1
|
Givens DI. Animal board invited review: Dietary transition from animal to plant-derived foods: Are there risks to health? Animal 2024; 18:101263. [PMID: 39121724 DOI: 10.1016/j.animal.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Animal-derived foods (ADFs) are a very varied group of foods, but many are nutrient rich and contain higher quality protein than provided by plant-derived foods such that a simple replacement of ADF protein is likely to lead to a reduction in overall protein quality. In addition, many ADFs are richer in some nutrients than plant-based foods (e.g. Fe, Ca) and these often have a higher bioavailability. ADFs also provide nutrients that plants cannot supply (e.g. vitamin B12) and some provide beneficial health functionality (e.g. hypotensive) which is not explained by traditional nutrition. However, there remains a good health reason to increase the proportion of plant-derived food in many diets to increase the intake of dietary fibre which is often consumed at very sub-optimal levels. It seems logical that the increased plant-derived foods should replace the ADFs that have the least benefit, the greatest risk to health and the highest environmental impact. Processed meat fits these characteristics and should be an initial target for replacement with plant-based based protein-rich foods that additionally provide the necessary nutrients and have high-quality dietary fibre. Processed meat covers a wide range of products including several traditional foods (e.g. sausages) which will make decisions on food replacement challenging. There is therefore an urgent need for research to better define the relative health risks associated with the range of processed meat-based foods. The aim of this review is to examine the evidence on the benefits and risks of this dietary transition including the absolute necessity to consider initial nutrient status before the replacement of ADFs is considered.
Collapse
Affiliation(s)
- D I Givens
- Institute for Food, Nutrition and Health, University of Reading, Earley Gate, Reading RG6 6EU, United Kingdom.
| |
Collapse
|
2
|
Ndunguru SF, Reda GK, Csernus B, Knop R, Gulyás G, Szabó C, Czeglédi L, Lendvai ÁZ. Embryonic methionine triggers post-natal developmental programming in Japanese quail. J Comp Physiol B 2024; 194:179-189. [PMID: 38520538 PMCID: PMC11070397 DOI: 10.1007/s00360-024-01542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
Embryonic development is one of the most sensitive and critical stages when maternal effects may influence the offspring's phenotype. In birds and other oviparous species, embryonic development is confined to the eggs, therefore females must deposit resources into the eggs to prepare the offspring for the prevailing post-natal conditions. However, the mechanisms of such phenotypic adjustments remain poorly understood. We simulated a maternal nutritional transfer by injecting 1 mg of L-methionine solution into Japanese quail eggs before the onset of incubation. The increase in early methionine concentration in eggs activated the insulin/insulin-like signalling and mechanistic target of rapamycin (IIS/mTOR) signalling pathways and affected post-natal developmental trajectories. Chicks from methionine-supplemented eggs had higher expression of liver IGF1 and mTOR genes at hatching but were similar in size, and the phenotypic effects of increased growth became apparent only a week later and remained up to three weeks. Circulating levels of insulin-like growth factor-1 (IGF-1) and expression of ribosomal protein serine 6 kinase 1 (RPS6K1), the mTOR downstream effector, were elevated only three weeks after hatching. These results show that specific nutritional cues may have phenotypic programming effects by sequentially activating specific nutrient-sensing pathways and achieving transgenerational phenotypic plasticity.
Collapse
Affiliation(s)
- Sawadi F Ndunguru
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary.
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary.
| | - Gebrehaweria K Reda
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Renáta Knop
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
| | - Gabriella Gulyás
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, 4032, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
3
|
Shili CN, Kiyimba F, Hartsen S, Ramanathan R, Pezeshki A. Recombinant Phytase Modulates Blood Amino Acids and Proteomics Profiles in Pigs Fed with Low-Protein, -Calcium, and -Phosphorous Diets. Int J Mol Sci 2023; 25:341. [PMID: 38203511 PMCID: PMC10778770 DOI: 10.3390/ijms25010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
A beneficial effect of corn-expressed phytase (CEP) on the growth performance of pigs fed with very low-protein (VLP) diets was previously shown. Little is known whether this improvement is related to alterations in the expression profiles of blood proteins and amino acids (AAs). The objective of this study was to investigate whether supplementation of VLP, low-calcium (Ca), and low-P diets with a CEP would alter the blood AAs and protein expression profiles in pigs. Forty-eight pigs were subjected to one of the following groups (n = 8/group) for 4 weeks: positive control (PC), negative control-reduced protein (NC), NC + low-dose CEP (LD), NC + high-dose CEP (HD), LD with reduced Ca/P (LDR), and HD with reduced Ca/P (HDR). Plasma leucine and phenylalanine concentrations were reduced in NC; however, the LD diet recovered the concentration of these AAs. Serum proteomics analysis revealed that proteins involved with growth regulation, such as selenoprotein P were upregulated while the IGF-binding proteins family proteins were differentially expressed in CEP-supplemented groups. Furthermore, a positive correlation was detected between growth and abundance of proteins involved in bone mineralization and muscle structure development. Taken together, CEP improved the blood profile of some essential AAs and affected the expression of proteins involved in the regulation of growth.
Collapse
Affiliation(s)
- Cedrick N. Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (C.N.S.); (F.K.); (R.R.)
| | - Frank Kiyimba
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (C.N.S.); (F.K.); (R.R.)
| | - Steve Hartsen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (C.N.S.); (F.K.); (R.R.)
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (C.N.S.); (F.K.); (R.R.)
| |
Collapse
|
4
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
5
|
Watling CZ, Kelly RK, Tong TYN, Piernas C, Watts EL, Tin Tin S, Knuppel A, Schmidt JA, Travis RC, Key TJ, Perez-Cornago A. Associations between food group intakes and circulating insulin-like growth factor-I in the UK Biobank: a cross-sectional analysis. Eur J Nutr 2023; 62:115-124. [PMID: 35906357 PMCID: PMC9899744 DOI: 10.1007/s00394-022-02954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Circulating insulin-like growth factor-I (IGF-I) concentrations have been positively associated with risk of several common cancers and inversely associated with risk of bone fractures. Intakes of some foods have been associated with increased circulating IGF-I concentrations; however, evidence remains inconclusive. Our aim was to assess cross-sectional associations of food group intakes with circulating IGF-I concentrations in the UK Biobank. METHODS At recruitment, the UK Biobank participants reported their intake of commonly consumed foods. From these questions, intakes of total vegetables, fresh fruit, red meat, processed meat, poultry, oily fish, non-oily fish, and cheese were estimated. Serum IGF-I concentrations were measured in blood samples collected at recruitment. After exclusions, a total of 438,453 participants were included in this study. Multivariable linear regression was used to assess the associations of food group intakes with circulating IGF-I concentrations. RESULTS Compared to never consumers, participants who reported consuming oily fish or non-oily fish ≥ 2 times/week had 1.25 nmol/L (95% confidence interval:1.19-1.31) and 1.16 nmol/L (1.08-1.24) higher IGF-I concentrations, respectively. Participants who reported consuming poultry ≥ 2 times/week had 0.87 nmol/L (0.80-0.94) higher IGF-I concentrations than those who reported never consuming poultry. There were no strong associations between other food groups and IGF-I concentrations. CONCLUSIONS We found positive associations between oily and non-oily fish intake and circulating IGF-I concentrations. A weaker positive association of IGF-I with poultry intake was also observed. Further research is needed to understand the mechanisms which might explain these associations.
