1
|
Urcar Gelen S, Ozkanlar S, Gedikli S, Atasever M. The investigation of the effects of monosodium glutamate on healthy rats and rats with STZ-induced diabetes. J Biochem Mol Toxicol 2024; 38:e23612. [PMID: 38084638 DOI: 10.1002/jbt.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
Monosodium glutamate (MSG, E621) is a flavor-enhancing food additive used widely in the food preparation industry and consumed regularly. It is considered that long-term consumption of MSG causes metabolic syndrome and obesity. Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood sugar, polyuria, polydipsia, and polyphagia, in which insulin secreted from pancreatic β cells is inadequate for maintaining blood glucose homeostasis. Rats were application 65 mg/kg streptozotocin (STZ) solution intraperitoneally and a diabetes model was created. For this purpose, freshly prepared STZ was injected into the peritoneum. Tumor necrosis factor-α, interleukin (IL)-10, IL-6, and IL-1β levels in STZ, MSG, and STZ + MSG groups were found to be significantly increased in inflammation parameters measured on the 28th day of administration when compared to the Control Group (p < 0.001). Also, although malondialdehyde (MDA) levels increased significantly in the STZ + MSG group when compared to the control group (p < 0.001), glutathione (GSH), and superoxide dismutase (SOD) levels were significantly decreased in the STZ, MSG, and STZ + MSG groups when compared to the control group (p < 0.001). Also, although glucose levels increased significantly in STZ and STZ + MSG at the end of the 28th day (p < 0.01), insulin levels decreased in STZ, MSG, and STZ + MSG groups when compared to the control groups (p < 0.01). As a result, it was found that STZ and MSG application significantly increased cytokine production, increased MDA, which is an oxidant parameter in pancreatic tissue, and decreased antioxidants (GSH and SOD) when compared to the control groups. It was also found that MSG disrupted the normal histological structure in pancreatic cells, and the damage was much more in both exocrine and endocrine pancreatic areas in the STZ + MSG group when compared to the STZ and MSG groups. It was considered that with the increased use of MSG, the susceptibility to DM might increase along with tissue damage significantly in diabetic groups, therefore, MSG must be used in a limited and controlled manner.
Collapse
Affiliation(s)
- Sevda Urcar Gelen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Atasever
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Amado NJ, Hanselman EC, Harmon CP, Deng D, Alarcon SM, Sharples AA, Breslin PAS. Ribonucleotides differentially modulate oral glutamate detection thresholds. Chem Senses 2024; 49:bjad049. [PMID: 38197318 PMCID: PMC10824162 DOI: 10.1093/chemse/bjad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 01/11/2024] Open
Abstract
The savory or umami taste of the amino acid glutamate is synergistically enhanced by the addition of the purines inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) disodium salt. We hypothesized that the addition of purinergic ribonucleotides, along with the pyrimidine ribonucleotides, would decrease the absolute detection threshold of (increase sensitivity to) l-glutamic acid potassium salt (MPG). To test this, we measured both the absolute detection threshold of MPG alone and with a background level (3 mM) of 5 different 5'-ribonucleotides. The addition of the 3 purines IMP, GMP, and adenosine 5'-monophosphate (AMP) lowered the MPG threshold in all participants (P < 0.001), indicating they are positive modulators or enhancers of glutamate taste. The average detection threshold of MPG was 2.08 mM, and with the addition of IMP, the threshold was decreased by approximately 1.5 orders of magnitude to 0.046 mM. In contrast to the purines, the pyrimidines uridine 5'-monophosphate (UMP) and cytidine 5'-monophosphate (CMP) yielded different results. CMP reliably raised glutamate thresholds in 10 of 17 subjects, suggesting it is a negative modulator or diminisher of glutamate taste for them. The rank order of effects on increasing sensitivity to glutamate was IMP > GMP> AMP >> UMP// CMP. These data confirm that ribonucleotides are modulators of glutamate taste, with purines enhancing sensitivity and pyrimidines displaying variable and even negative modulatory effects. Our ability to detect the co-occurrence of glutamate and purines is meaningful as both are relatively high in evolutionarily important sources of nutrition, such as insects and fermented foods.
