1
|
Moore WT, Luo J, Liu D. Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
2
|
Boix-Castejón M, Roche E, Olivares-Vicente M, Álvarez-Martínez FJ, Herranz-López M, Micol V. Plant compounds for obesity treatment through neuroendocrine regulation of hunger: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154735. [PMID: 36921427 DOI: 10.1016/j.phymed.2023.154735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Food intake behavior is influenced by both physiological and psychological complex processes, such as appetite, satiety, and hunger. The neuroendocrine regulation of food intake integrates short- and long-term acting signals that modulate the moment of intake and energy storage/expenditure, respectively. These signals are classified as orexigenic, those that activate anabolic pathways and the desire of eating, and anorexigenic, those that activate the catabolic pathways and a sensation of satiety. Appetite control by natural vegetal compounds is an intense area of research and new pharmacological interventions have been emerging based on an understanding of appetite regulation pathways. Several validated psychometric tools are used to assess the efficacy of these plant ingredients. However, these data are not conclusive if they are not complemented with physiological parameters, such as anthropometric evaluations (body weight and composition) and the analysis of hormones related to adipose tissue and appetite in blood. PURPOSE The purpose of this manuscript is the critical analysis of the plant compounds studied to date in the literature with potential for the neuroendocrine regulation of hunger in order to determine if the use of phytochemicals for the treatment of obesity constitutes an effective and/or promising therapeutic tool. METHODS Relevant information on neuroendocrine regulation of hunger and satiety for the treatment of obesity by plant compounds up to 2022 in English and/or Spanish were derived from online databases using the PubMed search engine and Google Scholar with relevant keywords and operators. RESULTS Accordingly, the comparison performed in this review between previous studies showed a high degree of experimental heterogeneity. Among the studies reviewed here, only a few of them establish comprehensively a potential correlation between the effect of the ingredient on hunger or satiety, body changes and a physiological response. CONCLUSIONS More systematic clinical studies are required in future research. The first approach should be to decode the pattern of circulating hormones regulating hunger, satiety, and appetite in overweight/obese subjects. Thereafter, studies should correlate brain connectivity at the level of the hypothalamus, gut and adipose tissue with the hormone patterns modulating appetite and satiety. Extracts whose mode of action have been well characterized and that are safe, can be used clinically to perform a moderate, but continuous, caloric restriction in overweight patients to lose weight excess into a controlled protocol.
Collapse
Affiliation(s)
- M Boix-Castejón
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain
| | - E Roche
- Institute of Bioengineering, Applied Biology Department-Nutrition, University Miguel-Hernández, 03202, Elche, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - M Olivares-Vicente
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain
| | - F J Álvarez-Martínez
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain
| | - M Herranz-López
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain.
| | - V Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202, Elche, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
3
|
Bioactive Antioxidant Compounds from Chestnut Peels through Semi-Industrial Subcritical Water Extraction. Antioxidants (Basel) 2022; 11:antiox11050988. [PMID: 35624852 PMCID: PMC9137501 DOI: 10.3390/antiox11050988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/02/2023] Open
Abstract
Chestnut peels are a poorly characterized, underexploited by-product of the agri-food industry. This raw material is rich in bioactive compounds, primarily polyphenols and tannins, that can be extracted using different green technologies. Scaling up the process for industrial production is a fundamental step for the valorization of the extract. In this study, subcritical water extraction was investigated to maximize the extraction yield and polyphenol content. Lab-scale procedures have been scaled up to the semi-industrial level as well as the downstream processes, namely, concentration and spray drying. The extract antioxidant capacity was tested using in vitro and cellular assays as well as a preliminary evaluation of its antiadipogenic activity. The temperature, extraction time, and water/solid ratio were optimized, and the extract obtained under these conditions displayed a strong antioxidant capacity both in in vitro and cellular tests. Encouraging data on the adipocyte model showed the influence of chestnut extracts on adipocyte maturation and the consequent potential antiadipogenic activity. Chestnut peel extracts characterized by strong antioxidant power and potential antiadipogenic activity were efficiently obtained by removing organic solvents. These results prompted further studies on fraction enrichment by ultra- and nanofiltration. The semi-industrial eco-friendly extraction process and downstream benefits reported here may open the door to production and commercialization.
