caused by intestinal I/R in rats, possibly due to the upregulation of the CB2 receptor, followed by the activation of the PI3K/Akt pathway.
Collapse
|
38
|
Effects of Pre-Cardiopulmonary Bypass Administration of Dexmedetomidine on Cardiac Injuries and the Inflammatory Response in Valve Replacement Surgery With a Sevoflurane Postconditioning Protocol: A Pilot Study. J Cardiovasc Pharmacol 2020; 74:91-97. [PMID: 31356535 PMCID: PMC6688713 DOI: 10.1097/fjc.0000000000000698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is Available in the Text. Background: Preventing myocardial ischemia–reperfusion injury in on-pump cardiac surgeries remains an enormous challenge. Sevoflurane postconditioning has been effective at overcoming this challenge by modulating inflammatory mediators and ameliorating antioxidative stress. Dexmedetomidine (DEX) is a commonly used medication for cardiac patients with organ-protective properties that lead to positive outcomes. Whether DEX also has cardiac-protective properties and the associated mechanism in sevoflurane postconditioning–based valve replacement surgeries are unknown. Objective: This study was conducted to observe the effect of DEX administration before cardiopulmonary bypass (CPB) on myocardial injury, oxidative stress, and inflammatory response indicators in the peripheral blood. Methods: Twenty-eight eligible cardiac patients who underwent valve replacement surgery with standard sevoflurane postconditioning were included in the study. The patients were randomly divided into a DEX group and a non-DEX group according to whether DEX (0.5-µg/kg overload dose for 10 minutes and a 0.5-μg/kg/h maintenance dose) or saline was administered from induction to the beginning of CPB. The primary outcome was the cardiac troponin I concentration (cTnI) in the blood 24 hours after CPB. The levels of malondialdehyde (MDA), superoxide dismutase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) were also measured. Results: The mean cTnI at 24 hours after CPB was clearly decreased in the DEX group compared with that in the non-DEX group (4.16 ± 1.58 vs. 6.90 ± 3.73, P < 0.05). TNF-α levels were lower in the DEX group after CPB (T1–T5), with a significant difference found at 1–6 hours after CPB (1 hour, 19.03 vs. 28.09; 6 hours, 20.74 vs. 30.94, P < 0.05). The IL-6 and IL-8 concentrations in the DEX group were dramatically increased at 6 hours after CPB (P < 0.05). The MDA content and superoxide dismutase activity were comparable between the 2 groups. A lower proportion of anemia cases were noted after CPB in the DEX group than in the non-DEX group (non-DEX, 10% vs. DEX, 5%, P < 0.05). Conclusions: In valve replacement surgery with sevoflurane postconditioning, pre-CPB administration of DEX can reduce the cTnI level at 24 hours after CPB and brings synergic benefits of the inflammatory response.
Collapse
|
39
|
Liu Y, Zhang L, Wang S, Lu F, Zhen J, Chen W. Dexmedetomidine Reduces Atrial Fibrillation After Adult Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. Am J Cardiovasc Drugs 2020; 20:271-281. [PMID: 31724106 DOI: 10.1007/s40256-019-00380-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dexmedetomidine has been shown to have antiarrhythmic effects by exhibiting sympatholytic properties and activating the vagus nerve in preclinical studies. Results from clinical trials of dexmedetomidine on atrial fibrillation (AF) following adult cardiac surgery are controversial. MATERIALS AND METHODS We searched EMBASE, PubMed and Cochrane CENTRAL databases for randomized controlled trials (RCTs) comparing the antiarrhythmic effect of dexmedetomidine versus placebo or other anesthetic drugs in adult patients undergoing cardiac surgery. The primary outcome was the incidence of AF. The secondary outcomes were ventricular arrhythmias [ventricular fibrillation (VF), ventricular tachycardia (VT)], mechanical ventilation (MV) duration, intensive care unit (ICU) length of stay, and hospital length of stay, and all-cause mortality. RESULTS Thirteen trials with a total of 1684 study patients were selected. Compared with controls, dexmedetomidine significantly reduced the incidence of postoperative AF [odds ratio (OR) 0.75; 95% confidence interval (CI) 0.58-0.97; P = 0.03] and VT (OR 0.23; 95% CI 0.11-0.48; P < 0.0001). No significant difference for the incidence of VF existed (OR 0.80; 95% CI 0.21-3.03; P = 0.74). There was no significant difference between groups in MV duration [weighted mean difference (WMD) - 0.10; 95% CI - 0.42 to 0.21; P = 0.52], postoperative ICU stay (WMD - 0.49; 95% CI - 2.64 to 1.66; P = 0.65), hospital stay (WMD - 0.01; 95% CI - 0.16 to 0.13; P = 0.88) and mortality (OR 0.59; 95% CI 0.15-2.37; P = 0.46). CONCLUSIONS Perioperative administration of dexmedetomidine in adult patients undergoing cardiac surgery reduced the incidence of postoperative AF and VT. But there was no significant difference in incidence of VF, MV duration, ICU stay, hospital stay and mortality.
