1
|
Laumonnier Y, Korkmaz RÜ, Nowacka AA, Köhl J. Complement-mediated immune mechanisms in allergy. Eur J Immunol 2023; 53:e2249979. [PMID: 37381711 DOI: 10.1002/eji.202249979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Institute for Nutritional Medicine, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Alicja A Nowacka
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, USA
| |
Collapse
|
2
|
Osman M, Cohen Tervaert JW, Pagnoux C. Avacopan for the treatment of ANCA-associated vasculitis: an update. Expert Rev Clin Immunol 2023; 19:461-471. [PMID: 36545762 DOI: 10.1080/1744666x.2023.2162041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glucocorticoids (GC) have been part of the standard treatment of anti-neutrophil cytoplasm autoantibodies (ANCA)-associated vasculitides (AAV) for more than 60 years. Various therapeutic advances have occurred over the past 2 decades and led to a significant reduction of GC exposure, but most patients still have to suffer from complications of GC, including infections, metabolic abnormalities, and cardiovascular morbidity. In 2007, activation of the complement pathway was demonstrated to play a role in the pathogenesis of AAV. Avacopan, an oral competitive inhibitor of the C5a receptor (C5aR1, CD88), was then developed, with an additional aim to decrease the use of GC. AREAS COVERED In this article, we briefly summarize the rationale for targeting the complement pathway in AAV, and review relevant findings from pre-clinical, phase I, II, and III studies, subsequent and more recent case reports and series on the efficacy and safety of avacopan. EXPERT OPINION Based on the results of these studies, avacopan was approved in most countries since late 2021, as an adjunctive induction treatment for patients with AAV. Several newer questions now are pending answers, including as to how avacopan should be used in real-world practice, beyond how it was given in the original clinical trials.
Collapse
Affiliation(s)
- Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christian Pagnoux
- Vasculitis clinic, Division of Rheumatology, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
4
|
Shang Q, Zhu L, Shang W, Zeng J, Qi Y. Dioscin exhibits protective effects on in vivo and in vitro asthma models via suppressing TGF-β1/Smad2/3 and AKT pathways. J Biochem Mol Toxicol 2022; 36:e23084. [PMID: 35481609 DOI: 10.1002/jbt.23084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Dioscin is a natural product that possesses protective effects on multiple chronic injuries, but its effects on asthma are not fully understood. Herein, we evaluated its effects on asthmatic mice established by ovalbumin (OVA) sensitization and challenges and further explored the mechanism. Inflammatory cells in bronchoalveolar lavage fluids (BALFs) were analyzed using Diff-Quik staining. OVA-specific immunoglobulin E (IgE)/IgG1 in serum and inflammatory cytokines (interleukin 4[IL-4], IL-5, IL-13, and tumor necrosis factor-α) in BALFs and lung tissues were measured using Enzyme-Linked Immunosorbent Assay Kits. Hematoxylin and eosin, periodic acid-Schiff, and immunohistochemistry staining showed histopathological changes in lung tissues. Epithelial-mesenchymal transition (EMT) in human bronchial epithelial (16HBE) cells was assessed by immunofluorescence staining. Hydroxyproline content was used to evaluate collagen deposition. Polymerase chain reaction and Western blot were performed to measure messenger RNA and protein expression. We found that dioscin treatment (particularly at the dose of 80 mg/kg) significantly inhibited pulmonary inflammation in asthmatic mice, as evidenced by the decreased serum OVA-specific IgE/IgG1 and the reduced inflammatory cells and cytokines in BALFs and lung tissues. Moreover, dioscin effectively ameliorated the goblet cell hyperplasia, mucus hypersecretion, collagen deposition, and smooth muscle hyperplasia in the airways of asthmatic mice. Mechanistically, dioscin restrained the activated TGF-β1/Smad2/3 and protein kinase B (AKT) signal pathways in lung tissues and potently reversed the TGF-β1-induced EMT and phosphorylation of Smad2/3 and AKT in 16HBE cells. Collectively, dioscin displayed protective effects on OVA-induced asthmatic mice via adjusting TGF-β1/Smad2/3 and AKT signal pathways, supporting the fact that dioscin could be a candidate for chronic asthma prevention in the future.
