1
|
Mina JG, Parthasarathy A, Porta EO, Denny PW, Kalesh K. BONCAT-iTRAQ Labelling Reveals Molecular Markers of Adaptive Responses in Toxoplasma gondii to Pyrimethamine Treatment. Pathogens 2024; 13:879. [PMID: 39452750 PMCID: PMC11510713 DOI: 10.3390/pathogens13100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
We employed a BONCAT-iTRAQ labelling approach to investigate newly synthesised proteins (NSPs) in Toxoplasma gondii subjected to varying concentrations of the antifolate drug pyrimethamine. Our results reveal that numerous NSPs exhibited altered expression levels in response to the drug, with significant upregulation observed at higher concentrations. Key proteins involved in protein synthesis, stress responses, energy metabolism, and cytoskeletal dynamics were identified, indicating that T. gondii undergoes complex adaptive responses to pyrimethamine treatment. While some of the identified pathways reflect a generic stress response, this study provides important molecular markers and mechanistic insights specific to the parasite's adaptation strategies. These findings contribute to understanding how T. gondii modulates its proteome in response to drug-induced stress and lay the groundwork for further investigations into potential therapeutic targets.
Collapse
Affiliation(s)
- John G. Mina
- Syngenta International Research Centre, Jealott’s Hall, Bracknell, Berkshire RG42 6EY, UK;
| | - Anutthaman Parthasarathy
- School of Chemistry and Life Sciences, Richmond Building, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Paul W. Denny
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, 38 John Dixon Lane, Darlington DL1 1HG, UK
| |
Collapse
|
2
|
Seizova S, Ferrel A, Boothroyd J, Tonkin CJ. Toxoplasma protein export and effector function. Nat Microbiol 2024; 9:17-28. [PMID: 38172621 DOI: 10.1038/s41564-023-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite with a considerable host range that must invade the cells of warm-blooded hosts to survive and replicate. The challenges and opportunities that such a strategy represent have been met by the evolution of effectors that are delivered into host cells, counter host defences and co-opt host cell functions for their own purposes. These effectors are delivered in two waves using distinct machinery for each. In this Review, we focus on understanding the architecture of these protein-export systems and how their protein cargo is recognized and selected. We discuss the recent findings on the role that host manipulation has in latent Toxoplasma infections. We also discuss how these recent findings compare to protein export in the related Plasmodium spp. (the causative agent of malaria) and how this can inform our understanding of host manipulation in the larger Apicomplexa phylum and its evolution.
Collapse
Affiliation(s)
- Simona Seizova
- School of Life Sciences, The University of Dundee, Dundee, UK
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - John Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Alonso AM, Diambra L. Dicodon-based measures for modeling gene expression. Bioinformatics 2023; 39:btad380. [PMID: 37307098 PMCID: PMC10287933 DOI: 10.1093/bioinformatics/btad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023] Open
Abstract
MOTIVATION Codon usage preference patterns have been associated with modulation of translation efficiency, protein folding, and mRNA decay. However, new studies support that codon pair usage has also a remarkable effect at the gene expression level. Here, we expand the concept of CAI to answer if codon pair usage patterns can be understood in terms of codon usage bias, or if they offer new information regarding coding translation efficiency. RESULTS Through the implementation of a weighting strategy to consider the dicodon contributions, we observe that the dicodon-based measure has greater correlations with gene expression level than CAI. Interestingly, we have noted that dicodons associated with a low value of adaptiveness are related to dicodons which mediate strong translational inhibition in yeast. We have also noticed that some codon-pairs have a smaller dicodon contribution than estimated by the product of the respective codon contributions. AVAILABILITY AND IMPLEMENTATION Scripts, implemented in Python, are freely available for download at https://zenodo.org/record/7738276#.ZBIDBtLMIdU.