Collapse
Affiliation(s)
- Yang Liu
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
| | - Lei Zhang
- Department of anesthesiology, Beijing Daxing Maternal and Child Care Hospital, Beijing, China
| | - Suozhu Wang
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
| | - Feiping Lu
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jie Zhen
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
| | - Wei Chen
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.
| |
Collapse
|
40
|
Ma H, Su D, Wang Q, Chong Z, Zhu Q, He W, Wang W. Phoenixin 14 inhibits ischemia/reperfusion-induced cytotoxicity in microglia. Arch Biochem Biophys 2020; 689:108411. [PMID: 32450066 DOI: 10.1016/j.abb.2020.108411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022]
Abstract
The process of ischemia/reperfusion (IR) in ischemic stroke often leads to significant cell death and permanent neuronal damage. Safe and effective treatments are urgently needed to mitigate the damage caused by IR injury. The naturally occurring pleiotropic peptide phoenixin 14 (PNX-14) has recently come to light as a potential treatment for IR injury. In the present study, we examined the effects of PNX-14 on several key processes involved in ischemic injury, such as pro-inflammatory cytokine expression, oxidative stress, and the related cascade mediated through the toll-like receptor 4 (TLR4) pathway, using BV2 microglia exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Our results demonstrate an acute ability of PNX-14 to regulate the expression levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). PNX-14 also prevented oxidative stress by reducing the generation of reactive oxygen species (ROS) and increasing the level of the antioxidant glutathione (GSH). Importantly, PNX-14 inhibited high-mobility group box 1 (HMGB1)/TLR4/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway, by inhibiting the activation of TLR4 and preventing the nuclear translocation of p65 protein. We further confirmed the cerebroprotective effects of PNX-14 in an MCAO rat model, which resulted in reduced infarct volume and decreased microglia activation. Together, the results of this study implicate a possible protective role of PNX-14 against various aspects of IR injury in vitro.
Collapse
Affiliation(s)
- Hongling Ma
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Qingdong Wang
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Qiushi Zhu
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Weibin He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, 430060, China
| | - Wei Wang
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China.
| |
Collapse
|
41
|
Potilinski MC, Lorenc V, Perisset S, Gallo JE. Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21072351. [PMID: 32231131 PMCID: PMC7177797 DOI: 10.3390/ijms21072351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Valeria Lorenc
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Sofía Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
| | - Juan Eduardo Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomedicas, Universidad Austral-CONICET, Av. J.D. Perón 1500, 1629 Pilar, Buenos Aires, Argentina; (M.C.P.); (V.L.); (S.P.)