Collapse
Affiliation(s)
- Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK.
| | - Rebecca K Kelly
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Carmen Piernas
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Department of Biochemistry and Molecular Biology II, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Anika Knuppel
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| |
Collapse
|
6
|
Kittisakmontri K, Lanigan J, Wells JCK, Manowong S, Kaewarree S, Fewtrell M. Quantity and Source of Protein during Complementary Feeding and Infant Growth: Evidence from a Population Facing Double Burden of Malnutrition. Nutrients 2022; 14:3948. [PMID: 36235599 PMCID: PMC9572535 DOI: 10.3390/nu14193948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND While high protein intake during infancy may increase obesity risk, low qualities and quantities of protein contribute to undernutrition. This study aimed to investigate the impact of the amount and source of protein on infant growth during complementary feeding (CF) in a country where under- and overnutrition co-exist as the so-called the double burden of malnutrition. METHODS A multicenter, prospective cohort was conducted. Healthy term infants were enrolled with dietary and anthropometric assessments at 6, 9 and 12 months (M). Blood samples were collected at 12M for IGF-1, IGFBP-3 and insulin analyses. RESULTS A total of 145 infants were enrolled (49.7% female). Animal source foods (ASFs) were the main protein source and showed a positive, dose-response relationship with weight-for-age, weight-for-length and BMI z-scores after adjusting for potential confounders. However, dairy protein had a greater impact on those parameters than non-dairy ASFs, while plant-based protein had no effect. These findings were supported by higher levels of IGF-1, IGFBP-3 and insulin following a higher intake of dairy protein. None of the protein sources were associated with linear growth. CONCLUSIONS This study showed the distinctive impact of different protein sources during CF on infant growth. A high intake of dairy protein, mainly from infant formula, had a greater impact on weight gain and growth-related hormones.
Collapse
Affiliation(s)
- Kulnipa Kittisakmontri
- Childhood Nutrition Research Centre, Department of Population, Policy and Practice, Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Julie Lanigan
- Childhood Nutrition Research Centre, Department of Population, Policy and Practice, Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Jonathan C. K. Wells
- Childhood Nutrition Research Centre, Department of Population, Policy and Practice, Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Suphara Manowong
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sujitra Kaewarree
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mary Fewtrell
- Childhood Nutrition Research Centre, Department of Population, Policy and Practice, Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
7
|
Insulin-like Growth Factor I Couples Metabolism with Circadian Activity through Hypo-Thalamic Orexin Neurons. Int J Mol Sci 2022; 23:ijms23094679. [PMID: 35563069 PMCID: PMC9101627 DOI: 10.3390/ijms23094679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Uncoupling of metabolism and circadian activity is associated with an increased risk of a wide spectrum of pathologies. Recently, insulin and the closely related insulin-like growth factor I (IGF-I) were shown to entrain feeding patterns with circadian rhythms. Both hormones act centrally to modulate peripheral glucose metabolism; however, whereas central targets of insulin actions are intensely scrutinized, those mediating the actions of IGF-I remain less defined. We recently showed that IGF-I targets orexin neurons in the lateral hypothalamus, and now we evaluated whether IGF-I modulates orexin neurons to align circadian rhythms with metabolism. Mice with disrupted IGF-IR activity in orexin neurons (Firoc mice) showed sexually dimorphic alterations in daily glucose rhythms and feeding activity patterns which preceded the appearance of metabolic disturbances. Thus, Firoc males developed hyperglycemia and glucose intolerance, while females developed obesity. Since IGF-I directly modulates orexin levels and hepatic expression of KLF genes involved in circadian and metabolic entrainment in an orexin-dependent manner, it seems that IGF-I entrains metabolism and circadian rhythms by modulating the activity of orexin neurons.
Collapse
|
8
|
Keramati M, Kheirouri S, Musazadeh V, Alizadeh M. Association of High Dietary Acid Load With the Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Front Nutr 2022; 9:816797. [PMID: 35419387 PMCID: PMC8997294 DOI: 10.3389/fnut.2022.816797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
Objective This study aimed to determine the relationship between the high dietary acid load (DAL) and the risk of cancer. Methods Five databases of PubMed, Web of Sciences, Scopus, Cochrane Library, and Google Scholar was searched to elicit original studies on humans, up to June 2021. Quality of the articles, risk of bias, and heterogeneity were assessed. A random-effects meta-analysis model was applied to estimate pooled effect size with a 95% confidence interval. Sensitivity analysis was performed using a fixed-effects model. Subgroup analyses were carried out based on gender, age, type of cancer, and type of DAL assessment indicator. Results Seventeen effect sizes from 10 articles were included in the analysis. Overall, individuals with the highest DAL were associated with a 66% increased risk of cancer compared to those with the lowest DAL (p < 0.001]. The risk of cancer increased 41% (p < 0.001) and 53% (p = 0.03) by high PRAL and NEAP, respectively. High DAL was associated with 32% (p < 0.001) and 79% (p < 0.001) increased risk of breast and colorectal cancers, respectively. High DAL was associated with 32% (p = 0.001) and 76% (p = 0.007) increased risk of cancer incident in women and men, respectively. The risk of cancer incident increased 35% (p < 0.001) and 49% (p < 0.001) at age ≤ and > of 50, respectively. Conclusion High DAL may be associated with a higher risk of cancer incidence not only in the whole studied population but also across cancer types, both genders, both DAL assessment indicators, and also among both high- and low-risk age groups for cancer.
Collapse
Affiliation(s)
- Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
A Mixture of Valine and Isoleucine Restores the Growth of Protein-Restricted Pigs Likely through Improved Gut Development, Hepatic IGF-1 Pathway, and Plasma Metabolomic Profile. Int J Mol Sci 2022; 23:ijms23063300. [PMID: 35328720 PMCID: PMC8955368 DOI: 10.3390/ijms23063300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Valine (Val) alone or in combination with isoleucine (Ile) improves the growth under severe protein restriction; however, the underlying mechanisms remain unknown. In this study, we assessed whether Val/Ile-induced growth in protein-restricted pigs is associated with changes in gut development, hepatic insulin-like growth factor 1 (IGF-1) production, and blood metabolomics. Forty piglets were assigned to five dietary groups: positive control (PC) with standard protein content; low protein (LP) with very low protein content; and LP supplemented with Val (LPV), Ile (LPI), and Val and Ile (LPVI). LPVI reversed the negative effects of VLP diets on growth and gut morphology. Both LPV and LPVI restored the reduced transcript of IGF-1 while decreasing the transcript of insulin-like growth factor binding protein 1 (IGFBP1) in the liver. LPV and LPVI recovered the reduced plasma Val, glycine, and leucine concentrations, which were positively correlated with improved gut morphology and the hepatic IGF-1 gene expression and negatively correlated with hepatic IGFBP1 mRNA abundance. In conclusion, supplementation with a combination of Val and Ile into the VLP diets restored the decreased growth performance of pigs fed with these diets likely through improved gut development, hepatic IGF-1 expression and bioavailability, and plasma metabolomics profile.