Collapse
Affiliation(s)
- Andres M Alonso
- Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino km 8.2, Chascomús, 7130 Provincia de Buenos Aires, Argentina
- CCT-La Plata, CONICET, Calle 8 Nº 1467, La Plata, B1904CMC Provincia de Buenos Aires, Argentina
| | - Luis Diambra
- CCT-La Plata, CONICET, Calle 8 Nº 1467, La Plata, B1904CMC Provincia de Buenos Aires, Argentina
- Centro Regional de Estudios Genómicos, FCE-UNLP, Blvd 120 N∘ 1461, La Plata, 1900 Provincia de Buenos Aires, Argentina
| |
Collapse
|
4
|
Goodswen SJ, Kennedy PJ, Ellis JT. A state-of-the-art methodology for high-throughput in silico vaccine discovery against protozoan parasites and exemplified with discovered candidates for Toxoplasma gondii. Sci Rep 2023; 13:8243. [PMID: 37217589 DOI: 10.1038/s41598-023-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Vaccine discovery against eukaryotic parasites is not trivial as highlighted by the limited number of known vaccines compared to the number of protozoal diseases that need one. Only three of 17 priority diseases have commercial vaccines. Live and attenuated vaccines have proved to be more effective than subunit vaccines but adversely pose more unacceptable risks. One promising approach for subunit vaccines is in silico vaccine discovery, which predicts protein vaccine candidates given thousands of target organism protein sequences. This approach, nonetheless, is an overarching concept with no standardised guidebook on implementation. No known subunit vaccines against protozoan parasites exist as a result of this approach, and consequently none to emulate. The study goal was to combine current in silico discovery knowledge specific to protozoan parasites and develop a workflow representing a state-of-the-art approach. This approach reflectively integrates a parasite's biology, a host's immune system defences, and importantly, bioinformatics programs needed to predict vaccine candidates. To demonstrate the workflow effectiveness, every Toxoplasma gondii protein was ranked in its capacity to provide long-term protective immunity. Although testing in animal models is required to validate these predictions, most of the top ranked candidates are supported by publications reinforcing our confidence in the approach.
Collapse
Affiliation(s)
- Stephen J Goodswen
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Paul J Kennedy
- School of Computer Science, Faculty of Engineering and Information Technology and the Australian Artificial Intelligence Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - John T Ellis
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
5
|
Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Microorganisms 2023; 11:1195. [PMID: 37317169 PMCID: PMC10222646 DOI: 10.3390/microorganisms11051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.
Collapse
Affiliation(s)
- Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Guodong Niu
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jun Li
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Toxoplasma IWS1 Determines Fitness in Interferon-γ-Activated Host Cells and Mice by Indirectly Regulating ROP18 mRNA Expression. mBio 2023; 14:e0325622. [PMID: 36715543 PMCID: PMC9973038 DOI: 10.1128/mbio.03256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Toxoplasma gondii secretes various virulence effector molecules into host cells to disrupt host interferon-γ (IFN-γ)-dependent immunity. Among these effectors, ROP18 directly phosphorylates and inactivates IFN-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), leading to the subversion of IFN-inducible GTPase-induced cell-autonomous immunity. The modes of action of ROP18 have been studied extensively; however, little is known about the molecular mechanisms by which ROP18 is produced in the parasite itself. Here, we report the role of T. gondii transcription factor IWS1 in ROP18 mRNA expression in the parasite. Compared with wild-type virulent type I T. gondii, IWS1-deficient parasites showed dramatically increased loading of IRGs and GBPs onto the parasitophorous vacuole membrane (PVM). Moreover, IWS1-deficient parasites displayed decreased virulence in wild-type mice but retained normal virulence in mice lacking the IFN-γ receptor. Furthermore, IWS1-deficient parasites showed severely decreased ROP18 mRNA expression; however, tagged IWS1 did not directly bind with genomic regions of the ROP18 locus. Ectopic expression of ROP18 in IWS1-deficient parasites restored the decreased loading of effectors onto the PVM and in vivo virulence in wild-type mice. Taken together, these data demonstrate that T. gondii IWS1 indirectly regulates ROP18 mRNA expression to determine fitness in IFN-γ-activated host cells and mice. IMPORTANCE The parasite Toxoplasma gondii has a counterdefense system against interferon-γ (IFN-γ)-dependent host immunity which relies on the secretion of parasite effector proteins. ROP18 is one of the effector, which is released into host cells to inactivate IFN-γ-dependent anti-Toxoplasma host proteins. The mechanism by which Toxoplasma ROP18 subverts host immunity has been extensively analyzed, but how Toxoplasma produces this virulence factor remains unclear. Here, we show that Toxoplasma transcription factor IWS1 is important for ROP18 mRNA expression in the parasite. Loss of IWS1 from virulent Toxoplasma leads to dramatically decreased ROP18 mRNA expression, resulting in profoundly decreased virulence due to greater activity of IFN-γ-dependent host immune responses. Thus, Toxoplasma prepares the critical virulence factor ROP18 via an IWS1-dependent system to negate IFN-γ-dependent antiparasitic immunity and thus survive in the host.