- Departamento de Oftalmologia, Hospital Universitario Austral, Av. Juan Perón 1500, 1629 Pilar, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-91164038725
| |
Collapse
|
42
|
Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L, Deng H. Dexmedetomidine Post-Conditioning Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting High Mobility Group Protein B1 Group (HMGB1)/Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e918617. [PMID: 31912804 PMCID: PMC6977611 DOI: 10.12659/msm.918617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury is a pivotal cause of deaths due to cerebrovascular accident. Increased research efforts are needed to reveal the mechanism underlying its aggravation or alleviation. In this study, the effects of dexmedetomidine post-conditioning on the HMGB1/TLR4/NF-kappaB signaling pathway in cerebral ischemia-reperfusion rats was explored. MATERIAL AND METHODS Ninety rats were randomly divided into 5 groups - a sham group (Sham), a model group (I/R), a dexmedetomidine post-conditioning group (Dex), a recombinant high mobility group protein B1 group (rHMGB1), and a recombinant HMGB1+dexmedetomidine post-conditioning group (rHMGB1+Dex) - with 18 rats in each group. Longa grading, wet-dry weighing, TTC staining, HE staining, and immunohistochemical staining were used to assess brain damage. ELISA, RT-PCR, and Western blot analyses were performed to assess expression of IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and NF-kappaB. RESULTS Compared with the I/R group, the neurological function score, brain water content, infarction area, and the number of COX-2- and IBA-1-positive cells in the Dex group were significantly lower, accompanied by downregulated expression of the HMGB1/TLR4/NF-kappaB pathway, alleviated inflammation, and oxidative stress injury in brain tissue. These trends were mostly reversed in the rHMGB1 group and rHMGB1+Dex group, but not in the Dex group. Furthermore, when compared to the Dex group, there were significant increases of H₂O₂, MDA, NO, IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and p-P65 in the rHMGB1 group and rHMGB1+Dex group, in which a significant decrease of T-AOC, SOD, and p-IkappaBalpha was also detected. CONCLUSIONS Dexmedetomidine post-conditioning can alleviate cerebral ischemia-reperfusion injury in rats by inhibiting the HMGB1/TLR4/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Yongyi Zhai
- Department of Rehabilitation, Linzi District People's Hospital, Zibo, Shandong, China (mainland)
| | - Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Kun Xie
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Hongyan Deng
- Department of Anesthesiology, Haiyang People's Hospital, Haiyang, Shandong, China (mainland)
| |
Collapse
|
43
|
Bai Y, Li Z, Liu W, Gao D, Liu M, Zhang P. Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-κB/NLRP3 signaling pathway. Acta Cir Bras 2019; 34:e201901104. [PMID: 31859817 PMCID: PMC6917477 DOI: 10.1590/s0102-865020190110000004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/09/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Myocardial ischemia/reperfusion (Ml/R) injury is a leading cause of damage in cardiac tissues, with high rates of mortality and disability. Biochanin A (BCA) is a main constituent of Trifolium pratense L. This study was intended to explore the effect of BCA on Ml/R injury and explore the potential mechanism. METHODS In vivo MI/R injury was established by transient coronary ligation in Sprague-Dawley rats. Triphenyltetrazolium chloride staining (TTC) was used to measure myocardial infarct size. ELISA assay was employed to evaluate the levels of myocardial enzyme and inflammatory cytokines. Western blot assay was conducted to detect related protein levels in myocardial tissues. RESULTS BCA significantly ameliorated myocardial infarction area, reduced the release of myocardial enzyme levels including aspartate transaminase (AST), creatine kinase (CK-MB) and lactic dehydrogenase (LDH). It also decreased the production of inflammatory cytokines (IL-1β, IL-18, IL-6 and TNF-α) in serum of Ml/R rats. Further mechanism studies demonstrated that BCA inhibited inflammatory reaction through blocking TLR4/NF-kB/NLRP3 signaling pathway. CONCLUSION The present study is the first evidence demonstrating that BCA attenuated Ml/R injury through suppressing TLR4/NF-kB/NLRP3 signaling pathway-mediated anti-inflammation pathway.