Collapse
Affiliation(s)
- Qian Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Li Zhu
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Weina Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Zeng
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Osman M, Cohen Tervaert JW, Pagnoux C. Avacopan for the treatment of ANCA-associated vasculitis. Expert Rev Clin Immunol 2021; 17:717-726. [PMID: 34006155 DOI: 10.1080/1744666x.2021.1932466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Anti-neutrophil cytoplasm autoantibodies (ANCA)-associated vasculitides (AAVs) are a group of rare heterogeneous diseases characterized by blood vessel inflammation resulting in organ destruction and death. Although various treatment strategies have resulted in marked improvement in vasculitis-specific outcomes, many patients with AAV continue to suffer from complications related to the prolonged use of glucocorticoids (GC) such as infections, metabolic abnormalities, and increased cardiovascular morbidity. Recently, activation of the alternative complement pathway has been implicated in the augmentation of the damage caused by AAV via the complement C5a receptor (C5aR1, CD88). Specifically targeting this pathway may lead to improved outcomes in patients with AAV.Areas covered: In this article, we have summarized the rationale for targeting the complement pathway in AAV. The relevant pre-clinical, phase I, II and III findings with emphasis on the efficacy, and safety of avacopan, a new oral competitive inhibitor that interferes with the binding of C5a to C5aR1 (CD88), are reviewed.Expert opinion: These results are encouraging, may led to major changes in the treatment approach for AAV, and give rise to future studies utilizing complement inhibitors in AAV patients, and potentially in other immune mediated diseases.
Collapse
Affiliation(s)
- Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christian Pagnoux
- Vasculitis Clinic, Division of Rheumatology, Department of Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Nürge B, Schulz AL, Kaemmerer D, Sänger J, Evert K, Schulz S, Lupp A. Immunohistochemical identification of complement peptide C5a receptor 1 (C5aR1) in non-neoplastic and neoplastic human tissues. PLoS One 2021; 16:e0246939. [PMID: 33606748 PMCID: PMC7894821 DOI: 10.1371/journal.pone.0246939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/18/2022] Open
Abstract
The complement component C5a and its receptor C5aR1 are involved in the development of numerous inflammatory diseases. In addition to immune cells, C5aR1 is expressed in neoplastic cells of multiple tumour entities, where C5aR1 is associated with a higher proliferation rate, advanced tumour stage, and poor patient outcomes. The aim of the present study was to obtain a broad expression profile of C5aR1 in human non-neoplastic and neoplastic tissues, especially in tumour entities not investigated in this respect so far. For this purpose, we generated a novel polyclonal rabbit antibody, {5227}, against the carboxy-terminal tail of C5aR1. The antibody was initially characterised in Western blot analyses and immunocytochemistry using transfected human embryonic kidney (HEK) 293 cells. It was then applied to a large series of formalin-fixed, paraffin-embedded non-neoplastic and neoplastic human tissue samples. C5aR1 was strongly expressed by different types of immune cells in the majority of tissue samples investigated. C5aR1 was also present in alveolar macrophages, bronchial, gut, and bile duct epithelia, Kupffer cells, occasionally in hepatocytes, proximal renal tubule cells, placental syncytiotrophoblasts, and distinct stem cell populations of bone marrow. C5aR1 was also highly expressed in the vast majority of the 32 tumour entities investigated, where a hitherto unappreciated high prevalence of the receptor was detected in thyroid carcinomas, small-cell lung cancer, gastrointestinal stromal tumours, and endometrial carcinomas. In addition to confirming published findings, we found noticeable C5aR1 expression in many tumour entities for the first time. Here, it may serve as an interesting target for future therapies.