Collapse
|
10
|
Witard OC, Bath SC, Dineva M, Sellem L, Mulet-Cabero AI, van Dongen LH, Zheng JS, Valenzuela C, Smeuninx B. Dairy as a Source of Iodine and Protein in the UK: Implications for Human Health Across the Life Course, and Future Policy and Research. Front Nutr 2022; 9:800559. [PMID: 35223949 PMCID: PMC8866650 DOI: 10.3389/fnut.2022.800559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
This narrative review summarizes key concepts in dairy nutrition for supporting human health throughout the life course. Milk and dairy products have been a staple component of our diet for thousands of years and provide a wide range of important nutrients that are otherwise difficult to obtain from dairy-free diets. In this review, we provide a broad perspective on the nutritional roles of iodine and dairy protein in supporting human health during pregnancy and early life, childhood and adolescence, mid- and later-life. New methodologies to identify biomarkers of dairy intake via high-throughput mass spectrometry are discussed, and new concepts such as the role of the food matrix in dairy nutrition are introduced. Finally, future policy and research related to the consumption of dairy and non-dairy alternatives for health are discussed with a view to improving nutritional status across the lifespan.
Collapse
Affiliation(s)
- Oliver C. Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- *Correspondence: Oliver C. Witard
| | - Sarah C. Bath
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mariana Dineva
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Laury Sellem
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Science, University of Reading, Reading, United Kingdom
| | - Ana-Isabel Mulet-Cabero
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Laura H. van Dongen
- Division of Human Nutrition, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Carina Valenzuela
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Benoit Smeuninx
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
11
|
Ribeiro DM, Coelho D, Osório H, Martins C, Bengala Freire JP, Almeida J, Moreira O, Almeida AM, Prates JA. Effect of dietary incorporation of Chlorella vulgaris and CAZyme supplementation on the hepatic proteome of finishing pigs. J Proteomics 2022; 256:104504. [DOI: 10.1016/j.jprot.2022.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
12
|
Elisia I, Yeung M, Wong J, Kowalski S, Larsen M, Shyp T, Sorensen PH, krystal G. A low carbohydrate diet containing soy protein and fish oil reduces breast but not prostate cancer in C3(1)/Tag mice. Carcinogenesis 2021; 43:115-125. [DOI: 10.1093/carcin/bgab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
We recently showed that a low carbohydrate (CHO) diet containing soy protein and fish oil dramatically reduces lung nodules in a mouse model of lung cancer when compared to a Western diet. To explore the universality of this finding, we herein compared this low CHO diet to a Western diet on in preventing breast and prostate cancer using a mouse model that expresses the SV40 large T antigen specifically in breast epithelia in females and prostate epithelia in males. We found that breast cancer was significantly reduced with this low CHO diet and this correlated with a reduction in plasma levels of glucose, insulin, IL-6, TNFα and PGE2. This also corresponded with a reduction in the Ki67 proliferation index within breast tumors. On the other hand, this low CHO diet did not reduce the incidence of prostate cancer in the male mice. Although it reduced both blood glucose and insulin to the same extent as in the female mice, there was no reduction in plasma IL-6, TNFα or PGE2 levels, nor in the Ki67 proliferation index in prostate lesions. Based on immunohistochemistry studies with antibodies to PFKFB3, CPT1a and FAS, it is likely that this difference in response of the two cancer types to this low CHO diet reflects differences in the glucose dependence of breast and prostate cancer, with the former being highly dependent on glucose for energy and the latter being more dependent on fatty acids.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | - Taras Shyp
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Gerald krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| |
Collapse
|
13
|
Habibi M, Shili C, Sutton J, Goodarzi P, Maylem ER, Spicer L, Pezeshki A. Branched-chain amino acids partially recover the reduced growth of pigs fed with protein-restricted diets through both central and peripheral factors. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:868-882. [PMID: 34632118 PMCID: PMC8484988 DOI: 10.1016/j.aninu.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The objective of this study was to assess the growth efficiency of pigs fed with protein-restricted diets supplemented with branched-chain amino acids (BCAA) and limiting amino acids (LAA) above the recommended levels. Following 2 weeks of adaptation, 48 young barrows were weight matched and randomly assigned to 6 treatments (8 pigs/treatment) for 4 weeks: positive control (PC) with standard protein, negative control (NC) with very low protein containing LAA (i.e., Lys, Met, Thr and Trp) at recommended levels, and NC containing LAA 25% (L25), LAA 50% (L50), LAA+BCAA (i.e., Leu, Ile and Val) 25% (LB25) and LAA+BCAA 50% (LB50) more than recommendations. Feed intake (FI) and body weight (BW) were measured daily and weekly, respectively. At week 6, blood samples were collected, all pigs euthanized and tissue samples collected. The data were analyzed by univariate GLM or mixed procedure (SPSS) and the means were separated using paired Student's t-test followed by Benjamini-Hochberg correction. Relative to PC, NC had decreased FI, BW, unsupplemented plasma essential amino acids, serum insulin-like growth factor-I (IGF-I) and hypothalamic neuropeptide Y (NPY) (P < 0.01). Compared to NC, L25 or L50, LB50 had increased BW and serum IGF-I and decreased plasma serotonin and both LB25 and LB50 had higher FI, plasma BCAA, hypothalamic 5-hydroxytryptamine-receptor 2A and NPY and jejunal 5-hydroxytryptamine-receptor 7 (P < 0.01). Overall, supplementation of protein-restricted diets with increased levels of dietary BCAA partially recovered the negative effects of these diets on growth through improved IGF-I concentration and FI, which was associated with changed expression of serotonin receptors, blood AA and hypothalamic NPY.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Cedrick Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
14
|
Watling CZ, Kelly RK, Tong TYN, Piernas C, Watts EL, Tin Tin S, Knuppel A, Schmidt JA, Travis RC, Key TJ, Perez-Cornago A. Associations of circulating insulin-like growth factor-I with intake of dietary proteins and other macronutrients. Clin Nutr 2021; 40:4685-4693. [PMID: 34237695 PMCID: PMC8345002 DOI: 10.1016/j.clnu.2021.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 04/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Circulating insulin-like growth factor-I (IGF-I) is associated with the risk of several cancers. Dietary protein intake, particularly dairy protein, may increase circulating IGF-I; however, associations with different protein sources, other macronutrients, and fibre are inconclusive. To investigate the associations between intake of protein, macronutrients and their sources, fibre, and alcohol with serum IGF-I concentrations. METHODS A total of 11,815 participants from UK Biobank who completed ≥4 24-h dietary assessments and had serum IGF-I concentrations measured at baseline were included. Multivariable linear regression was used to assess the cross-sectional associations of macronutrient and fibre intake with circulating IGF-I concentrations. RESULTS Circulating IGF-I concentrations were positively associated with intake of total protein (per 2.5% higher energy intake: 0.56 nmol/L (95% confidence interval: 0.47, 0.66)), milk protein: 1.20 nmol/L (0.90, 1.51), and yogurt protein: 1.33 nmol/L (0.79, 1.86), but not with cheese protein: -0.07 nmol/L (-0.40, 0.25). IGF-I concentrations were also positively associated with intake of fibre (per 5 g/day higher intake: 0.46 nmol/L (0.35, 0.57)) and starch from wholegrains (Q5 vs. Q1: 1.08 nmol/L (0.77, 1.39)), and inversely associated with alcohol consumption (>40 g/day vs <1 g/day: -1.36 nmol/L (-1.00, -1.71)). CONCLUSIONS These results show differing associations with IGF-I concentrations depending on the source of dairy protein, with positive associations with milk and yogurt protein intake but no association with cheese protein. The positive association of fibre and starch from wholegrains with IGF-I warrants further investigation.