Collapse
|
4
|
Martín-García B, De Montijo-Prieto S, Jiménez-Valera M, Carrasco-Pancorbo A, Ruiz-Bravo A, Verardo V, Gómez-Caravaca AM. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants (Basel) 2022; 11:558. [PMID: 35326208 PMCID: PMC8944617 DOI: 10.3390/antiox11030558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
A sonotrode ultrasound-assisted extraction of phenolic compounds from olive leaves has been developed using a Box-Behnken design to optimize the effects of solvent composition and ultrasound parameters. The determination of single phenolic compounds was performed by HPLC-MS and the highest recovery in total compounds, oleuropein and hydroxytyrosol was achieved using EtOH/H2O (55:45, v/v), 8 min and 100% of amplitude. The optimal conditions were applied on leaves from seven olive cultivars grown under the same conditions and the results were compared with those found by using a conventional ultrasonic bath, obtaining no statistical differences. Moreover, antioxidant activity by FRAP, DPPH and ABTS in these olive leaf extracts was evaluated and they exhibited a significant correlation with oleuropein and total phenolic content. All cultivars of olive leaf extracts were found to be active against S. aureus and methicillin-resistant S. aureus with minimum bactericidal concentration (MBC) values) that ranged from 5.5 to 22.5 mg mL-1. No extracts showed antimicrobial activity against C. albicans. The percentages of mycelium reduction in B. cinerea ranged from 2.2 and 18.1%. Therefore, sonotrode could be considered as an efficient and fast extraction technique that could be easily scaled-up at industrial level, thus allowing for olive leaves to be revalorized.
Collapse
Affiliation(s)
- Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain; (B.M.-G.); (A.C.-P.); (A.M.G.-C.)
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Soumi De Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Maria Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain; (B.M.-G.); (A.C.-P.); (A.M.G.-C.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.M.-P.); (M.J.-V.); (A.R.-B.)
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology ‘José Mataix’, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain; (B.M.-G.); (A.C.-P.); (A.M.G.-C.)
- Biomedical Research Center, Institute of Nutrition and Food Technology ‘José Mataix’, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
5
|
Characterization and Influence of Static In Vitro Digestion on Bioaccessibility of Bioactive Polyphenols from an Olive Leaf Extract. Foods 2022; 11:foods11050743. [PMID: 35267376 PMCID: PMC8909904 DOI: 10.3390/foods11050743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Olive leaves, one of the most abundant olive production by-products, have shown incredible potential for their characteristic bioactive compound composition, with unique compounds such as the polyphenol oleuropein. In order to evaluate the bioaccessibility of bioactive compounds present in an olive leaf extract, samples were submitted to an in vitro digestion process following INFOGEST protocol, and qualitative and quantitative characterization of the original extract and digestive samples at different times were carried out using HPLC-ESI-TOF-MS. The analyzed extract presented an abundance of phenolic compounds, such as secoiridoids, with oleuropein being the main identified compound. The in vitro digestion process showed an effect on the phenolic profile of the extract, with a lower recovery in the gastric phase and an increase at the beginning of the intestinal phase. Most of the studied compounds showed high bioaccessibility at the end of the digestion, with oleuropein, ligstroside, and quercetin-3-O-galactoside being among the ones with higher value. These findings show the potential for future use of olive leaf polyphenols. However, further research is needed in order to evaluate the absorption, delivery, and interaction of these compounds with the colon.
Collapse
|
6
|
Mecha E, Erny GL, Guerreiro ACL, Feliciano RP, Barbosa I, Bento da Silva A, Leitão ST, Veloso MM, Rubiales D, Rodriguez-Mateos A, Figueira ME, Vaz Patto MC, Bronze MR. Metabolomics profile responses to changing environments in a common bean (Phaseolus vulgaris L.) germplasm collection. Food Chem 2022; 370:131003. [PMID: 34543920 DOI: 10.1016/j.foodchem.2021.131003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/22/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Metabolomics is one of the most powerful -omics to assist plant breeding. Despite the recognized genetic diversity in Portuguese common bean germplasm, details on its metabolomics profiles are still missing. Aiming to promote their use and to understand the environment's effect in bean metabolomics profiles, 107 Portuguese common bean accessions, cropped under contrasting environments, were analyzed using spectrophotometric, untargeted and targeted mass spectrometry approaches. Although genotype was the most relevant factor on bean metabolomics profile, a clear genotype × environment interaction was also detected. Multivariate analysis highlighted, on the heat-stress environment, the existence of higher levels of salicylic acid, and lower levels of triterpene saponins. Three clusters were defined within each environment. White accessions presented the lowest content and the colored ones the highest levels of prenol lipids and flavonoids. Sources of interesting metabolomics profiles are now identified for bean breeding, focusing either on local or on broad adaptation.