Collapse
Affiliation(s)
- Benjamin Nürge
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Alan Lennart Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Katja Evert
- Department of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
7
|
Quell KM, Dutta K, Korkmaz ÜR, Nogueira de Almeida L, Vollbrandt T, König P, Lewkowich I, Deepe GS, Verschoor A, Köhl J, Laumonnier Y. GM-CSF and IL-33 Orchestrate Polynucleation and Polyploidy of Resident Murine Alveolar Macrophages in a Murine Model of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21207487. [PMID: 33050608 PMCID: PMC7589978 DOI: 10.3390/ijms21207487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Allergic asthma is a chronical pulmonary disease with high prevalence. It manifests as a maladaptive immune response to common airborne allergens and is characterized by airway hyperresponsiveness, eosinophilia, type 2 cytokine-associated inflammation, and mucus overproduction. Alveolar macrophages (AMs), although contributing to lung homeostasis and tolerance to allergens at steady state, have attracted less attention compared to professional antigen-presenting and adaptive immune cells in their contributions. Using an acute model of house dust mite-driven allergic asthma in mice, we showed that a fraction of resident tissue-associated AMs, while polarizing to the alternatively activated M2 phenotype, exhibited signs of polynucleation and polyploidy. Mechanistically, in vitro assays showed that only Granulocyte-Macrophage Colony Stimulating Factor and interleukins IL-13 and IL-33, but not IL-4 or IL-5, participate in the establishment of this phenotype, which resulted from division defects and not cell-cell fusion as shown by microscopy. Intriguingly, mRNA analysis of AMs isolated from allergic asthmatic lungs failed to show changes in the expression of genes involved in DNA damage control except for MafB. Altogether, our data support the idea that upon allergic inflammation, AMs undergo DNA damage-induced stresses, which may provide new unconventional therapeutical approaches to treat allergic asthma.
Collapse
Affiliation(s)
- Katharina M. Quell
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Kuheli Dutta
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Ülkü R. Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Larissa Nogueira de Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, 23538 Lübeck, Germany;
| | - Peter König
- Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany;
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S. Deepe
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany;
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-31018940; Fax: +49-451-31018904
| |
Collapse
|
8
|
Antoniou K, Ender F, Vollbrandt T, Laumonnier Y, Rathmann F, Pasare C, Singh H, Köhl J. Allergen-Induced C5a/C5aR1 Axis Activation in Pulmonary CD11b + cDCs Promotes Pulmonary Tolerance through Downregulation of CD40. Cells 2020; 9:cells9020300. [PMID: 31991941 PMCID: PMC7072238 DOI: 10.3390/cells9020300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.
Collapse
Affiliation(s)
- Konstantina Antoniou
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
| | | | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23562 Lübeck, Germany
| | - Franziska Rathmann
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA (H.S.)
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA (H.S.)
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
- Cell Analysis Core, University of Lübeck, 23562 Lübeck, Germany;
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23562 Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA (H.S.)
- Correspondence: ; Tel.: +49-451-500-51400
| |
Collapse
|
9
|
Schröder T, Wiese AV, Ender F, Quell KM, Vollbrandt T, Duhn J, Sünderhauf A, Künstner A, Moreno-Fernandez ME, Derer S, Aherrahrou Z, Lewkowich I, Divanovic S, Sina C, Köhl J, Laumonnier Y. Short-term high-fat diet feeding protects from the development of experimental allergic asthma in mice. Clin Exp Allergy 2019; 49:1245-1257. [PMID: 31265181 DOI: 10.1111/cea.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.