Collapse
Affiliation(s)
- Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Rebecca K Kelly
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Carmen Piernas
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anika Knuppel
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
16
|
Zini E, Salesov E, Willing A, Palizzotto C, Lutz TA, Reusch CE. Serum insulin-like growth factor-1 concentrations in healthy cats before and after weight gain and weight loss. J Vet Intern Med 2021; 35:1274-1278. [PMID: 33830548 PMCID: PMC8163131 DOI: 10.1111/jvim.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Measurement of serum concentrations of insulin‐like growth factor (IGF)‐1 is used to diagnose acromegaly in cats. Hypothesis Changes of body weight do not affect serum concentrations of IGF‐1 in cats. Animals Ten healthy purpose‐bred cats. Methods Prospective study. In lean cats, food availability was stepwise increased during the first week and given ad libitum for a total of 40 weeks to increase their body weight. From week 41 to week 60, food access was limited to reach a weight loss of 1% to 2% each week. Measurement of IGF‐1 was performed at week 0, 16, 40, and 60. Insulin‐like growth factor‐1 was measured by radioimmunoassay. Body weight and IGF‐1 were compared among the 4 time points. Results Body weight increased by 44% from week 0 (4.5 ± 0.4 kg) to week 40 (6.5 ± 1.2 kg) (P < .001) and decreased by 25% from week 40 to week 60 (4.9 ± 0.7 kg) (P < .001). Serum IGF‐1 concentrations did not differ during the study period (week 0, 16, 40, 60: 500 ± 188, 479 ± 247, 470 ± 184, 435 ± 154 ng/mL, respectively; P = .38). Correlations with body weight were not observed. Conclusions and Clinical Importance Insulin‐like growth factor‐1 might not be influenced by changes of body weight in healthy cats, possibly suggesting that the latter is unimportant when interpreting IGF‐1 results in this species.
Collapse
Affiliation(s)
- Eric Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy.,AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - Elena Salesov
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anke Willing
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia E Reusch
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
18
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
19
|
Marín-García PJ, Llobat L. How Does Protein Nutrition Affect the Epigenetic Changes in Pig? A Review. Animals (Basel) 2021; 11:ani11020544. [PMID: 33669864 PMCID: PMC7923233 DOI: 10.3390/ani11020544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic mechanisms regulate gene expression and depend of nutrition. In farm animals, and concretely, in pigs, some papers on protein nutrition have been realized to improve several productive traits. Changes in protein diet influence on epigenetic mechanisms that could affect productive and reproductive traits in individuals and their offspring. The purpose of this review was to update the current knowledge about the effects of these nutritional changes on epigenetic mechanisms in pigs. Abstract Epigenetic changes regulate gene expression and depend of external factors, such as environment and nutrition. In pigs, several studies on protein nutrition have been performed to improve productive and reproductive traits. Indeed, these studies aimed not only to determine broad protein requirements but also pigs’ essential amino acids requirements. Moreover, recent studies tried to determine these nutritional requirements for each individual, which is known as protein precision nutrition. However, nutritional changes could affect different epigenetic mechanisms, modifying metabolic pathways both in a given individual and its offspring. Modifications in protein nutrition, such as change in the amino acid profile, increase or decrease in protein levels, or the addition of metabolites that condition protein requirements, could affect the regulation of some genes, such as myostatin, insulin growth factor, or genes controlling cholesterol and glucose metabolism pathways. This review summarizes the impact of most common protein nutritional strategies on epigenetic changes and describes their effects on regulation of gene expression in pigs. In a context where animal nutrition is shifting towards precision protein nutrition (PPN), further studies evaluating the effects of PPN on animal epigenetic are necessary.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain;
| | - Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
20
|
Givens DI. MILK Symposium review: The importance of milk and dairy foods in the diets of infants, adolescents, pregnant women, adults, and the elderly. J Dairy Sci 2021; 103:9681-9699. [PMID: 33076181 DOI: 10.3168/jds.2020-18296] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
The ongoing increase in life expectancy is not always accompanied by an increase in healthy life span. There is increasing evidence that dietary exposure in early life can substantially affect chronic disease risk in later life. Milk and dairy foods are important suppliers of a range of key nutrients, with some being particularly important at certain life stages. It is now recognized that milk protein can stimulate insulin-like growth factor-1 (IGF-1), essential for longitudinal bone growth and bone mass acquisition in young children, thus reducing the risk of stunting. Low milk consumption during adolescence, particularly by girls, may contribute to suboptimal intake of calcium, magnesium, iodine, and other important nutrients. Given the generally low vitamin D status of European populations, this may have already affected bone development, and any resulting reduced bone strength may become a big issue when the populations are much older. Suboptimal iodine status of many young women has already been reported together with several observational studies showing an association between suboptimal iodine status during pregnancy and reduced cognitive development in the offspring. There is now good evidence that consumption of milk and dairy foods does not lead to an increased risk of cardiovascular diseases and type 2 diabetes. Indeed, some negative associations are seen, notably between yogurt consumption and type 2 diabetes, which should be researched with urgency. Greater emphasis should be placed on reducing malnutrition in the elderly and on dietary approaches to reduce their loss of muscle mass, muscle functionality, and bone strength. Whey protein has been shown to be particularly effective for reducing muscle loss; this needs to be developed to provide simple dietary regimens for the elderly to follow. There is an ongoing, often too simplistic debate about the relative value of animal versus plant food sources for protein in particular. It is important that judgments on the replacement of dairy products with those from plants also include the evidence on relative functionality, which is not expressed in simple nutrient content (e.g., hypotensive and muscle synthesis stimulation effects). Only by considering such functionality will a true comparison be achieved.
Collapse
Affiliation(s)
- D I Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, UK.
| |
Collapse
|
21
|
Lodjak J, Verhulst S. Insulin-like growth factor 1 of wild vertebrates in a life-history context. Mol Cell Endocrinol 2020; 518:110978. [PMID: 32798584 DOI: 10.1016/j.mce.2020.110978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Broad variation in intra- and interspecific life-history traits is largely shaped by resource limitation and the ensuing allocation trade-offs that animals are forced to make. Insulin-like growth factor 1 (IGF-1), a growth-hormone-dependent peptide, may be a key player in the regulation of allocation processes. In laboratory animals, the effects of IGF-1 on growth- and development (positive), reproduction (positive), and longevity (negative) are well established. We here review the evidence on these effects in wild vertebrates, where animals are more likely to face resource limitation and other challenges. We point out the similarities and dissimilarities in patterns of IGF-1 functions obtained in these two different study settings and discuss the knowledge we need to develop a comprehensive picture of the role of IGF-1 in mediating life-history variation of wild vertebrates.