Collapse
|
7
|
Warschkau D, Seeber F. Advances towards the complete in vitro life cycle of Toxoplasma gondii. Fac Rev 2023; 12:1. [PMID: 36846606 PMCID: PMC9944905 DOI: 10.12703/r/12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts (bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle in vitro.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
8
|
Qiu ZE, Chen L, Hou XC, Sheng J, Xu JB, Xu JW, Gao DD, Huang ZX, Lei TL, Huang ZY, Peng L, Yang HL, Lin QH, Zhu YX, Guan WJ, Lun ZR, Zhou WL, Zhang YL. Toxoplasma gondii infection triggers ongoing inflammation mediated by increased intracellular Cl - concentration in airway epithelium. J Infect 2023; 86:47-59. [PMID: 36334726 DOI: 10.1016/j.jinf.2022.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P. R. China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
9
|
Augusto L, Wek RC, Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion. Mol Microbiol 2021; 115:839-848. [PMID: 33118234 PMCID: PMC9364677 DOI: 10.1111/mmi.14634] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
The intracellular parasite Toxoplasma gondii infects nucleated cells in virtually all warm-blooded vertebrates, including one-third of the human population. While immunocompetent hosts do not typically show symptoms of acute infection, parasites are retained in latent tissue cysts that can be reactivated upon immune suppression, potentially damaging key organ systems. Toxoplasma has a multistage life cycle that is intimately linked to environmental stresses and host signals. As this protozoan pathogen is transmitted between multiple hosts and tissues, it evaluates these external signals to appropriately differentiate into distinct life cycle stages, such as the transition from its replicative stage (tachyzoite) to the latent stage (bradyzoite) that persists as tissue cysts. Additionally, in the gut of its definitive host, felines, Toxoplasma converts into gametocytes that produce infectious oocysts (sporozoites) that are expelled into the environment. In this review, we highlight recent advances that have illuminated the interfaces between Toxoplasma and host and how these interactions control parasite stage conversion. Mechanisms underlying these stage transitions are important targets for therapeutic intervention aimed at thwarting parasite transmission and pathogenesis.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Ronald C. Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
10
|
Chiebao DP, Bartley PM, Chianini F, Black LE, Burrells A, Pena HFJ, Soares RM, Innes EA, Katzer F. Early immune responses and parasite tissue distribution in mice experimentally infected with oocysts of either archetypal or non-archetypal genotypes of Toxoplasma gondii. Parasitology 2021; 148:464-476. [PMID: 33315001 PMCID: PMC11010124 DOI: 10.1017/s0031182020002346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 8–11 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.