Collapse
Affiliation(s)
- Elsa Mecha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Guillaume L Erny
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal.
| | - Ana C L Guerreiro
- UniMS - Mass Spectrometry Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; UniMS - Mass Spectrometry Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Rodrigo P Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Inês Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Andreia Bento da Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| | - Susana T Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Maria Manuela Veloso
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, 2784-505 Oeiras, Portugal.
| | - Diego Rubiales
- IAS, Institute for Sustainable Agriculture, CSIC, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Düsseldorf, D-40225 Düsseldorf, Germany; Department of Nutritional Sciences, School of Life Course Sciences, King's College London, SE1 9NH London, UK.
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Maria Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal.
| |
Collapse
|
7
|
Rajan P, Natraj P, Ranaweera SS, Dayarathne LA, Lee YJ, Han CH. Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells. J Vet Sci 2022; 23:e4. [PMID: 35088951 PMCID: PMC8799946 DOI: 10.4142/jvs.21256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the anti-adipogenic effects of flavonoids are unclear. OBJECTIVES The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. METHODS The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. RESULTS The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. CONCLUSION The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.
Collapse
Affiliation(s)
- Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | | | | | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
8
|
Cádiz-Gurrea MDLL, Pinto D, Delerue-Matos C, Rodrigues F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics-A Preliminary Study. Antioxidants (Basel) 2021; 10:245. [PMID: 33562523 PMCID: PMC7914505 DOI: 10.3390/antiox10020245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.
Collapse
Affiliation(s)
- María de la Luz Cádiz-Gurrea
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (C.D.-M.)
| | | | | | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (C.D.-M.)
| |
Collapse
|
9
|
A Box-Behnken Design for Optimal Green Extraction of Compounds from Olive Leaves That Potentially Activate the AMPK Pathway. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Olive leaves contain bioactive compounds that have been shown to activate AMP-activated protein kinase (AMPK), which decreases intracellular lipid accumulation. Microwave-assisted extraction (MAE) is a green extraction technique that is frequently used in the recovery of phenolic compounds from plants. Thus, in this study, a Box-Behnken design was used to optimize MAE conditions such as temperature, percentage of ethanol and extraction time to obtain the maximum content of total compounds and compounds that activate AMPK. To this end, all extracts were characterized by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Time-of-Flight Mass Spectrometry (HPLC-ESI-TOF-MS). The optimum conditions to obtain the highest content of total compounds were 123 °C, 100% of ethanol/water (v/v) and 23 min, whereas the optimum conditions for the highest amount of compounds that activate AMPK were 111 °C, 42% of ethanol/water (v/v) and 23 min. Thus, a multi-analysis by desirability was carried out to establish MAE optimal conditions for both responses. The optimum conditions were 111 °C, 100% EtOH and 23 min with a desirability of 0.97, which means that the responses are close to their individual optimal values. As a result, the olive leaf extract obtained at these optimal MAE conditions has great potential to be effective in the treatment of obesity.
Collapse
|
10
|
Pleiotropic Biological Effects of Dietary Phenolic Compounds and their Metabolites on Energy Metabolism, Inflammation and Aging. Molecules 2020; 25:molecules25030596. [PMID: 32013273 PMCID: PMC7037231 DOI: 10.3390/molecules25030596] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.
Collapse
|
11
|
Scotti L, Monteiro AFM, de Oliveira Viana J, Mendonça Junior FJB, Ishiki HM, Tchouboun EN, Santos R, Scotti MT. Multi-Target Drugs Against Metabolic Disorders. Endocr Metab Immune Disord Drug Targets 2020; 19:402-418. [PMID: 30556507 DOI: 10.2174/1871530319666181217123357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Metabolic disorders are a major cause of illness and death worldwide. Metabolism is the process by which the body makes energy from proteins, carbohydrates, and fats; chemically breaking these down in the digestive system towards sugars and acids which constitute the human body's fuel for immediate use, or to store in body tissues, such as the liver, muscles, and body fat. OBJECTIVE The efficiency of treatments for multifactor diseases has not been proved. It is accepted that to manage multifactor diseases, simultaneous modulation of multiple targets is required leading to the development of new strategies for discovery and development of drugs against metabolic disorders. METHODS In silico studies are increasingly being applied by researchers due to reductions in time and costs for new prototype synthesis; obtaining substances that present better therapeutic profiles. DISCUSSION In the present work, in addition to discussing multi-target drug discovery and the contributions of in silico studies to rational bioactive planning against metabolic disorders such as diabetes and obesity, we review various in silico study contributions to the fight against human metabolic pathologies. CONCLUSION In this review, we have presented various studies involved in the treatment of metabolic disorders; attempting to obtain hybrid molecules with pharmacological activity against various targets and expanding biological activity by using different mechanisms of action to treat a single pathology.