Collapse
Affiliation(s)
- Jaanis Lodjak
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, Tartu, 51014, Estonia; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| |
Collapse
|
22
|
Lednev EM, Kravchenko IV, Furalyov VA, Lysenko EA, Lemesheva IS, Grushin AA, Dubrov VE, Vinogradova OL, Popov DV. Effect of amino acids on IGF1 gene expression in human myotubes and skeletal muscle. Growth Horm IGF Res 2020; 53-54:101323. [PMID: 32408253 DOI: 10.1016/j.ghir.2020.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Insulin-like growth factor I (IGF1) is an important regulator of collagen and extracellular matrix protein expression. We aimed to evaluate the effect of amino acids (AAs) on expression of IGF1 and IGF1-dependent genes in human myotubes and skeletal muscle and supposed that AAs administration increases IGF1 levels in blood and expression of IGF1 and IGF1-dependent genes in trained skeletal muscle, thereby reducing training-induced muscle damage. DESIGN Human myotubes were incubated with Arg and Leu for 24 h. Then, the effects of long-term branched chain AAs administration (10 weeks, 0.1 g/kg body mass/day) to volunteers (six subjects per AAs and placebo groups) performing large training volumes regularly (cross country skiers, training twice a day) were examined. RESULTS Incubating the myotubes with AAs increases expression of IGF1 mRNA isoforms and IGF1 secretion by 2-3 times. In athletes, long-term AAs administration increased basal blood levels of IGF1 (~50%) and expression of IGF1Ea mRNA slightly in skeletal muscle. There is no marked increase in expression of COL1A1, COL3A1, COL5A1, and LOX genes in skeletal muscle after AAs administration. However, expression of these genes in the combined group (placebo + AAs; n = 12) significantly correlated with the expression of IGF1Ea mRNA in muscle and did not correlate with IGF1 levels in the blood. CONCLUSIONS AAs administration increases IGF1 expression in vitro and in vivo. To obtain more pronounced changes in expression of IGF1 and IGF1-dependent genes in skeletal muscle, it may be necessary to increase the dose and/or duration of AAs administration.
Collapse
Affiliation(s)
- Egor M Lednev
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation.
| | - Irina V Kravchenko
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 33 build 2, Leninsky prospect, Moscow 119071, Russian Federation
| | - Vladimir A Furalyov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 33 build 2, Leninsky prospect, Moscow 119071, Russian Federation
| | - Evgeny A Lysenko
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| | - Iulia S Lemesheva
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| | - Alexandr A Grushin
- Russian Olympic Committee, Luzhnetskaya Embankment 8, Russia, Moscow 119991, Russian Federation
| | - Vadim E Dubrov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, 27 build. 1, Lomonosovsky Prospekt, Moscow 119991, Russian Federation
| | - Olga L Vinogradova
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| | - Daniil V Popov
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| |
Collapse
|
23
|
Ahmad SS, Ahmad K, Lee EJ, Lee YH, Choi I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 2020; 9:cells9081773. [PMID: 32722232 PMCID: PMC7465464 DOI: 10.3390/cells9081773] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is an essential tissue that attaches to bones and facilitates body movements. Insulin-like growth factor-1 (IGF-1) is a hormone found in blood that plays an important role in skeletal myogenesis and is importantly associated with muscle mass entity, strength development, and degeneration and increases the proliferative capacity of muscle satellite cells (MSCs). IGF-1R is an IGF-1 receptor with a transmembrane location that activates PI3K/Akt signaling and possesses tyrosine kinase activity, and its expression is significant in terms of myoblast proliferation and normal muscle mass maintenance. IGF-1 synthesis is elevated in MSCs of injured muscles and stimulates MSCs proliferation and myogenic differentiation. Mechanical loading also affects skeletal muscle production by IGF-1, and low IGF-1 levels are associated with low handgrip strength and poor physical performance. IGF-1 is potentially useful in the management of Duchenne muscular dystrophy, muscle atrophy, and promotes neurite development. This review highlights the role of IGF-1 in skeletal muscle, its importance during myogenesis, and its involvement in different disease conditions.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan 38430, Korea
- Correspondence: (Y.-H.L.); (I.C.); Fax: +82-53-810-4769
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (Y.-H.L.); (I.C.); Fax: +82-53-810-4769
| |
Collapse
|
24
|
Sohel MMH. Macronutrient modulation of mRNA and microRNA function in animals: A review. ACTA ACUST UNITED AC 2020; 6:258-268. [PMID: 33005759 PMCID: PMC7503081 DOI: 10.1016/j.aninu.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dietary macronutrients have been regarded as a basic source of energy and amino acids that are necessary for the maintenance of cellular homeostasis, metabolic programming as well as protein synthesis. Due to the emergence of “nutrigenomics”, a unique discipline that combines nutritional and omics technologies to study the impacts of nutrition on genomics, it is increasingly evident that macronutrients also have a significant role in the gene expression regulation. Gene expression is a complex phenomenon controlled by several signaling pathways and could be influenced by a wide variety of environmental and physiological factors. Dietary macronutrients are the most important environmental factor influencing the expression of both genes and microRNAs (miRNA). miRNA are tiny molecules of 18 to 22 nucleotides long that regulate the expression of genes. Therefore, dietary macronutrients can influence the expression of genes in both direct and indirect manners. Recent advancements in the state-of-the-art technologies regarding molecular genetics, such as next-generation sequencing, quantitative PCR array, and microarray, allowed us to investigate the occurrence of genome-wide changes in the expression of genes in relation to augmented or reduced dietary macronutrient intake. The purpose of this review is to accumulate the current knowledge focusing on macronutrient mediated changes in the gene function. This review will discuss the impact of altered dietary carbohydrate, protein, and fat intake on the expression of coding genes and their functions. In addition, it will also summarize the regulation of miRNA, both cellular and extracellular miRNA, expression modulated by dietary macronutrients.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey.,Genome and Stem Cell Centre, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
25
|
Gogola J, Hoffmann M, Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate IGF1 secretion by adult ovarian granulosa cell tumor spheroids and thereby increase proliferation of non-cancer ovarian granulosa cells. Toxicol In Vitro 2020; 65:104769. [DOI: 10.1016/j.tiv.2020.104769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
26
|
Kord-Varkaneh H, Rinaldi G, Hekmatdoost A, Fatahi S, Tan SC, Shadnoush M, Khani V, Mousavi SM, Zarezadeh M, Salamat S, Bawadi H, Rahmani J. The influence of vitamin D supplementation on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing Res Rev 2020; 57:100996. [PMID: 31816443 DOI: 10.1016/j.arr.2019.100996] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Inconsistencies exist with regard to influence of vitamin D supplementation on IGF-1 levels. The inconsistencies could be attributed to several factors, such as dosage and duration of intervention, among others. To address these inconsistencies, this study was conducted to determine the impact of vitamin D supplementation on IGF-1 levels through a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase for RCTs that investigated the impact of vitamin D intake on circulating IGF-1 levels from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating combined effect size. Subgroup analysis was performed to specify the source of heterogeneity among studies. RESULTS Pooled results from eight studies demonstrated an overall non-significant increase in IGF-1 following vitamin D supplementation (WMD: 4 ng/ml, 95 % CI: -4 to 11). However, a significant degree of heterogeneity among studies was observed (I2 = 66 %). The subgroup analyses showed that vitamin D dosage of ≤1000 IU/day (WMD: 10 ng/ml) significantly increased IGF-1 compared to the vitamin D dosage of <1000 IU/day (WMD: -1 ng/ml). Moreover, intervention duration ≤12 weeks (WMD: 11 ng/ml) significantly increased IGF-1 compared to intervention duration <12 weeks (WMD: -3 ng/ml). In the epidemiological cohort study, participants under 60 years of age with a higher dietary vitamin D intake had significantly higher IGF-1 levels when compared to those with lower dietary vitamin D intake in second categories. CONCLUSION The main results indicate a non-significant increase in IGF-1 following vitamin D supplementation. Additionally, vitamin D dosages of <1000 IU/day and intervention durations of <12 weeks significantly raised IGF-1 levels.