Collapse
Affiliation(s)
- Daniela P. Chiebao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Paul M. Bartley
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Lauren E. Black
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Alison Burrells
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Hilda F. J. Pena
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Rodrigo M. Soares
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Elisabeth A. Innes
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Frank Katzer
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| |
Collapse
|
11
|
Sharma J, Rodriguez P, Roy P, Guiton PS. Transcriptional ups and downs: patterns of gene expression in the life cycle of Toxoplasma gondii. Microbes Infect 2020; 22:525-533. [PMID: 32931908 DOI: 10.1016/j.micinf.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii reproduces sexually in felines and asexually in virtually all warm-blooded animals, including humans. This obligate intracellular parasite alternates between biologically distinct developmental stages throughout its complex life cycle. Stage conversion is crucial for T. gondii transmission, persistence, and the maintenance of genetic diversity within the species. Genome-wide comparative transcriptomic studies have contributed invaluable insights into the regulatory gene networks underlying T. gondii development.
Collapse
Affiliation(s)
- Janak Sharma
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Paula Rodriguez
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Proyasha Roy
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Pascale S Guiton
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| |
Collapse
|
12
|
Azoulay E, Russell L, Van de Louw A, Metaxa V, Bauer P, Povoa P, Montero JG, Loeches IM, Mehta S, Puxty K, Schellongowski P, Rello J, Mokart D, Lemiale V, Mirouse A. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med 2020; 46:298-314. [PMID: 32034433 PMCID: PMC7080052 DOI: 10.1007/s00134-019-05906-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
An increasing number of critically ill patients are immunocompromised. Acute hypoxemic respiratory failure (ARF), chiefly due to pulmonary infection, is the leading reason for ICU admission. Identifying the cause of ARF increases the chances of survival, but may be extremely challenging, as the underlying disease, treatments, and infection combine to create complex clinical pictures. In addition, there may be more than one infectious agent, and the pulmonary manifestations may be related to both infectious and non-infectious insults. Clinically or microbiologically documented bacterial pneumonia accounts for one-third of cases of ARF in immunocompromised patients. Early antibiotic therapy is recommended but decreases the chances of identifying the causative organism(s) to about 50%. Viruses are the second most common cause of severe respiratory infections. Positive tests for a virus in respiratory samples do not necessarily indicate a role for the virus in the current acute illness. Invasive fungal infections (Aspergillus, Mucorales, and Pneumocystis jirovecii) account for about 15% of severe respiratory infections, whereas parasites rarely cause severe acute infections in immunocompromised patients. This review focuses on the diagnosis of severe respiratory infections in immunocompromised patients. Special attention is given to newly validated diagnostic tests designed to be used on non-invasive samples or bronchoalveolar lavage fluid and capable of increasing the likelihood of an early etiological diagnosis.
Collapse
Affiliation(s)
- Elie Azoulay
- Médecine Intensive et Réanimation, APHP, Saint-Louis Hospital and Paris University, Paris, France.
- Université de Paris, Paris, France.
| | - Lene Russell
- Department of Intensive Care, Rigshospitalet and Copenhagen Academy for Medical Simulation and Education, University of Copenhagen, Copenhagen, Denmark
| | - Andry Van de Louw
- Division of Pulmonary and Critical Care, Penn State University College of Medicine, Hershey, PA, USA
| | - Victoria Metaxa
- Department of Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | - Philippe Bauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pedro Povoa
- Polyvalent Intensive Care Unit, Hospital de São Francisco Xavier, NOVA Medical School, New University of Lisbon, Lisbon, Portugal
| | - José Garnacho Montero
- Intensive Care Clinical Unit, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Ignacio Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, St James Street, Dublin 8, Ireland
| | - Sangeeta Mehta
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - Kathryn Puxty
- Department of Intensive Care, Glasgow Royal Infirmary, Glasgow, UK
| | - Peter Schellongowski