Collapse
Affiliation(s)
- Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tillman Vollbrandt
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Cell Analysis Core Facility, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Axel Künstner
- The Lübeck Institute of Experimental Dermatology, Group of Medical Systems Biology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Yang J, Ramirez Moral I, van 't Veer C, de Vos AF, de Beer R, Roelofs JJTH, Morgan BP, van der Poll T. Complement factor C5 inhibition reduces type 2 responses without affecting group 2 innate lymphoid cells in a house dust mite induced murine asthma model. Respir Res 2019; 20:165. [PMID: 31340811 PMCID: PMC6657208 DOI: 10.1186/s12931-019-1136-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/16/2019] [Indexed: 01/13/2023] Open
Abstract
Background Complement factor C5 can either aggravate or attenuate the T-helper type 2 (TH2) immune response and airway hyperresponsiveness (AHR) in murine models of allergic asthma. The effect of C5 during the effector phase of allergen-induced asthma is ill-defined. Objectives We aimed to determine the effect of C5 blockade during the effector phase on the pulmonary TH2 response and AHR in a house dust mite (HDM) driven murine asthma model. Methods BALB/c mice were sensitized and challenged repeatedly with HDM via the airways to induce allergic lung inflammation. Sensitized mice received twice weekly injections with a blocking anti-C5 or control antibody 24 h before the first challenge. Results HDM challenge in sensitized mice resulted in elevated C5a levels in bronchoalveolar lavage fluid. Anti-C5 administered to sensitized mice prior to the first HDM challenge prevented this rise in C5a, but did not influence the influx of eosinophils or neutrophils. While anti-C5 did not impact the recruitment of CD4 T cells upon HDM challenge, it reduced the proportion of TH2 cells recruited to the airways, attenuated IL-4 release by regional lymph nodes restimulated with HDM ex vivo and mitigated the plasma IgE response. Anti-C5 did not affect innate lymphoid cell (ILC) proliferation or group 2 ILC (ILC2) differentiation. Anti-C5 attenuated HDM induced AHR in the absence of an effect on lung histopathology, mucus production or vascular leak. Conclusions Generation of C5a during the effector phase of HDM induced allergic lung inflammation contributes to TH2 cell differentiation and AHR without impacting ILC2 cells. Electronic supplementary material The online version of this article (10.1186/s12931-019-1136-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jack Yang
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ivan Ramirez Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina de Beer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - B Paul Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Bisht K, Canesin G, Cheytan T, Li M, Nemeth Z, Csizmadia E, Woodruff TM, Stec DE, Bulmer AC, Otterbein LE, Wegiel B. Deletion of Biliverdin Reductase A in Myeloid Cells Promotes Chemokine Expression and Chemotaxis in Part via a Complement C5a--C5aR1 Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:2982-2990. [PMID: 30952817 DOI: 10.4049/jimmunol.1701443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.
Collapse
Affiliation(s)
- Kavita Bisht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.,Cancer Care and Biology Program, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Giacomo Canesin
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Tasneem Cheytan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Mailin Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Zsuzsanna Nemeth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - David E Stec
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216; and
| | - Andrew C Bulmer
- School of Medical Science, Griffith University, Queensland 4222, Australia
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
12
|
Khan MA, Alanazi F, Ahmed HA, Vater A, Assiri AM, Broering DC. C5a Blockade Increases Regulatory T Cell Numbers and Protects Against Microvascular Loss and Epithelial Damage in Mouse Airway Allografts. Front Immunol 2018; 9:1010. [PMID: 29881374 PMCID: PMC5976734 DOI: 10.3389/fimmu.2018.01010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Microvascular injury during acute rejection has been associated with massive infiltration of CD4+ T effector cells, and the formation of complement products (C3a and C5a). Regulatory T cells (Tregs) are potent immunosuppressors of the adaptive immune system and have proven sufficient to rescue microvascular impairments. Targeting C5a has been linked with improved microvascular recovery, but its effects on the Treg and T effector balance is less well known. Here, we demonstrate the impact of C5a blockade on Treg induction and microvascular restoration in rejecting mouse airway allografts. BALB/c→C57BL/6 