Collapse
Affiliation(s)
- Yejun Bai
- Physician, First School of Clinical Medicine, Nanjing University of Chinese Medicine, and Department of Cardiovascular, Haimen Branch of Shanghai First People's Hospital Haimen Traditional Chinese Medicine Hospital, China. Conception and design of the study, manuscript writing
| | - Zhigang Li
- Physician, Department of Cardiovascular, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, China. Acquisition and analysis of data
| | - Weihao Liu
- Physician, First School of Clinical Medicine, Nanjing University of Chinese Medicine, and Department of Cardiovascular, Haimen Branch of Shanghai First People's Hospital Haimen Traditional Chinese Medicine Hospital, China. Conception and design of the study, manuscript writing
| | - Dong Gao
- Physician, First School of Clinical Medicine, Nanjing University of Chinese Medicine, and Department of Cardiovascular, Haimen Branch of Shanghai First People's Hospital Haimen Traditional Chinese Medicine Hospital, China. Conception and design of the study, manuscript writing
| | - Min Liu
- Chief physician, Department of Cardiovascular, Xuzhou City Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, China. Technical procedures, acquisition of data
| | - Peiying Zhang
- Chief physician, Department of Cardiovascular, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, China. Design and supervised all phases of the study
| |
Collapse
|
44
|
Flanders CA, Rocke AS, Edwardson SA, Baillie JK, Walsh TS. The effect of dexmedetomidine and clonidine on the inflammatory response in critical illness: a systematic review of animal and human studies. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:402. [PMID: 31829277 PMCID: PMC6907244 DOI: 10.1186/s13054-019-2690-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
Abstract
Background The α2 agonists, dexmedetomidine and clonidine, are used as sedative drugs during critical illness. These drugs may have anti-inflammatory effects, which might be relevant to critical illness, but a systematic review of published literature has not been published. We reviewed animal and human studies relevant to critical illness to summarise the evidence for an anti-inflammatory effect from α2 agonists. Methods We searched PubMed, the Cochrane library, and Medline. Animal and human studies published in English were included. Broad search terms were used: dexmedetomidine or clonidine, sepsis, and inflammation. Reference lists were screened for additional publications. Titles and abstracts were screened independently by two reviewers and full-text articles obtained for potentially eligible studies. Data extraction used a bespoke template given study diversity, and quality assessment was qualitative. Results Study diversity meant meta-analysis was not feasible so descriptive synthesis was undertaken. We identified 30 animal studies (caecal ligation/puncture (9), lipopolysaccharide (14), acute lung injury (5), and ischaemia-reperfusion syndrome (5)), and 9 human studies. Most animal (26 dexmedetomidine, 4 clonidine) and all human studies used dexmedetomidine. In animal studies, α2 agonists reduced serum and/or tissue TNFα (20 studies), IL-6 (17 studies), IL-1β (7 studies), NFκB (6 studies), TLR4 (6 studies), and a range of other mediators. Timing and doses varied widely, but in many cases were not directly relevant to human sedation use. In human studies, dexmedetomidine reduced CRP (4 studies), TNFα (5 studies), IL-6 (6 studies), IL-1β (3 studies), and altered several other mediators. Most studies were small and low quality. No studies related effects to clinical outcomes. Conclusion Evidence supports potential anti-inflammatory effects from α2 agonists, but the relevance to clinically important outcomes is uncertain. Further work should explore whether dose relationships with inflammation and clinical outcomes are present which might be separate from sedation-mediated effects.
Collapse
Affiliation(s)
| | - Alistair S Rocke
- Critical Care Department, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Stuart A Edwardson
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Critical Care Department, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Timothy S Walsh
- Critical Care Department, Royal Infirmary of Edinburgh, Edinburgh, UK. .,Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh, UK. .,The Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK.