Collapse
|
27
|
Rudar M, Columbus DA, Steinhoff-Wagner J, Suryawan A, Nguyen HV, Fleischmann R, Davis TA, Fiorotto ML. Leucine Supplementation Does Not Restore Diminished Skeletal Muscle Satellite Cell Abundance and Myonuclear Accretion When Protein Intake Is Limiting in Neonatal Pigs. J Nutr 2020; 150:22-30. [PMID: 31518419 PMCID: PMC6946895 DOI: 10.1093/jn/nxz216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rapid growth of skeletal muscle in the neonate requires the coordination of protein deposition and myonuclear accretion. During this developmental stage, muscle protein synthesis is highly sensitive to amino acid supply, especially Leu, but we do not know if this is true for satellite cells, the source of muscle fiber myonuclei. OBJECTIVE We examined whether dietary protein restriction reduces myonuclear accretion in the neonatal pig, and if any reduction in myonuclear accretion is mitigated by restoring Leu intake. METHODS Neonatal pigs (1.53 ± 0.2 kg) were fitted with jugular vein and gastric catheters and fed 1 of 3 isoenergetic milk replacers every 4 h for 21 d: high protein [HP; 22.5 g protein/(kg/d); n= 8]; restricted protein [RP; 11.2 g protein/(kg/d); n= 10]; or restricted protein with Leu [RPL; 12.0 g protein/(kg/d); n= 10]. Pigs were administered 5-bromo-2'-deoxyuridine (BrdU; 15 mg/kg) intravenously every 12 h from days 6 to 8. Blood was sampled on days 6 and 21 to measure plasma Leu concentrations. On day 21, pigs were killed and the longissimus dorsi (LD) muscle was collected to measure cell morphometry, satellite cell abundance, myonuclear accretion, and insulin-like growth factor (IGF) system expression. RESULTS Compared with HP pigs, postprandial plasma Leu concentration in RP pigs was 37% and 47% lower on days 6 and 21, respectively (P < 0.05); Leu supplementation in RPL pigs restored postprandial Leu to HP concentrations. Dietary protein restriction reduced LD myofiber cross-sectional area by 21%, satellite cell abundance by 35%, and BrdU+ myonuclear abundance by 25% (P < 0.05); Leu did not reverse these outcomes. Dietary protein restriction reduced LD muscle IGF2 expression by 60%, but not IGF1 or IGF1R expression (P < 0.05); Leu did not rescue IGF2 expression. CONCLUSIONS Satellite cell abundance and myonuclear accretion in neonatal pigs are compromised when dietary protein intake is restricted and are not restored with Leu supplementation.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Daniel A Columbus
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Julia Steinhoff-Wagner
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Fleischmann
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Address correspondence to MLF (E-mail: )
| |
Collapse
|
28
|
Shokri A, Pirouzpanah S, Foroutan-Ghaznavi M, Montazeri V, Fakhrjou A, Nozad-Charoudeh H, Tavoosidana G. Dietary protein sources and tumoral overexpression of RhoA, VEGF-A and VEGFR2 genes among breast cancer patients. GENES & NUTRITION 2019; 14:22. [PMID: 31333806 PMCID: PMC6617685 DOI: 10.1186/s12263-019-0645-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/20/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND High protein intake may promote angiogenesis giving support to the development of metastasis according to the experimental data. However, nutritional epidemiologic evidence is inconsistent with metastasis. Therefore, we aimed to study the association between dietary intake of protein and tumoral expression levels of Ras homologous gene family member A (RhoA), vascular endothelial growth factor-A (VEGF-A), and VEGF receptor-2 (VEGFR2) in primary breast cancer (BC) patients. METHODS Over this consecutive case series, 177 women primary diagnosed with histopathologically confirmed BC in Tabriz (Iran) were enrolled between May 2011 and November 2016. A validated food frequency questionnaire was completed for eligible participants. Fold change in gene expression was measured using quantitative real-time PCR. Principal component factor analysis (PCA) was used to express dietary groups of proteins. RESULTS Total protein intake was associated with the expression level of VEGF-A in progesterone receptor-positive (PR+: β = 0.296, p < 0.01) and VEGFR2 in patients with involvement of axillary lymph node metastasis (ALNM+: β = 0.295, p < 0.01) when covariates were adjusted. High animal protein intake was correlated with overexpression of RhoA in tumors with estrogen receptor-positive (ER+: β = 0.230, p < 0.05), ALNM+ (β = 0.238, p < 0.05), and vascular invasion (VI+: β = 0.313, p < 0.01). Animal protein intake was correlated with the overexpression of VEGFR2 when tumors were positive for hormonal receptors (ER+: β = 0.299, p < 0.01; PR+: β = 0.296, p < 0.01). Based on the PCA outputs, protein provided by whole meat (white and red meat) was associated inversely with RhoA expression in ALNM+ (β = - 0.253, p < 0.05) and premenopausal women (β = - 0.285, p < 0.01) in adjusted models. Whole meat was correlated with VEGFR2 overexpression in VI+ (β = 0.288, p < 0.05) and premenopausal status (β = 0.300, p < 0.05) in adjusted models. A group composed of dairy products and legumes was correlated with the overexpression of RhoA (β = 0.249, p < 0.05) and VEGF-A (β = 0.297, p < 0.05) in VI+. CONCLUSIONS Based on the multivariate findings, the dietary protein could associate with the overexpression of RhoA and VEGF-VEGFR2 in favor of lymphatic and vascular metastasis in BC patients.