Collapse
Affiliation(s)
- Nicholas J Amado
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Emily C Hanselman
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Caroline P Harmon
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Suzanne M Alarcon
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
- AUGenomics, 9276 Scranton Rd, Suite 200, San Diego, CA 92121, United States
| | - Ashley A Sharples
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
- Ocean University Medical Center, 425 Jack Martin Blvd, Brick, NJ 08724, United States
| | - Paul A S Breslin
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Shosha HM, Ebaid HM, Toraih EA, Abdelrazek HMA, Elrayess RA. Effect of monosodium glutamate on fetal development and progesterone level in pregnant Wistar Albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49779-49797. [PMID: 36787072 PMCID: PMC10104942 DOI: 10.1007/s11356-023-25661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Monosodium glutamate (MSG) is a widespread flavor enhancer and stabilizer in manufactured or packaged foods that possess myriad adverse effects. This study aimed to evaluate the effect of MSG on placental progesterone receptors and fetal development. Thirty pregnant Wistar Albino rats were divided into three groups (ten/each). The control group (G1) gavaged distilled water only, low-dose treated group (G2) gavaged 3 g/kg MSG, and high-dose treated group (G3) gavaged 6 g/kg MSG from 1st to 18th days of gestation, and all pregnant rats were sacrificed on the 19th day of gestation. The effect of MSG on fetal weights, crown vertebral length (CVL), placental weight, placental ghrelin expression, and fetal skeleton examination were estimated. MSG induced a significant decrease in fetal weights, CVL lengths, placental weight, and ghrelin expression in both treatment groups compared to the control group. Several parts of the fetal skeleton showed incomplete ossification and delayed chondrification in which high-dose maternally treated fetuses were more affected. Many degenerative changes were detected in both maternal and fetal liver and kidney tissues in MSG-treated groups. Moreover, MSG caused a significant increase in serum ALT, ALP, and creatinine levels in pregnant rats' blood. Serum progesterone was only elevated in G3 on the 19th day of gestation. This study showed that the administration of MSG during pregnancy adversely influences fetal growth and skeletal development and caused several biochemical and histological changes in the maternal and fetal liver and kidney tissues which assure the toxic and teratogenic effects of MSG.
Collapse
Affiliation(s)
- Hadeer M Shosha
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt
| | - Hala M Ebaid
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ranwa A Elrayess
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
4
|
Xie F, Shen J, Liu T, Zhou M, Johnston LJ, Zhao J, Zhang H, Ma X. Sensation of dietary nutrients by gut taste receptors and its mechanisms. Crit Rev Food Sci Nutr 2022; 63:5594-5607. [PMID: 34978220 DOI: 10.1080/10408398.2021.2021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nutrients sensing is crucial for fundamental metabolism and physiological functions, and it is also an essential component for maintaining body homeostasis. Traditionally, basic taste receptors exist in oral cavity to sense sour, sweet, bitter, umami, salty and et al. Recent studies indicate that gut can sense the composition of nutrients by activating relevant taste receptors, thereby exerting specific direct or indirect effects. Gut taste receptors, also named as intestinal nutrition receptors, including at least bitter, sweet and umami receptors, have been considered to be activated by certain nutrients and participate in important intestinal physiological activities such as eating behavior, intestinal motility, nutrient absorption and metabolism. Additionally, gut taste receptors can regulate appetite and body weight, as well as maintain homeostasis via targeting hormone secretion or regulating the gut microbiota. On the other hand, malfunction of gut taste receptors may lead to digestive disorders, and then result in obesity, type 2 diabetes and gastrointestinal diseases. At present, researchers have confirmed that the brain-gut axis may play indispensable roles in these diseases via the secretion of brain-gut peptides, but the mechanism is still not clear. In this review, we summarize the current observation of knowledge in gut taste systems in order to shed light on revealing their important nutritional functions and promoting clinical implications.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Abstract