| |
Collapse
|
45
|
Xie X, Li T, Yuan H. Protective effects of Ulinastatin on oxidative stress and inflammation of rat-derived cardiomyocytes H9c2. Am J Transl Res 2019; 11:7094-7103. [PMID: 31814912 PMCID: PMC6895533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Ischemic heart disease (IHD) is a common clinical disease and has a younger tendency in recent years. This study focused on the role of Ulinastatin (UTI) in the anti-oxidative stress and anti-inflammatory response of cardiomyocytes. H9c2 cells were divided into control group, ischemia-anoxic group (ischemic hypoxia group) and ischemia-anoxia + UTI group (UTI group). Cell morphology was observed by light microscopy, Cell staining, Western blotting, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were conducted to research the effect of UTI on the nuclear factor-κB (NF-κB) signaling pathway. H9c2 cells in the ischemic hypoxia group showed hypertrophy and irregular shape, while the cell morphology of the UTI group was close to the fusiform shape. The cell hypertrophy was lighter, and the number of irregular morphological cells decreased in UTI group than ischemic hypoxia group. The content of interleukin-1β (IL-1β) in the ischemic hypoxic group was significantly higher than that in the control group. In the UTI group, IL-1β was significantly lowly expressed than the ischemia hypoxia group. In addition, the expressions of SOD1, SOD2, GPX1, GPX3, Bcl-2 and Sirt1 in UTI group were higher than ischemic hypoxia group (P<0.05). The expressions of p65, Iκk-α kinase, Caspase3 and Bax in UTI group were lower than ischemic hypoxia group (P<0.05). UTI protects H9c2 cells from ischemia and hypoxia injuries by inhibiting the NF-κB pathway, thereby reducing inflammation, resisting oxidative stress, inhibiting apoptosis, and delaying cell senescence.
Collapse
Affiliation(s)
- Xiufeng Xie
- Southern Medical UniversityGuangzhou 510515, China
- Department of Geriatric Center, The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot 010050, China
| | - Tianchang Li
- Southern Medical UniversityGuangzhou 510515, China
- Department of Heart Center, Sixth Medical Center of People’s Liberation Army General HospitalBeijing 100037, China
| | - Haifeng Yuan
- Southern Medical UniversityGuangzhou 510515, China
- Department of Geriatric Center, Inner Mongolia People’s HospitalHohhot 010017, China
| |
Collapse
|
46
|
Peng K, Chen WR, Xia F, Liu H, Meng XW, Zhang J, Liu HY, Xia ZY, Ji FH. Dexmedetomidine post-treatment attenuates cardiac ischaemia/reperfusion injury by inhibiting apoptosis through HIF-1α signalling. J Cell Mol Med 2019; 24:850-861. [PMID: 31680420 PMCID: PMC6933328 DOI: 10.1111/jcmm.14795] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia‐inducible factor 1α (HIF‐1α) plays a critical role in the apoptotic process during cardiac ischaemia/reperfusion (I/R) injury. This study aimed to investigate whether post‐treatment with dexmedetomidine (DEX) could protect against I/R‐induced cardiac apoptosis in vivo and in vitro via regulating HIF‐1α signalling pathway. Rat myocardial I/R was induced by occluding the left anterior descending artery for 30 minutes followed by 6‐hours reperfusion, and cardiomyocyte hypoxia/reoxygenation (H/R) was induced by oxygen‐glucose deprivation for 6 hours followed by 3‐hours reoxygenation. Dexmedetomidine administration at the beginning of reperfusion or reoxygenation attenuated I/R‐induced myocardial injury or H/R‐induced cell death, alleviated mitochondrial dysfunction, reduced the number of apoptotic cardiomyocytes, inhibited the activation of HIF‐1α and modulated the expressions of apoptosis‐related proteins including BCL‐2, BAX, BNIP3, cleaved caspase‐3 and cleaved PARP. Conversely, the HIF‐1α prolyl hydroxylase‐2 inhibitor IOX2 partly blocked DEX‐mediated cardioprotection both in vivo and in vitro. Mechanistically, DEX down‐regulated HIF‐1α expression at the post‐transcriptional level and inhibited the transcriptional activation of the target gene BNIP3. Post‐treatment with DEX protects against cardiac I/R injury in vivo and H/R injury in vitro. These effects are, at least in part, mediated via the inhibition of cell apoptosis by targeting HIF‐1α signalling.