Collapse
Affiliation(s)
- Ali Shokri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Foroutan-Ghaznavi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Surgery Ward, Nour-Nejat Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhrjou
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gholamreza Tavoosidana
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Effects of feeding UFA-rich cold-pressed oilseed cakes and sainfoin on dairy ewes’ milk fatty acid profile and curd sensory properties. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Effects of Graded Dietary Inclusion Level of Full-Fat Hermetia illucens Prepupae Meal in Practical Diets for Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2019; 9:ani9050251. [PMID: 31108939 PMCID: PMC6562532 DOI: 10.3390/ani9050251] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The sustainability of fish production is mainly driven by the protein source used in aquafeeds. In conventional fish feed, protein sources are mostly vegetable ingredients and fishmeal. The present study explored the potential use of full-fat Hermetia illucens prepupae meal (H) replacing 0% (H0), 25% (H25), and 50% (H50) conventional ingredients in practical diets for rainbow trout. No significant differences in growth were observed in all experimental groups, while in fish fed the H50 diet both hepatic and intestinal alterations were detected. In addition, in the same fish group, genes related to stress and immune-response were significantly up-regulated. The results obtained so far highlighted an overall physiological adaptation of fish to the dietary manipulation, suggesting an adverse effect of full-fat H at the highest inclusion level. Abstract This study investigated the effects of dietary inclusion levels of full-fat Hermetia illucens prepupae meal (H) on growth and gastrointestinal integrity in rainbow trout (Oncorhynchus mykiss). A 98-day study was conducted using triplicate groups of trout (initial body weight, 137 ± 10.5 g) kept in 1-m3 tanks in a flow-through well water system. Three dietary treatments were prepared: one based on fishmeal and purified protein-rich vegetable ingredients (H0), and two experimental diets including graded levels of H meal (25% and 50%, referred to as H25 and H50, respectively). At the end of the feeding trial, no differences were observed in growth performance and plasma metabolite levels, with the biometric data confirmed by the liver expression of the genes involved in somatic growth regulation (igf1 and mstn1a). In the H50 group, a three-fold up regulation of liver hsp70 was observed. An activation of the stress/immune response (il-10, tnf-α, and tlr-5) was observed in medium intestine in the H25 and H50 groups (p < 0.05) together with a villi length reduction detected through histological analyses. Liver histology and Fourier Transform Infrared Imaging (FTIRI) spectroscopy highlighted an increase in lipid deposition. These findings suggest that caution should be taken into account when 50% replacement of conventional ingredients with H is selected.
Collapse
|
31
|
Um CY, Prizment A, Hong CP, Lazovich D, Bostick RM. Associations of Calcium, Vitamin D, and Dairy Product Intakes with Colorectal Cancer Risk among Older Women: The Iowa Women's Health Study. Nutr Cancer 2018; 71:739-748. [PMID: 30572720 DOI: 10.1080/01635581.2018.1539188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Calcium and, to a lesser extent, dairy products are consistently modestly inversely associated with colorectal cancer (CRC). Dairy products may contain components other than calcium and fat, such as insulin-like growth factor-1, that may affect CRC risk. In the prospective Iowa Women's Health Study, calcium, dairy product, and vitamin D intakes were assessed using a semiquantitative food frequency questionnaire. To investigate dairy products independent of their calcium components, we estimated residuals from linear regression models of their associations with dietary calcium. Of the 35,221 55-69-year-old cancer-free women at baseline in 1986, 1,731 developed CRC during follow-up through 2012. For those in the highest relative to the lowest intake quintiles, the adjusted hazards ratios and 95% confidence intervals from multivariable Cox proportional hazards regression models for overall and distal CRC were 0.81 (0.67-0.98; Ptrend = 0.004) and 0.59 (0.44-0.80; Ptrend = 0.003), respectively, for total calcium; and 0.79 (0.66-0.94; Ptrend = 0.01) and 0.69 (0.53-0.90; Ptrend = 0.003) for total dairy products, respectively. The various dairy product residuals were not associated with CRC. These results support that, among women, calcium and dairy products may be inversely associated with CRC-perhaps primarily distal CRC-but suggest that the non-calcium, non-fat component of dairy products may not be associated with CRC.
Collapse
Affiliation(s)
- Caroline Y Um
- a Department of Epidemiology, Rollins School of Public Health , Emory University , Atlanta , Georgia , USA
| | - Anna Prizment
- b Division of Epidemiology and Community Health, School of Public Health , University of Minnesota , Minneapolis , Minnesota , USA.,c Masonic Cancer Center, University of Minnesota , Minneapolis , Minnesota , USA
| | - Ching-Ping Hong
- b Division of Epidemiology and Community Health, School of Public Health , University of Minnesota , Minneapolis , Minnesota , USA
| | - DeAnn Lazovich
- b Division of Epidemiology and Community Health, School of Public Health , University of Minnesota , Minneapolis , Minnesota , USA.,c Masonic Cancer Center, University of Minnesota , Minneapolis , Minnesota , USA
| | - Roberd M Bostick
- a Department of Epidemiology, Rollins School of Public Health , Emory University , Atlanta , Georgia , USA.,d Winship Cancer Institute, Emory University , Atlanta , Georgia , USA
| |
Collapse
|
32
|
Zhang X, Qiu K, Wang L, Xu D, Yin J. Integrated Remodeling of Gut-Liver Metabolism Induced by Moderate Protein Restriction Contributes to Improvement of Insulin Sensitivity. Mol Nutr Food Res 2018; 62:e1800637. [PMID: 30030886 PMCID: PMC6646914 DOI: 10.1002/mnfr.201800637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 06/30/2018] [Indexed: 12/16/2022]
Abstract
SCOPE Protein restriction (PR) is beneficial for relieving metabolic disorders and aging-related diseases. However, extreme PR could result in malnutrition due to severe deficiency of essential amino acids. Therefore, the effect of moderate PR on insulin sensitivity is investigated. METHODS AND RESULTS The growing and adult pigs are subjected to moderate PR by 15-30%. Plasma insulin concentration and insulin resistance index HOMA-IR are significantly decreased upon moderate PR. Furthermore, IRS1/PI3K/AKT pathway in the basal state is enhanced in both liver and skeletal muscle. The adapted metabolism in the liver upon moderate PR is in support of improving insulin sensitivity. The liver shares a coordinated metabolic adaption in terms of energy metabolism and amino acid metabolism with the small intestine. Particularly, alteration of the metabolic footprint appeared in the portal venous blood, representing metabolites to be absorbed into liver after intestinal metabolism, is also in favor of improvement of insulin sensitivity. CONCLUSION In summary, the study proves that moderate PR could improve insulin sensitivity from childhood to adulthood in a pig model, and sheds a new light on the role of integrated remodeling of gut and liver metabolism in the improved insulin sensitivity induced by moderate PR.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
33
|
Yamane T, Konno R, Iwatsuki K, Oishi Y. Protein-restricted maternal diet during lactation decreases type I and type III tropocollagen synthesis in the skin of mice offspring. Biosci Biotechnol Biochem 2018; 82:1829-1831. [PMID: 29961398 DOI: 10.1080/09168451.2018.1491288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the effects of a low protein (LP) maternal diet during lactation on type I and III tropocollagen synthesis in infant mouse skin. The LP diet decreased the levels of type I and III tropocollagen proteins and COL1A1 and COL3A1 mRNA. Thus, the protein composition of the maternal perinatal diet may influence the skin health of offspring.
