1
|
Timmers ER, Klamer MR, Marapin RS, Lammertsma AA, de Jong BM, Dierckx RAJO, Tijssen MAJ. [ 18F]FDG PET in conditions associated with hyperkinetic movement disorders and ataxia: a systematic review. Eur J Nucl Med Mol Imaging 2023; 50:1954-1973. [PMID: 36702928 PMCID: PMC10199862 DOI: 10.1007/s00259-023-06110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE To give a comprehensive literature overview of alterations in regional cerebral glucose metabolism, measured using [18F]FDG PET, in conditions associated with hyperkinetic movement disorders and ataxia. In addition, correlations between glucose metabolism and clinical variables as well as the effect of treatment on glucose metabolism are discussed. METHODS A systematic literature search was performed according to PRISMA guidelines. Studies concerning tremors, tics, dystonia, ataxia, chorea, myoclonus, functional movement disorders, or mixed movement disorders due to autoimmune or metabolic aetiologies were eligible for inclusion. A PubMed search was performed up to November 2021. RESULTS Of 1240 studies retrieved in the original search, 104 articles were included. Most articles concerned patients with chorea (n = 27), followed by ataxia (n = 25), dystonia (n = 20), tremor (n = 8), metabolic disease (n = 7), myoclonus (n = 6), tics (n = 6), and autoimmune disorders (n = 5). No papers on functional movement disorders were included. Altered glucose metabolism was detected in various brain regions in all movement disorders, with dystonia-related hypermetabolism of the lentiform nuclei and both hyper- and hypometabolism of the cerebellum; pronounced cerebellar hypometabolism in ataxia; and striatal hypometabolism in chorea (dominated by Huntington disease). Correlations between clinical characteristics and glucose metabolism were often described. [18F]FDG PET-showed normalization of metabolic alterations after treatment in tremors, ataxia, and chorea. CONCLUSION In all conditions with hyperkinetic movement disorders, hypo- or hypermetabolism was found in multiple, partly overlapping brain regions, and clinical characteristics often correlated with glucose metabolism. For some movement disorders, [18F]FDG PET metabolic changes reflected the effect of treatment.
Collapse
Affiliation(s)
- Elze R Timmers
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marrit R Klamer
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Ramesh S Marapin
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen (UMCG), University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, the Netherlands.
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), PO Box 30.001, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
2
|
Lin GY, Ma CY, Kuo LC, Hsieh BY, Wang H, Liu CS, Hsieh M. Altered glucose metabolism and its association with carbonic anhydrase 8 in Machado-Joseph Disease. Metab Brain Dis 2022; 37:2103-2120. [PMID: 35488942 DOI: 10.1007/s11011-022-00994-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disease. This disorder is caused by polyglutamine (polyQ)-containing mutant ataxin-3, which tends to misfold and aggregate in neuron cells. We previously demonstrated a protective function of carbonic anhydrase 8 (CA8) in MJD disease models and a decreased glycolytic activity associated with down-regulated CA8 in a human osteosarcoma (OS) cell model. Given that a reduction in body weight accompanied by gait and balance instability was observed in MJD patients and transgenic (Tg) mice, in this study, we aimed to examine whether metabolic defects are associated with MJD and whether CA8 expression is involved in metabolic dysfunction in MJD. Our data first showed that glucose uptake ability decreases in cells harboring mutant ataxin-3, but increases in cells overexpressing CA8. In addition, the expressions of glucose transporter 3 (GLUT3) and phosphofructokinase-1 (PFK1) were significantly decreased in the presence of mutant ataxin-3. Consistently, immunohistochemistry (IHC) showed that GLUT3 was less expressed in cerebella of aged MJD Tg mice, indicating that the dysfunction of GLUT3 may be associated with late-stage disease. On the other hand, transient down-regulation of CA8 revealed decreased expressions of GLUT3 and PFK1 in HEK293 cells harboring wild-type (WT) ataxin-3, but no further reduction of GLUT3 and PFK1 expressions were observed in HEK293 cells harboring mutant ataxin-3. Moreover, immunoprecipitation (IP) and immunofluorescence (IF) demonstrated that interactions exist between ataxin-3, CA8 and GLUT3 in MJD cellular and Tg models. These lines of evidence suggest that CA8 plays an important role in glucose metabolism and has different impacts on cells with or without mutant ataxin-3. Interestingly, the decreased relative abundance of Firmicutes/Bacteroidetes (F/B) ratio in the feces of aged MJD Tg mice coincided with weight loss and metabolic dysfunction in MJD. Taken together, our results are the first to demonstrate the effects of CA8 on glucose metabolism and its involvement in the metabolic defects in MJD disease. Further investigations will be required to clarify the underlying mechanisms for the metabolic defects associated with MJD.