- Department of Medicine I, Intensive Care Unit 13i2, Comprehensive Cancer Center, Center of Excellence in Medical Intensive Care (CEMIC), Medical University of Vienna, Vienna, Austria
| | - Jordi Rello
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto Salud Carlos III, Madrid, Spain
- CRIPS Department, Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
| | - Djamel Mokart
- Critical Care Department, Institut Paoli Calmettes, Marseille, France
| | - Virginie Lemiale
- Médecine Intensive et Réanimation, APHP, Saint-Louis Hospital and Paris University, Paris, France
| | - Adrien Mirouse
- Médecine Intensive et Réanimation, APHP, Saint-Louis Hospital and Paris University, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
13
|
Martorelli Di Genova B, Wilson SK, Dubey JP, Knoll LJ. Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. PLoS Biol 2019; 17:e3000364. [PMID: 31430281 PMCID: PMC6701743 DOI: 10.1371/journal.pbio.3000364] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023] Open
Abstract
Many eukaryotic microbes have complex life cycles that include both sexual and asexual phases with strict species specificity. Whereas the asexual cycle of the protistan parasite Toxoplasma gondii can occur in any warm-blooded mammal, the sexual cycle is restricted to the feline intestine. The molecular determinants that identify cats as the definitive host for T. gondii are unknown. Here, we defined the mechanism of species specificity for T. gondii sexual development and break the species barrier to allow the sexual cycle to occur in mice. We determined that T. gondii sexual development occurs when cultured feline intestinal epithelial cells are supplemented with linoleic acid. Felines are the only mammals that lack delta-6-desaturase activity in their intestines, which is required for linoleic acid metabolism, resulting in systemic excess of linoleic acid. We found that inhibition of murine delta-6-desaturase and supplementation of their diet with linoleic acid allowed T. gondii sexual development in mice. This mechanism of species specificity is the first defined for a parasite sexual cycle. This work highlights how host diet and metabolism shape coevolution with microbes. The key to unlocking the species boundaries for other eukaryotic microbes may also rely on the lipid composition of their environments as we see increasing evidence for the importance of host lipid metabolism during parasitic lifecycles. Pregnant women are advised against handling cat litter, as maternal infection with T. gondii can be transmitted to the fetus with potentially lethal outcomes. Knowing the molecular components that create a conducive environment for T. gondii sexual reproduction will allow for development of therapeutics that prevent shedding of T. gondii parasites. Finally, given the current reliance on companion animals to study T. gondii sexual development, this work will allow the T. gondii field to use of alternative models in future studies.
Collapse
Affiliation(s)
- Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Xu X, Jin L, Jiang T, Lu Y, Aosai F, Piao HN, Xu GH, Jin CH, Jin XJ, Ma J, Piao LX. Ginsenoside Rh2 attenuates microglial activation against toxoplasmic encephalitis via TLR4/NF-κB signaling pathway. J Ginseng Res 2019; 44:704-716. [PMID: 32913400 PMCID: PMC7471213 DOI: 10.1016/j.jgr.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Ginsenoside Rh2 (GRh2) is a characterized component in red ginseng widely used in Korea and China. GRh2 exhibits a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, and anticancer properties. However, its effects on Toxoplasma gondii (T. gondii) infection have not been clarified yet. Methods The effect of GRh2 against T. gondii was assessed under in vitro and in vivo experiments. The BV2 cells were infected with tachyzoites of T. gondii RH strain, and the effects of GRh2 were evaluated by MTT assay, morphological observations, immunofluorescence staining, a trypan blue exclusion assay, reverse transcription PCR, and Western blot analyses. The in vivo experiment was conducted with BALB/c mice inoculated with lethal amounts of tachyzoites with or without GRh2 treatment. Results and conclusion The GRh2 treatment significantly inhibited the proliferation of T. gondii under in vitro and in vivo studies. Furthermore, GRh2 blocked the activation of microglia and specifically decreased the release of inflammatory mediators in response to T. gondii infection through TLR4/NF-κB signaling pathway. In mice, GRh2 conferred modest protection from a lethal dose of T. gondii. After the treatment, the proliferation of tachyzoites in the peritoneal cavity of infected mice markedly decreased. Moreover, GRh2 also significantly decreased the T. gondii burden in mouse brain tissues. These findings indicate that GRh2 exhibits an anti–T. gondii effect and inhibits the microglial activation through TLR4/NF-κB signaling pathway, providing the basic pharmacological basis for the development of new drugs to treat toxoplasmic encephalitis.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Lan Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Tong Jiang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Ying Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