Collapse
Affiliation(s)
- Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Rong Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Anesthesiology, Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Fan Xia
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Dexmedetomidine alleviates doxorubicin cardiotoxicity by inhibiting mitochondrial reactive oxygen species generation. Hum Cell 2019; 33:47-56. [PMID: 31643023 DOI: 10.1007/s13577-019-00282-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
Abstract
Cardiotoxicity largely limits the application of doxorubicin (Dox) for cancer treatment. Dexmedetomidine (Dex), a selective agonist of α2-adrenergic receptor, has been suggested to exert cardioprotection against myocardial injury. However, the effect and underlying mechanisms of Dex on Dox cardiotoxicity remain unknown. In this study, C57BL/6 mice were treated with Dox followed by Dex administration. Cardiomyocytes were co-incubated with Dox and Dex in vitro. The results showed that Dex markedly attenuated cardiac dysfunction induced by Dox. TUNEL staining exhibited that Dex inhibited Dox-induced cardiomyocyte apoptosis in myocardium. Moreover, the expression of anti-apoptotic protein Bcl-2 was increased, whereas the expression of pro-apoptotic protein Bax was decreased by Dex. Dox-induced the increase of reactive oxygen species (ROS), superoxide anion, and mitochondrial ROS (mROS) generation in myocardial tissues were significantly inhibited after Dex administration. In in vitro study, it was further confirmed that Dex prevented Dox-induced cardiomyocyte apoptosis and injury. However, the stimulation of mROS generation reversed the effect of Dex in cardiomyocytes. Mechanically, Dex blocked Dox-induced the ubiquitination of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), leading to the restoration of PGC-1α and downstream oxidative stress-protective molecules uncoupling protein 2 and manganese-dependent superoxide dismutase expression. Taken together, this study demonstrates that Dex exerts cardioprotection against Dox cardiotoxicity by attenuating mitochondrial dysfunction, oxidative stress, and cardiomyocyte apoptosis via inhibiting PGC-1α-signaling pathway inactivation. This suggests that Dex may be a potential therapeutic strategy for Dox cardiotoxicity treatment.
Collapse
|
48
|
Ma C, Xu Z, Lv H. Low n-6/ n-3 PUFA ratio improves inflammation and myocardial ischemic reperfusion injury. Biochem Cell Biol 2019; 97:621-629. [PMID: 31580709 DOI: 10.1139/bcb-2018-0342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study investigated the potential effect of n-6/n-3 polyunsaturated fatty acids (PUFA) on inflammation and myocardial ischemic reperfusion injury (MIRI) in rats, together with the underlying protective mechanisms, and screen out most effective ratio of n-6/n-3 within limits. The rats with pre-infarct treatment were distributed among 5 groups according to the n-6/n-3 ratio (36:1; 1:1, 5:1, 10:1, 50:1); for the post-infarct treatment, the rats were distributed among 6 groups, including the control group (36:1) which was subjected to a sham procedure; the model group (36:1); and 4 test groups (n-6/n-3 ratio: 1:1, 5:1, 10:1, 50:1). All of the rats were fed a purple perilla seed oil and safflower oil-based fatty emulsion. The serum levels of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were determined using enzyme-linked immunosorbent assay. Staining with triphenyl tetrazolium chloride, hematoxylin and eosin, or Masson's trichrome was performed for histological examination. Cardiomyocyte apoptosis was examined by TUNEL assay. Western blotting was performed to examine the expression levels of apoptosis-related proteins and signaling pathway proteins. Our data indicate that in both the pre-infarct treatment and post-infarct treatment, low ratios of n-6/n-3 PUFAs significantly inhibited the levels of serum inflammatory factors, the infarct size of MIRI rats, number of cardiomyocytes undergoing apoptosis, and the expression levels of caspase-3, Bcl-2, and Bax in the MIRI group. Thus a low ratio of n-6/n-3 PUFAs ameliorates inflammation and myocardial ischemic reperfusion injury.