Collapse
Affiliation(s)
- Guan-Yu Lin
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Li-Chung Kuo
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Hanbing Wang
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China.
- Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
3
|
Provost K, La Joie R, Strom A, Iaccarino L, Edwards L, Mellinger TJ, Pham J, Baker SL, Miller BL, Jagust WJ, Rabinovici GD. Crossed cerebellar diaschisis on 18F-FDG PET: Frequency across neurodegenerative syndromes and association with 11C-PIB and 18F-Flortaucipir. J Cereb Blood Flow Metab 2021; 41:2329-2343. [PMID: 33691512 PMCID: PMC8393295 DOI: 10.1177/0271678x211001216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
We used 18F-FDG-PET to investigate the frequency of crossed cerebellar diaschisis (CCD) in 197 patients with various syndromes associated with neurodegenerative diseases. In a subset of 117 patients, we studied relationships between CCD and cortical asymmetry of Alzheimer's pathology (β-amyloid (11C-PIB) and tau (18F-Flortaucipir)). PET images were processed using MRIs to derive parametric SUVR images and define regions of interest. Indices of asymmetry were calculated in the cerebral cortex, basal ganglia and cerebellar cortex. Across all patients, cerebellar 18F-FDG asymmetry was associated with reverse asymmetry of 18F-FDG in the cerebral cortex (especially frontal and parietal areas) and basal ganglia. Based on our operational definition (cerebellar asymmetry >3% with contralateral supratentorial hypometabolism), significant CCD was present in 47/197 (24%) patients and was most frequent in corticobasal syndrome and semantic and logopenic variants of primary progressive aphasia. In β-amyloid-positive patients, mediation analyses showed that 18F-Flortaucipir cortical asymmetry was associated with cerebellar 18F-FDG asymmetry, but that cortical 18F-FDG asymmetry mediated this relationship. Analysis of 18F-FDG-SUVR values suggested that CCD might also occur in the absence of frank cerebellar 18F-FDG asymmetry due to symmetrical supratentorial degeneration resulting in a bilateral diaschisis process.
Collapse
Affiliation(s)
- Karine Provost
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Taylor J Mellinger
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - William J Jagust
- Lawrence Berkeley National Laboratory, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8:1543-1556. [PMID: 34019331 PMCID: PMC8283160 DOI: 10.1002/acn3.51370] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases that share the defining feature of progressive cerebellar ataxia. The disease process, however, is not confined to the cerebellum; other areas of the brain, in particular, the brainstem, are also affected, resulting in a high burden of morbidity and mortality. Currently, there are no disease‐modifying treatments for the SCAs, but preclinical research has led to the development of therapeutic agents ripe for testing in patients. Unfortunately, due to the rarity of these diseases and their slow and variable progression, there are substantial hurdles to overcome in conducting clinical trials. While the epidemiological features of the SCAs are immutable, the feasibility of conducting clinical trials is being addressed through a combination of strategies. These include improvements in clinical outcome measures, the identification of imaging and fluid biomarkers, and innovations in clinical trial design. In this review, we highlight current challenges in initiating clinical trials for the SCAs and also discuss pathways for researchers and clinicians to mitigate these challenges and harness opportunities for clinical trial development.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Sara M Akasha
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: Implications for therapy development. J Neurol Sci 2021; 424:117417. [PMID: 33836316 DOI: 10.1016/j.jns.2021.117417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a group of dominantly-inherited cerebellar ataxias, among which CAG expansion-related SCAs are most common. These diseases have very high penetrance with defined disease progression, and emerging therapies are being developed to provide either symptomatic or disease-modifying benefits. In clinical trial design, it is crucial to incorporate biomarkers to test target engagement or track disease progression in response to therapies, especially in rare diseases such as SCAs. In this article, we review the available rating scales and recent advances of biomarkers in CAG-repeat SCAs. We divided biomarkers into neuroimaging, body fluid, and physiological studies. Understanding the utility of each biomarker will facilitate the design of robust clinical trials to advance therapies for SCAs.