Collapse
Affiliation(s)
- Takumi Yamane
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| | - Ryosuke Konno
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| | - Ken Iwatsuki
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| | - Yuichi Oishi
- a Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Setagaya-ku Tokyo , Japan
| |
Collapse
|
34
|
Xu J, Zhu C, Zhang M, Tong Q, Wan X, Liao Z, Cai X, Xu Y, Yuan Y, Wang L, Zhu X, Wang S, Gao P, Xi Q, Xu Y, Jiang Q, Shu G. Arginine reverses growth hormone resistance through the inhibition of toll-like receptor 4-mediated inflammatory pathway. Metabolism 2018; 79:10-23. [PMID: 29080813 DOI: 10.1016/j.metabol.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/09/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Growth hormone stimulates growth by increasing insulin-like growth factor 1 expression and secretion. In the presence of insufficient nutrients, GH increases, whereas IGF-1 expression becomes severely suppressed, leading to GH resistance. This study aimed to explore the effect of arginine (Arg) on GH resistance during malnutrition and to describe its underlying mechanism. METHODS C57BL/6J mice were injected intraperitoneally with Arg for 1h or subjected to caloric restriction with Arg supplement in drinking water for 18days. HepG2 cells were exposed to different Arg concentrations for 24h. Signaling pathway agonists/inhibitors, siRNA, and overexpression plasmids were used to investigate the underlying molecular mechanism. Liver-specific toll-like receptor (TLR4) knockout mice were utilized to clarify the role of TLR4 in Arg-induced IGF-I expression and secretion. RESULTS Arg inhibited the TLR4 downstream pathway by binding to TLR4 and consequently activated Janus kinase 2/signal transducer and activator of transcription 5 signaling pathway. As a result, IGF-1 transcription and secretion increased. Arg activity was absent in liver-specific TLR4 knockout mice and was greatly suppressed in liver with overexpressed TLR4, suggesting that hepatic TLR4 was required and sufficient to induce GH resistance. By contrast, the mammalian target of rapamycin pathway was unnecessary for Arg activity. Arg not only significantly increased IGF-1 expression and secretion under acute fasting and chronic CR conditions but also attenuated body weight loss. CONCLUSIONS Our results demonstrate a previously unappreciated pathway involving Arg that reverses GH resistance and alleviates malnutrition-induced growth restriction through the inhibition of TLR4-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Jingren Xu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Mengyuan Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1800, Houston, TX 77030, USA
| | - Xiaojuan Wan
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Zhengrui Liao
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Xingcai Cai
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yaqiong Xu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yexian Yuan
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Xiaotong Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Ping Gao
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China.
| | - Gang Shu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
35
|
He Y, Yuan X, Zhou G, Feng A. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia. Fitoterapia 2018; 124:200-205. [DOI: 10.1016/j.fitote.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
|
36
|
Zhang M, Xu J, Wang T, Wan X, Zhang F, Wang L, Zhu X, Gao P, Shu G, Jiang Q, Wang S. The Dipeptide Pro-Gly Promotes IGF-1 Expression and Secretion in HepG2 and Female Mice via PepT1-JAK2/STAT5 Pathway. Front Endocrinol (Lausanne) 2018; 9:424. [PMID: 30140255 PMCID: PMC6094964 DOI: 10.3389/fendo.2018.00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 01/29/2023] Open
Abstract
It has been shown that IGF-1 secretion is influenced by dietary protein or amino acid. However, whether the dipeptides elicit regulatory effects on IGF-1 secretion remains largely unclear. Thus, this study aimed to investigate the effects of the dipeptide Pro-Gly on IGF-1 expression and secretion in HepG2 cells and mice, and explore the underlying mechanisms. The in vitro results indicated that Pro-Gly, but not Pro plus Gly, promoted the expression and secretion of IGF-1 in HepG2. Meanwhile, the expression of the peptide transporter 1 (PepT1) was elevated by Pro-Gly, whereas knockdown of PepT1 with siRNA eliminated the increase of IGF-1 expression induced by Pro-Gly. In addition, Pro-Gly activated JAK2/STAT5 signaling pathway in a PepT1-dependent manner. Furthermore, Pro-Gly enhanced the interaction between JAK2 and STAT5, and the translocation of phospho-STAT5 to nuclei. Moreover, inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Gly on IGF-1 expression and secretion. In agreement with the in vitro results, the in vivo findings demonstrated that Pro-Gly, but not Pro plus Gly, stimulated the expression and secretion of IGF-1 and activated JAK2/STAT5 signaling pathway in the liver of mice injected with Pro-Gly or Pro+Gly acutely or chronically. Besides, acute injection of JAK2/STAT5 inhibitor abolished the elevation of IGF-1 expression and secretion induced by Pro-Gly in mice. Collectively, these findings suggested that the dipeptide Pro-Gly promoted IGF-1 expression and secretion in HepG2 cells and mice by activating JAK2/STAT5 signaling pathway through PepT1. These data provided new insights to the regulation of IGF-1 expression and secretion by the dipeptides.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Jingren Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Wan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingyan Jiang
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry and ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China
- Songbo Wang
| |
Collapse
|
37
|
Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Direct actions of macronutrient components on goldfish hepatopancreas in vitro to modulate the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs. Gen Comp Endocrinol 2017; 250:1-8. [PMID: 28549738 DOI: 10.1016/j.ygcen.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
In mammals and fish, somatic growth and metabolism are coordinated by the GH-IGF axis, composed of growth hormone (GH), growth hormone receptors I and II (GHR-I and GHR-II), and the insulin-like growth factors I and II (IGF-I and IGF-II). In order to determine if dietary macronutrients regulate the hepatopancreatic expression of ghr-I, ghr-II, igf-I and igf-II independently of circulating GH, organ culture experiments were conducted. Briefly, goldfish hepatopancreas sections were incubated with different doses of glucose; L-tryptophan; oleic acid; linolenic acid (LNA); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). After two and four hours of treatment, the expression of ghr-I, ghr-II, igf-I and igf-II mRNAs was quantified. We found that glucose and L-tryptophan globally upregulate the mRNA expression of ghr-I; ghr-II; igf-I and igf-II. Duration of exposure, and unsaturation level of fatty acids differentially modulate ghr-I, ghr-II and igf-II mRNA expression. Additionally, we found that fatty acids increase the expression of igf-I depending on incubation time and fatty acid class. In conclusion, here we present evidence for GH-independent, direct effects exerted by dietary macronutrients on GHR and IGF in goldfish hepatopancreas.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina
| | - Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Fabián Canosa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
38
|
Sivasubramaniyam T, Schroer SA, Li A, Luk CT, Shi SY, Besla R, Dodington DW, Metherel AH, Kitson AP, Brunt JJ, Lopes J, Wagner KU, Bazinet RP, Bendeck MP, Robbins CS, Woo M. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1. JCI Insight 2017; 2:93735. [PMID: 28724798 DOI: 10.1172/jci.insight.93735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023] Open
Abstract
Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2's essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection.
Collapse
Affiliation(s)
- Tharini Sivasubramaniyam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Stephanie A Schroer
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology
| | - Cynthia T Luk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Sally Yu Shi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Rickvinder Besla
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology
| | - David W Dodington
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jara J Brunt
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Joshua Lopes
- Department of Laboratory Medicine and Pathobiology
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases and the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Clinton S Robbins
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology.,Department of Laboratory Medicine and Pathobiology
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science.,Department of Immunology.,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|