Collapse
Affiliation(s)
- Caiyan Ma
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China.,Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Zehang Xu
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China.,Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Heng Lv
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China.,Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| |
Collapse
|
49
|
Yuan M, Meng XW, Ma J, Liu H, Song SY, Chen QC, Liu HY, Zhang J, Song N, Ji FH, Peng K. Dexmedetomidine protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced intracellular calcium overload and apoptosis through regulating FKBP12.6/RyR2 signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3137-3149. [PMID: 31564830 PMCID: PMC6730549 DOI: 10.2147/dddt.s219533] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022]
Abstract
Purpose Intracellular calcium ([Ca2+]i) overload is a major cause of cell injury during myocardial ischemia/reperfusion (I/R). Dexmedetomidine (DEX) has been shown to exert anti-inflammatory and organ protective effects. This study aimed to investigate whether pretreatment with DEX could protect H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation (OGD/R) injury through regulating the Ca2+ signaling. Methods H9c2 cardiomyocytes were subjected to OGD for 12 h, followed by 3 h of reoxygenation. DEX was administered 1 h prior to OGD/R. Cell viability, lactate dehydrogenase (LDH) release, level of [Ca2+]i, cell apoptosis, and the expression of 12.6-kd FK506-binding protein/ryanodine receptor 2 (FKBP12.6/RyR2) and caspase-3 were assessed. Results Cells exposed to OGD/R had decreased cell viability, increased LDH release, elevated [Ca2+]i level and apoptosis rate, down-regulated expression of FKBP12.6, and up-regulated expression of phosphorylated-Ser2814-RyR2 and cleaved caspase-3. Pretreatment with DEX significantly blocked the above-mentioned changes, alleviating the OGD/R-induced injury in H9c2 cells. Moreover, knockdown of FKBP12.6 by small interfering RNA abolished the protective effects of DEX. Conclusion This study indicates that DEX pretreatment protects the cardiomyocytes against OGD/R-induced injury by inhibiting [Ca2+]i overload and cell apoptosis via regulating the FKBP12.6/RyR2 signaling. DEX may be used for preventing cardiac I/R injury in the clinical settings.
Collapse
Affiliation(s)
- Mei Yuan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China.,Department of Anesthesiology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, People's Republic of China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Jiao Ma
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA 95817, USA
| | - Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Nan Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| |
Collapse
|
50
|
Zhou XY, Liu J, Xu ZP, Fu Q, Wang PQ, Zhang H. Dexmedetomidine inhibits the lipopolysaccharide-stimulated inflammatory response in microglia through the pathway involving TLR4 and NF-κB. Kaohsiung J Med Sci 2019; 35:750-756. [PMID: 31419076 DOI: 10.1002/kjm2.12112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
To investigate the effects of dexmedetomidine (DEX) on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglia. BV2 microglial cells were treated with various concentrations of DEX (0, 1, 10, and 100 ng/mL) for 1 hour, and then incubated in the presence or absence of 0.1 μg/mL LPS for 24 hours. Cell viability was assessed by Cell Counting Kit-8 assays. The expression levels of IL-1β, IL-6, and TNF-α were determined using enzyme-linked immunosorbent assay (ELISA). The expressions of TLR4 and NF-кB were detected by western blotting. Moreover, BV2 microglial cells were transfected with small interfering RNA (siRNA) specific for TLR4 (si-TLR4 group) or negative control siRNA (si-NC group) for 24 hours, followed by exposing to 0.1 μg/mL LPS for 24 hours. TLR4, IL-1β, IL-6, and TNF-α expressions were detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR). There were no significant differences in cell viability with the different treatments. Compared with the control group, LPS markedly increased the release of IL-6, TNF-α, IL-1β, TLR4, and NF-κB, but these increases were significantly attenuated by pretreatment with 10 or 100 ng/mL DEX in a dose-dependent relationship, but not with 1 ng/mL DEX. Gene expression levels of IL-1β, IL-6, and TNF-α were obviously upregulated in si-NC group and si-TLR4 group when cells were exposed to 0.1 μg/mL LPS for 24 hours. Meanwhile, si-TLR4 group had significantly lower IL-1β, IL-6, and TNF-α expressions than si-NC group. The anti-inflammatory effects of DEX on LPS-induced BV2 microglia may be mediated through pathway involving TLR4 and NF-κB.
Collapse
Affiliation(s)
- Xue-Yue Zhou
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jing Liu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Fu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Pei-Qi Wang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Hong Zhang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|