Umami, the fifth taste, has been recognized as a legitimate taste modality only recently relative to the other tastes. Dozens of compounds from vastly different chemical classes elicit a savory (also called umami) taste. The prototypical umami substance glutamic acid or its salt monosodium glutamate (MSG) is present in numerous savory food sources or ingredients such as kombu (edible kelp), beans, soy sauce, tomatoes, cheeses, mushrooms, and certain meats and fish. Derivatives of glutamate (Glu), other amino acids, nucleotides, and small peptides can also elicit or modulate umami taste. In addition, many potent umami tasting compounds structurally unrelated to amino acids, nucleotides, and MSG have been either synthesized or discovered as naturally occurring in plants and other substances. Over the last 20 years several receptors have been suggested to mediate umami taste, including members of the metabotropic and ionotropic Glu receptor families, and more recently, the heterodimeric G protein-coupled receptor, T1R1/T1R3. Careful assessment of representative umami tasting molecules from several different chemical classes shows activation of T1R1/T1R3 with the expected rank order of potency in cell-based assays. Moreover, 5'-ribonucleotides, molecules known to enhance the savory note of Glu, considerably enhance the effect of MSG on T1R1/T1R3 in vitro. Binding sites are found on at least 4 distinct locations on T1R1/T1R3, explaining the propensity of the receptor to being activated or modulated by many structurally distinct compounds and these binding sites allosterically interact to modulate receptor activity. Activation of T1R1/T1R3 by all known umami substances evaluated and the receptor's pharmacological properties are sufficient to explain the basic human sensory experience of savory taste and it is therefore unlikely that other receptors are involved.
Collapse
|
6
|
Huang Y, Duan W, Xiao J, Liu H, Zhou C, Zhang Y, Tang Y, Sun B, Li Z. Characterization of the taste compounds in 20 pungent spices by high-performance liquid chromatography. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00768-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractHigh-performance liquid chromatography was used to determine the important taste compounds in 20 pungent spices commonly used in food, including seventeen free amino acids, four 5′-nucleotides and twelve organic acids. The equivalent umami concentration (EUC) and taste activity value (TAV) of the analyzed samples were calculated. The results showed that the content of total free amino acids ranged from 0.57 to 46.67 g/kg in 20 pungent spices. The content of total free amino acids in horseradish was the highest. The content of total 5′-nucleotides ranged from 0.80 to 4.30 g/kg, and chive contains the highest 5′-nucleotide content. Inosine 5′-monophosphate was detected in all 20 pungent spices. The content of total organic acids ranged from 9.37 to 339.58 g/kg. The total organic acids content of fieldmint was the highest (339.58 g/kg). Oxalic acid was detected in 18 pungent spices, except white pepper and chilli. The EUC of fieldmint (37.1 g MSG/100 g) was the highest in all 20 pungent spices, followed with peppermint (24.5 g MSG/100 g), and horseradish (18.4 g MSG/100 g). The TAVs of malic acid, lactic acid and 5′-AMP were higher than 1 in more than 10 spices. Lactic acid were higher than 1 in 13 spices, implying these compounds contributed greater to the flavor of pungent spices. The results of this work will provide references for the application value of pungent spices.
Collapse
|
7
|
|
8
|
Abstract
AbstractA major challenge in taste research is to overcome the flavour imperfections in food products and to build nutritious strategies to combat against obesity as well as other related metabolic syndromes. The field of molecular taste research and chemical senses has contributed to an enormous development in understanding the taste receptors and mechanisms of taste perception. Accordingly, the development of taste-modifying compounds or taste modulators that alter the perception of basic taste modalities has gained significant prominence in the recent past. The beneficial aspects of these substances are overwhelming while considering their potential taste-modifying properties. The objective of the present review is to provide an impression about the taste-modulating compounds and their distinctive taste-modifying properties with reference to their targets and proposed mechanisms of action. The present review also makes an effort to discuss the basic mechanism involved in oro-gustatory taste perception as well as on the effector molecules involved in signal transduction downstream to the activation of taste receptors.