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Provost K, Iaccarino L, Soleimani-Meigooni DN, Baker S, Edwards L, Eichenlaub U, Hansson O, Jagust W, Janabi M, La Joie R, Lesman-Segev O, Mellinger TJ, Miller BL, Ossenkoppele R, Pham J, Smith R, Sonni I, Strom A, Mattsson-Carlgren N, Rabinovici GD. Comparing ATN-T designation by tau PET visual reads, tau PET quantification, and CSF PTau181 across three cohorts. Eur J Nucl Med Mol Imaging 2021; 48:2259-2271. [PMID: 33398408 DOI: 10.1007/s00259-020-05152-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To compare rates of tau biomarker positivity (T-status) per the 2018 Alzheimer's Disease (AD) Research Framework derived from [18F]flortaucipir (FTP) PET visual assessment, FTP quantification, and cerebrospinal fluid (CSF) phosphorylated Tau-181 (PTau181). METHODS We included 351 subjects with varying clinical diagnoses from three cohorts with available FTP PET and CSF PTau181 within 18 months. T-status was derived from (1) FTP visual assessment by two blinded raters; (2) FTP standardized uptake value ratio (SUVR) quantification from a temporal meta-ROI (threshold: SUVR ≥1.27); and (3) Elecsys® Phospho-Tau (181P) CSF (Roche Diagnostics) concentrations (threshold: PTau181 ≥ 24.5 pg/mL). RESULTS FTP visual reads yielded the highest rates of T+, while T+ by SUVR increased progressively from cognitively normal (CN) through mild cognitive impairment (MCI) and AD dementia. T+ designation by CSF PTau181 was intermediate between FTP visual reads and SUVR values in CN, similar to SUVR in MCI, and lower in AD dementia. Concordance in T-status between modality pairs ranged from 68 to 76% and varied by clinical diagnosis, being highest in patients with AD dementia. In discriminating Aβ + MCI and AD subjects from healthy controls and non-AD participants, FTP visual assessment was most sensitive (0.96) but least specific (0.60). Specificity was highest with FTP SUVR (0.91) with sensitivity of 0.89. Sensitivity (0.73) and specificity (0.72) were balanced for PTau181. CONCLUSION The choice of tau biomarker may differ by disease stage and research goals that seek to maximize sensitivity or specificity. Visual interpretations of tau PET enhance sensitivity compared to quantification alone, particularly in early disease stages.
Collapse
Affiliation(s)
- Karine Provost
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA.
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Suzanne Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - William Jagust
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - Orit Lesman-Segev
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - Taylor J Mellinger
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Ida Sonni
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UC Los Angeles, Los Angeles, CA, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94143, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors. Pharmaceutics 2020; 12:pharmaceutics12100925. [PMID: 32998351 PMCID: PMC7601272 DOI: 10.3390/pharmaceutics12100925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Inflammatory processes preceding clinical manifestation of brain diseases are moving increasingly into the focus of positron emission tomographic (PET) investigations. A key role in inflammation and as a target of PET imaging efforts is attributed to microglia. Cerebellar microglia, with a predominant ameboid and activated subtype, is of special interest also regarding improved and changing knowledge on functional involvement of the cerebellum in mental activities in addition to its regulatory role in motor function. The present contribution considers small molecule ligands as potential PET tools for the visualization of several receptors recognized to be overexpressed in microglia and which can potentially serve as indicators of inflammatory processes in the cerebellum. The sphingosine 1 phosphate receptor 1 (S1P1), neuropeptide Y receptor 2 (NPY2) and purinoceptor Y12 (P2Y12) cannabinoid receptors and the chemokine receptor CX3CR1 as G-protein-coupled receptors and the ionotropic purinoceptor P2X7 provide structures with rather classical binding behavior, while the immune receptor for advanced glycation end products (RAGE) and the triggering receptor expressed on myeloid cells 2 (TREM2) might depend for instance on further accessory proteins. Improvement in differentiation between microglial functional subtypes in comparison to the presently used 18 kDa translocator protein ligands as well as of the knowledge on the role of polymorphisms are special challenges in such developments.