Collapse
Affiliation(s)
- Luciana Scotti
- Teaching and Research Management - University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil.,Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Francisco Jaime Bezerra Mendonça Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
12
|
The Potential Synergistic Modulation of AMPK by Lippia citriodora Compounds as a Target in Metabolic Disorders. Nutrients 2019; 11:nu11122961. [PMID: 31817196 PMCID: PMC6950112 DOI: 10.3390/nu11122961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Lippia citriodora (LC) represents a complex plant-derived source of polyphenols and iridoids that has shown beneficial properties against obesity-related metabolic disorders. The complete extract and its major compound, verbascoside, have shown AMPK-activating capacity in cell and animal models. In this work, we aimed to elucidate the contribution of the different compounds present in the LC extract on the AMPK activation capacity of the whole extract. Semipreparative reversed-phase high-performance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry (RP-HPLC-ESI-TOF-MS) was used to identify the major compounds with bioassay-guided fractionation in an adipocyte cell model for the measurement of AMPK activity. Twenty-two compounds were identified and purified almost to homogeneity in 16 fractions, and three compounds, namely verbascoside, luteolin-7-diglucuronide and loganic acid, showed the highest AMPK-activating capacity. The synergy study using the checkerboard and fractional inhibitory concentration index (FICI) methods exhibited synergistic behavior between loganic acid and luteolin-7-diglucuronide. Molecular docking experiments revealed that these three compounds might act as direct agonists of AMPK, binding to the AMP binding sites of the gamma subunit and/or the different sites of the interaction zones between the gamma and beta subunits. Although our findings conclude that the bioactivity of the extract is mainly due to verbascoside, the synergy found between loganic acid and luteolin-7-diglucuronide deserves further research aimed to develop optimized combinations of polyphenols as a new nutritional strategy against obesity-related metabolic disorders.
Collapse
|
13
|
Vezza T, Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Romero M, Sánchez M, Toral M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Micol V, García F, Utrilla MP, Duarte J, Rodríguez-Cabezas ME, Gálvez J. The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacol Res 2019; 150:104487. [PMID: 31610229 DOI: 10.1016/j.phrs.2019.104487] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Many studies have showed the beneficial effects of the olive (Olea europaea) leaf extract (OLE) in experimental models of metabolic syndrome, which have been ascribed to the presence of phenolic compounds, like oleuropeoside. This study evaluated the effects of a chemically characterized OLE in high fat diet (HFD)-induced obesity in mice, describing the underlying mechanisms involved in the beneficial effects, with special attention to vascular dysfunction and gut microbiota composition. METHODS C57BL/6J mice were distributed in different groups: control, control-treated, obese and obese-treated with OLE (1, 10 and 25 mg/kg/day). Control mice received a standard diet, whereas obese mice were fed HFD. The treatment was followed for 5 weeks, and animal body weight periodically assessed. At the end of the treatment, metabolic plasma analysis (including lipid profile) as well as glucose and insulin levels were performed. The HFD-induced inflammatory status was studied in liver and fat, by determining the RNA expression of different inflammatory mediators by qPCR; also, different markers of intestinal epithelial barrier function were determined in colonic tissue by qPCR. Additionally, flow cytometry of immune cells from adipose tissue, endothelial dysfunction in aortic rings as well as gut microbiota composition were evaluated. Faecal microbiota transplantation (FMT) to antibiotic-treated mice fed with HFD was performed. RESULTS OLE administration reduced body weight gain, basal glycaemia and insulin resistance, and showed improvement in plasma lipid profile when compared with HFD-fed mice. The extract significantly ameliorated the HFD-induced altered expression of key adipogenic genes, like PPARs, adiponectin and leptin receptor, in adipose tissue. Furthermore, the extract reduced the RNA expression of Tnf-α, Il-1β, Il-6 in liver and adipose tissue, thus improving the tissue inflammatory status associated to obesity. The flow cytometry analysis in adipose tissue corroborated these observations. Additionally, the characterization of the colonic microbiota by sequencing showed that OLE administration was able to counteract the dysbiosis associated to obesity. The extract reversed the endothelial dysfunction observed in the aortic rings of obese mice. FMT from donors HFD-OLE to recipient mice fed an HFD prevented the development of obesity, glucose intolerance, insulin resistance and endothelial dysfunction. CONCLUSION OLE exerts beneficial effects in HFD-induced obesity in mice, which was associated to an improvement in plasma and tissue metabolic profile, inflammatory status, gut microbiota composition and vascular dysfunction.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Alba Rodríguez-Nogales