allografts were treated with a C5a-neutralizing l-aptamer (10 mg/kg, i.p. at d0 and every second day thereafter), and allografts were serially monitored for Treg infiltration, tissue oxygenation (tpO2), microvascular blood flow, and functional microvasculature between donor and recipients during allograft rejection. We demonstrated that C5a blocking significantly leads to enhanced presence of Tregs in the allograft, reinstates donor-recipient functional microvasculature, improves tpO2, microvascular blood flow, and epithelial repair, followed by an upregulation of IL-5, TGF-β, IL-10 vascular endothelial growth factor, and ANGPT1 gene expression, while it maintained a healthy epithelium and prevented subepithelial collagen deposition at d28 posttransplantation. Together, these data indicate that inhibition of C5a signaling has potential to preserve microvasculature and rescue allograft from a sustained hypoxic/ischemic phase, limits airway tissue remodeling through the induction of Treg-mediated immune tolerance. These findings may be useful in designing anti-C5a therapy in combination with existing immunosuppressive regimens to rescue tissue/organ rejection.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fatimah Alanazi
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Hoffmann FM, Berger JL, Lingel I, Laumonnier Y, Lewkowich IP, Schmudde I, König P. Distribution and Interaction of Murine Pulmonary Phagocytes in the Naive and Allergic Lung. Front Immunol 2018; 9:1046. [PMID: 29868009 PMCID: PMC5964136 DOI: 10.3389/fimmu.2018.01046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/26/2018] [Indexed: 12/19/2022] Open
Abstract
The division of labor between pulmonary phagocytic subsets [macrophage/monocyte and dendritic cell (DC) subpopulations] has been described at the functional level. However, whether these lung phagocytes also display unique spatial distribution remains unclear. Here, to analyze cellular distribution in lung compartments and contacts between phagocyte subpopulations, we established an immunohistochemistry (IHC)-based method to clearly identify murine lung phagocyte subsets in situ based on differential expression of CD11c, CD11b, MHC-II, Langerin and mPDCA-1. Furthermore, we investigated subset-specific functional differences in antigen uptake and spatial changes upon allergic sensitization. Our staining allowed the distinction between alveolar macrophages (AMs), interstitial macrophage (IM) subpopulations, CD11b+ DC subpopulations, CD103+ DCs, and plasmacytoid DCs (pDCs). We identified interstitial regions between airways and around airways as regions of IM/CD11b+ DC/CD103+ DC clusters, where a subset of IMs (IM2) and CD103+ DCs formed intense contacts that decreased upon allergic sensitization. These data indicate functional interactions between both cell types either in steady state or after antigen encounter affecting the development of allergies or tolerance. Furthermore, we observed major antigen uptake in AMs and IMs rather than DC subpopulations that was not restricted to airways and adjacent areas. This will enable to focus future studies to immunologically relevant cellular interactions and to unravel which cells are tipping the balance between pro-inflammatory immune responses or tolerance.
Collapse
Affiliation(s)
- Franziska M Hoffmann
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Johann L Berger
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Imke Lingel
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
14
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
15
|
Marin AV, Cárdenas PP, Jiménez-Reinoso A, Muñoz-Ruiz M, Regueiro JR. Lymphocyte integration of complement cues. Semin Cell Dev Biol 2018; 85:132-142. [PMID: 29438807 DOI: 10.1016/j.semcdb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
We address current data, views and puzzles on the emerging topic of regulation of lymphocytes by complement proteins or fragments. Such regulation is believed to take place through complement receptors (CR) and membrane complement regulators (CReg) involved in cell function or protection, respectively, including intracellular signalling. Original observations in B cells clearly support that complement cues through CR improve their performance. Other lymphocytes likely integrate complement-derived signals, as most lymphoid cells constitutively express or regulate CR and CReg upon activation. CR-induced signals, particularly by anaphylatoxins, clearly regulate lymphoid cell function. In contrast, data obtained by CReg crosslinking using antibodies are not always confirmed in human congenital deficiencies or knock-out mice, casting doubts on their physiological relevance. Unsurprisingly, human and mouse complement systems are not completely homologous, adding further complexity to our still fragmentary understanding of complement-lymphocyte interactions.