15
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
16
|
Wang M, Zhang FK, Elsheikha HM, Zhang NZ, He JJ, Luo JX, Zhu XQ. Transcriptomic insights into the early host-pathogen interaction of cat intestine with Toxoplasma gondii. Parasit Vectors 2018; 11:592. [PMID: 30428922 PMCID: PMC6236892 DOI: 10.1186/s13071-018-3179-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although sexual reproduction of the parasite Toxoplasma gondii exclusively occurs in the cat intestine, knowledge about the alteration of gene expression in the intestine of cats infected with T. gondii is still limited. Here, we investigated the temporal transcriptional changes that occur in the cat intestine during T. gondii infection. Methods Cats were infected with 100 T. gondii cysts and their intestines were collected at 6, 12, 18, 24, 72 and 96 hours post-infection (hpi). RNA sequencing (RNA-Seq) Illumina technology was used to gain insight into the spectrum of genes that are differentially expressed due to infection. Quantitative RT-PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. Results Our transcriptome analysis revealed 2363 DEGs that were clustered into six unique patterns of gene expression across all the time points after infection. Our analysis revealed 56, 184, 404, 508, 400 and 811 DEGs in infected intestines compared to uninfected controls at 6, 12, 18, 24, 72 and 96 hpi, respectively. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in catalytic activity and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the intestine of infected cats evolve over the course of infection, and the largest difference in the enriched pathways was observed at 96 hpi. The anti-T. gondii defense response of the feline host was mediated by Major Histocompatibility Complex class I, proteasomes, heat-shock proteins and fatty acid binding proteins. Conclusions This study revealed novel host factors, which may be critical for the successful establishment of an intracellular niche during T. gondii infection in the definitive feline host. Electronic supplementary material The online version of this article (10.1186/s13071-018-3179-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
17
|
Cong W, Dottorini T, Khan F, Emes RD, Zhang FK, Zhou CX, He JJ, Zhang XX, Elsheikha HM, Zhu XQ. Acute Toxoplasma Gondii Infection in Cats Induced Tissue-Specific Transcriptional Response Dominated by Immune Signatures. Front Immunol 2018; 9:2403. [PMID: 30405608 PMCID: PMC6202952 DOI: 10.3389/fimmu.2018.02403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
RNA-sequencing was used to detect transcriptional changes in six tissues of cats, seven days after T. gondii infection. A total of 737 genes were differentially expressed (DEGs), of which 410 were up-regulated and 327 were down-regulated. The liver exhibited 151 DEGs, lung (149 DEGs), small intestine (130 DEGs), heart (123 DEGs), brain (104 DEGs), and spleen (80 DEGs)-suggesting tissue-specific transcriptional patterns. Gene ontology and KEGG analyses identified DEGs enriched in immune pathways, such as cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, MAPK signaling pathway, T cell receptor signaling pathway, and the cytosolic DNA sensing pathway. C-X-C motif chemokine 10 (CXCL10) was involved in most of the immune-related pathways. PI3K/Akt expression was down-regulated in all tissues, except the spleen. The genes for phosphatase, indoleamine 2,3-dioxygenase, Hes Family BHLH Transcription Factor 1, and guanylate-binding protein 5, playing various roles in immune defense, were co-expressed across various feline tissues. Multivariate K-means clustering analysis produced seven gene clusters featuring similar gene expression patterns specific to individual tissues, with lung tissue cluster having the largest number of DEGs. These findings suggest the presence of a broad immune defense mechanism across various tissues in cats against acute T. gondii infection.
Collapse
Affiliation(s)
- Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Marine Engineering, Marine College, Shandong University, Weihai, China
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Faraz Khan
- Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Richard D Emes
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|