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Ana M Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Vicente Micol
- CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Institute of Molecular and Cell Biology (IMCB), Miguel Hernández University (UMH), 03202, Elche, Alicante, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - María Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - María Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
14
|
de la Luz Cádiz-Gurrea M, Fernández de Las Nieves I, Aguilera Saez LM, Fernández-Arroyo S, Legeai-Mallet L, Bouaziz M, Segura-Carretero A. Bioactive Compounds from Theobroma cacao: Effect of Isolation and Safety Evaluation. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:40-46. [PMID: 30324543 DOI: 10.1007/s11130-018-0694-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants, including most food and feed plants, produce a broad range of bioactive chemical compounds. Among these compounds, polyphenols are reported to provide beneficial effects as anti-carcinogenic, anti-atherogenic, anti-inflammatory, immune modulating, anti-microbial, vasodilatory and analgesic. Cocoa (Theobroma cacao), a major, economically important, international crop, has been related to several nutritional benefits, which have been associated with the phenolic fraction. The main subclass of flavonoids found in cocoa is flavanols, particularly (epi)catechins monomers, and their oligomers, also known as procyanidins. In this study, these compounds were isolated by different methodologies as solid phase extraction (SPE), semi-preparative high-performance liquid chromatography (HPLC) and membrane technologies to obtain different polyphenolic profiles by HPLC coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and to test their cytotoxicity. Finally, different polyphenolic profiles were collected, where the combination of both semi-preparative HPLC and SPE technologies provided the most purified fractions. Filtration with membranes and SPE provide extracts with different composition depending on the pore size of membranes and on the solvent, respectively. In addition, the results of toxicity assay indicated low levels in all fractions.
Collapse
Affiliation(s)
- María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, c/Fuentenueva s/n, 18071, Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento 37, Edificio BioRegion, 18016, Granada, Spain.
| | - Ignacio Fernández de Las Nieves
- Advanced NMR Methods and Metal-based Catalysts, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Luis Manuel Aguilera Saez
- Advanced NMR Methods and Metal-based Catalysts, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Salvador Fernández-Arroyo
- Biomedical Research Unit. Medicine and Surgery Department, Rovira i Virgili University, 43201, Reus, Tarragona, Spain
| | - Laurence Legeai-Mallet
- Institut National de la Santé et de la Recherche Médicale Unité 781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015, Paris, France
| | - Mohamed Bouaziz
- Laboratoire d'Electrochimie et Environnement, Ecole Nationale d'Ingénieurs de Sfax BP «1173» 3038, Université de Sfax, Sfax, Tunisie
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, BP «1175», 3038, Sfax, Tunisie
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, c/Fuentenueva s/n, 18071, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento 37, Edificio BioRegion, 18016, Granada, Spain
| |
Collapse
|
15
|
Lee BW, Ha TKQ, Pham HTT, Hoang QH, Tran VO, Oh WK. Hydroxyoleoside-type seco-iridoids from Symplocos cochinchinensis and their insulin mimetic activity. Sci Rep 2019; 9:2270. [PMID: 30783120 PMCID: PMC6381099 DOI: 10.1038/s41598-018-38013-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023] Open
Abstract
As part of an ongoing study of new insulin mimetic agents from medicinal plants, the 70% EtOH extract of Symplocos cochinchinensis was found to have a stimulatory effect on glucose uptake in 3T3-L1 adipocyte cells. The intensive targeted isolation of this active extract resulted in ten new hydroxyoleoside-type compounds conjugated with a phenolic acid and monoterpene (1–6 and 8–11), as well as four known compounds (7 and 12–14). The chemical structures of the new compounds were determined based on spectroscopic data analysis (1H and 13C NMR, HSQC, HMBC, NOESY and MS). The absolute configurations of the isolated compounds were determined by electronic circular dichroism (ECD) analysis of derivatives obtained after a series of reactions, such as those with dirhodium (ІІ) tetrakis (trifluoroacetate) and dimolybdenum (ІІ) tetraacetate. In vitro, compounds 3, 7 and 8 moderately increased the 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) uptake level in differentiated 3T3-L1 adipocytes. For further studies, we evaluated their effects on the expression of glucose transporter-4 (GLUT4), its translocation, protein tyrosine phosphatase 1B (PTP1B) inhibition and expression of phosphorylated Akt. Our results strongly suggest that the traditional uses of this plant can be described as active constituents by hydroxyoleoside-type compounds.