Collapse
Affiliation(s)
- Ana V Marin
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula P Cárdenas
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Miguel Muñoz-Ruiz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Jose R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
16
|
The C5a/C5aR1 axis controls the development of experimental allergic asthma independent of LysM-expressing pulmonary immune cells. PLoS One 2017; 12:e0184956. [PMID: 28931049 PMCID: PMC5607179 DOI: 10.1371/journal.pone.0184956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
C5a regulates the development of maladaptive immune responses in allergic asthma mainly through the activation of C5a receptor 1 (C5aR1). Yet, the cell types and the mechanisms underlying this regulation are ill-defined. Recently, we described increased C5aR1 expression in lung tissue eosinophils but decreased expression in airway and pulmonary macrophages as well as in pulmonary CD11b+ conventional dendritic cells (cDCs) and monocyte-derived DCs (moDCs) during the allergic effector phase using a floxed green fluorescent protein (GFP)-C5aR1 knock-in mouse. Here, we determined the role of C5aR1 signaling in neutrophils, moDCs and macrophages for the pulmonary recruitment of such cells and the importance of C5aR1-mediated activation of LysM-expressing cells for the development of allergic asthma. We used LysM-C5aR1 KO mice with a specific deletion of C5aR1 in LysMCre-expressing cells and confirmed the specific deletion of C5aR1 in neutrophils, macrophages and moDCs in the airways and/or the lung tissue. We found that alveolar macrophage numbers were significantly increased in LysM-C5aR1 KO mice. Induction of ovalbumin (OVA)-driven experimental allergic asthma in GFP-C5aR1fl/fl and LysM-C5aR1 KO mice resulted in strong but similar airway resistance, mucus production and Th2/Th17 cytokine production. In contrast, the number of airway but not of pulmonary neutrophils was lower in LysM-C5aR1 KO as compared with GFP-C5aR1fl/fl mice. The recruitment of macrophages, cDCs, moDCs, T cells and type 2 innate lymphoid cells was not altered in LysM-C5aR1 KO mice. Our findings demonstrate that C5aR1 is critical for steady state control of alveolar macrophage numbers and the transition of neutrophils from the lung into the airways in OVA-driven allergic asthma. However, C5aR1 activation of LysM-expressing cells plays a surprisingly minor role in the recruitment and activation of such cells and the development of the allergic phenotype in OVA-driven experimental allergic asthma.
Collapse
|
17
|
Karsten CM, Wiese AV, Mey F, Figge J, Woodruff TM, Reuter T, Scurtu O, Kordowski A, Almeida LN, Briukhovetska D, Quell KM, Sun J, Ender F, Schmudde I, Vollbrandt T, Laumonnier Y, Köhl J. Monitoring C5aR2 Expression Using a Floxed tdTomato-C5aR2 Knock-In Mouse. THE JOURNAL OF IMMUNOLOGY 2017; 199:3234-3248. [PMID: 28864475 DOI: 10.4049/jimmunol.1700710] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Abstract
The biological significance of C5a receptor [(C5aR)2/C5L2], a seven-transmembrane receptor binding C5a and C5adesArg, remains ill-defined. Specific ligation of C5aR2 inhibits C5a-induced ERK1/2 activation, strengthening the view that C5aR2 regulates C5aR1-mediated effector functions. Although C5aR2 and C5aR1 are often coexpressed, a detailed picture of C5aR2 expression in murine cells and tissues is still lacking. To close this gap, we generated a floxed tandem dye (td)Tomato-C5aR2 knock-in mouse that we used to track C5aR2 expression in tissue-residing and circulating immune cells. We found the strongest C5aR2 expression in the brain, bone marrow, and airways. All myeloid-derived cells expressed C5aR2, although with different intensities. C5aR2 expression in blood and tissue neutrophils was strong and homogeneous. Specific ligation of C5aR2 in neutrophils from tdTomato-C5aR2 mice blocked C5a-driven ERK1/2 phosphorylation, demonstrating functionality of C5aR2 in the reporter mice. In contrast to neutrophils, we found tissue-specific differences in C5aR2 expression in eosinophils, macrophages, and dendritic cell subsets. Naive and activated T cells stained negative for C5aR2, whereas B cells from different tissues homogeneously expressed C5aR2. Also, NK cell subsets in blood and spleen strongly expressed C5aR2. Activation of C5aR2 in NK cells suppressed IL-12/IL-18-induced IFN-γ production. Intratracheal IL-33 challenge resulted in decreased C5aR2 expression in pulmonary eosinophils and monocyte-derived dendritic cells. In summary, we provide a detailed map of murine C5aR2 immune cell expression in different tissues under steady-state conditions and upon pulmonary inflammation. The C5aR2 knock-in mouse will help to reliably track and conditionally delete C5aR2 expression in experimental models of inflammation.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany;
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fabian Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Julia Figge
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tom Reuter
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Olga Scurtu
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, Lübeck 23562, Germany; and
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany; .,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH 45229
| |
Collapse
|
18
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|