Collapse
|
9
|
Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18:1111-1134. [PMID: 31920467 PMCID: PMC6952072 DOI: 10.1111/1541-4337.12448] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Monosodium glutamate (MSG) is an umami substance widely used as flavor enhancer. Although it is generally recognized as being safe by food safety regulatory agencies, several studies have questioned its long-term safety. The purpose of this review was to survey the available literature on preclinical studies and clinical trials regarding the alleged adverse effects of MSG. Here, we aim to provide a comprehensive overview of the reported possible risks that may potentially arise following chronic exposure. Furthermore, we intend to critically evaluate the relevance of this data for dietary human intake. Preclinical studies have associated MSG administration with cardiotoxicity, hepatotoxicity, neurotoxicity, low-grade inflammation, metabolic disarray and premalignant alterations, along with behavioral changes. Moreover, links between MSG consumption and tumorigenesis, increased oxidative stress and apoptosis in thymocytes, as well as genotoxic effects in lymphocytes have been reported. However, in reviewing the available literature, we detected several methodological flaws, which led us to conclude that these studies have limited relevance for extrapolation to dietary human intakes of MSG risk exposure. Clinical trials have focused mainly on the effects of MSG on food intake and energy expenditure. Besides its well-known impact on food palatability, MSG enhances salivary secretion and interferes with carbohydrate metabolism, while the impact on satiety and post-meal recovery of hunger varied in relation to meal composition. Reports on MSG hypersensitivity, also known as 'Chinese restaurant syndrome', or links of its use to increased pain sensitivity and atopic dermatitis were found to have little supporting evidence. Based on the available literature, we conclude that further clinical and epidemiological studies are needed, with an appropriate design, accounting for both added and naturally occurring dietary MSG. Critical analysis of existing literature, establishes that many of the reported negative health effects of MSG have little relevance for chronic human exposure and are poorly informative as they are based on excessive dosing that does not meet with levels normally consumed in food products.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
| | - George M. Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Aris Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Dimitrios Tsoukalas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
- Metabolomic Medicine Clinic, Athens 10674, Greece
| | - Ayse B. Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara 06330, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10463, USA
| | - Denisa Margină
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
10
|
Luddi A, Governini L, Wilmskötter D, Gudermann T, Boekhoff I, Piomboni P. Taste Receptors: New Players in Sperm Biology. Int J Mol Sci 2019; 20:E967. [PMID: 30813355 PMCID: PMC6413048 DOI: 10.3390/ijms20040967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Taste receptors were first described as sensory receptors located on the tongue, where they are expressed in small clusters of specialized epithelial cells. However, more studies were published in recent years pointing to an expression of these proteins not only in the oral cavity but throughout the body and thus to a physiological role beyond the tongue. The recent observation that taste receptors and components of the coupled taste transduction cascade are also expressed during the different phases of spermatogenesis as well as in mature spermatozoa from mouse to humans and the overlap between the ligand spectrum of taste receptors with compounds in the male and female reproductive organs makes it reasonable to assume that sperm "taste" these different cues in their natural microenvironments. This assumption is assisted by the recent observations of a reproductive phenotype of different mouse lines carrying a targeted deletion of a taste receptor gene as well as the finding of a significant correlation between human male infertility and some polymorphisms in taste receptors genes. In this review, we depict recent findings on the role of taste receptors in male fertility, especially focusing on their possible involvement in mechanisms underlying spermatogenesis and post testicular sperm maturation. We also highlight the impact of genetic deletions of taste receptors, as well as their polymorphisms on male reproduction.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Dorke Wilmskötter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Ingrid Boekhoff
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| |
Collapse
|