Collapse
Affiliation(s)
- Ba-Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Ha Thanh Tung Pham
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Quynh Hoa Hoang
- Department of Botany, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Van On Tran
- Department of Botany, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
16
|
Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018; 23:molecules23102419. [PMID: 30241383 PMCID: PMC6222318 DOI: 10.3390/molecules23102419] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
In order to understand the distribution of the main secondary metabolites found in Olea europaea L., eight different samples (olive leaf, stem, seed, fruit skin and pulp, as well as virgin olive oil, olive oil obtained from stoned and dehydrated fruits and olive seed oil) coming from a Picudo cv. olive tree were analyzed. All the experimental conditions were selected so as to assure the maximum coverage of the metabolome of the samples under study within a single run. The use of LC and GC with high resolution MS (through different ionization sources, ESI and APCI) and the annotation strategies within MetaboScape 3.0 software allowed the identification of around 150 compounds in the profiles, showing great complementarity between the evaluated methodologies. The identified metabolites belonged to different chemical classes: triterpenic acids and dialcohols, tocopherols, sterols, free fatty acids, and several sub-types of phenolic compounds. The suitability of each platform and polarity (negative and positive) to determine each family of metabolites was evaluated in-depth, finding, for instance, that LC-ESI-MS (+) was the most efficient choice to ionize phenolic acids, secoiridoids, flavonoids and lignans and LC-APCI-MS was very appropriate for pentacyclic triterpenic acids (MS (−)) and sterols and tocopherols (MS (+)). Afterwards, a semi-quantitative comparison of the selected matrices was carried out, establishing their typical features (e.g., fruit skin was pointed out as the matrix with the highest relative amounts of phenolic acids, triterpenic compounds and hydroxylated fatty acids, and seed oil was distinctive for its high relative levels of acetoxypinoresinol and tocopherols).
Collapse
|
17
|
Cádiz-Gurrea MDLL, Olivares-Vicente M, Herranz-López M, Arraez-Roman D, Fernández-Arroyo S, Micol V, Segura-Carretero A. Bioassay-guided purification of Lippia citriodora polyphenols with AMPK modulatory activity. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Veerabadhran M, Chakraborty S, Mitra S, Karmakar S, Mukherjee J. Effects of flask configuration on biofilm growth and metabolites of intertidal Cyanobacteria isolated from a mangrove forest. J Appl Microbiol 2018; 125:190-202. [DOI: 10.1111/jam.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 01/23/2023]
Affiliation(s)
- M. Veerabadhran
- School of Environmental Studies; Jadavpur University; Kolkata India
| | - S. Chakraborty
- School of Environmental Studies; Jadavpur University; Kolkata India
| | - S. Mitra
- School of Environmental Studies; Jadavpur University; Kolkata India
| | - S. Karmakar
- Department of Pharmaceutical Technology; Jadavpur University; Kolkata India
| | - J. Mukherjee
- School of Environmental Studies; Jadavpur University; Kolkata India
| |
Collapse
|
19
|
Herranz-López M, Olivares-Vicente M, Encinar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, Micol V. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients 2017; 9:nu9080907. [PMID: 28825642 PMCID: PMC5579700 DOI: 10.3390/nu9080907] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.
Collapse
Affiliation(s)
- María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Mariló Olivares-Vicente
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - José Antonio Encinar
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n., Edificio BioRegión, Granada 18016, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
- CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Palma de Mallorca 07122, Spain.
| |
Collapse
|