Collapse
|
8
|
Mascalchi M, Vella A. Neuroimaging Biomarkers in SCA2 Gene Carriers. Int J Mol Sci 2020; 21:ijms21031020. [PMID: 32033120 PMCID: PMC7037189 DOI: 10.3390/ijms21031020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A variety of Magnetic Resonance (MR) and nuclear medicine (NM) techniques have been used in symptomatic and presymptomatic SCA2 gene carriers to explore, in vivo, the physiopathological biomarkers of the neurological dysfunctions characterizing the associated progressive disease that presents with a cerebellar syndrome, or less frequently, with a levodopa-responsive parkinsonian syndrome. Morphometry performed on T1-weighted images and diffusion MR imaging enable structural and microstructural evaluation of the brain in presymptomatic and symptomatic SCA2 gene carriers, in whom they show the typical pattern of olivopontocerebellar atrophy observed at neuropathological examination. Proton MR spectroscopy reveals, in the pons and cerebellum of SCA2 gene carriers, a more pronounced degree of abnormal neurochemical profile compared to other spinocerebellar ataxias with decreased NAA/Cr and Cho/Cr, increased mi/Cr ratios, and decreased NAA and increased mI concentrations. These neurochemical abnormalities are detectable also in presymtomatic gene carriers. Resting state functional MRI (rsfMRI) demonstrates decreased functional connectivity within the cerebellum and of the cerebellum with fronto-parietal cortices and basal ganglia in symptomatic SCA2 subjects. 18F-fluorodeoxyglucose Positron Emission Tomography (PET) shows a symmetric decrease of the glucose uptake in the cerebellar cortex, the dentate nucleus, the brainstem and the parahippocampal cortex. Single photon emission tomography and PET using several radiotracers have revealed almost symmetric nigrostriatal dopaminergic dysfunction irrespective of clinical signs of parkinsonism which are already present in presymtomatic gene carriers. Longitudinal small size studies have proven that morphometry and diffusion MR imaging can track neurodegeneration in SCA2, and hence serve as progression biomarkers. So far, such a capability has not been reported for proton MR spectroscopy, rsfMRI and NM techniques. A search for the best surrogate marker for future clinical trials represents the current challenge for the neuroimaging community.
Collapse
Affiliation(s)
- Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50121 Florence, Italy
- Correspondence: ; Tel.: +39-329-808-1701
| | | |
Collapse
|
9
|
Demiral ŞB, Tomasi D, Wiers CE, Manza P, Shokri-Kojori E, Studentsova Y, Wang GJ, Volkow ND. Methylphenidate's effects on thalamic metabolism and functional connectivity in cannabis abusers and healthy controls. Neuropsychopharmacology 2019; 44:1389-1397. [PMID: 30504928 PMCID: PMC6785138 DOI: 10.1038/s41386-018-0287-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Methylphenidate (MPH) is a first line treatment for ADHD and is also misused as a purported cognitive enhancer, yet its effects on brain function are still poorly understood. Recent functional magnetic resonance imaging (fMRI) studies showed that MPH altered cortico-striatal resting functional connectivity (RFC). Here we investigated the effects of MPH in thalamic connectivity since the thalamus modulates striato-cortical signaling. We hypothesized that MPH would increase thalamic connectivity and metabolism, and that this response would be blunted in cannabis abusers. For this purpose, we measured RFC in seven thalamic nuclei using fMRI and brain glucose metabolism using positron emission tomography (PET) and 18F-fluorodeoxyglucose (FDG) in sixteen healthy controls and thirteen participants with cannabis use disorder (CUD) twice after placebo and after MPH (0.5 mg/kg, iv). MPH significantly increased thalamo-cerebellar connectivity and cerebellar metabolism to the same extent in both groups. Group comparisons revealed that in CUD compared to controls, metabolism in nucleus accumbens was lower for the placebo and MPH measures, that MPH-induced increases in thalamic metabolism were blunted, and that enhanced negative connectivity between thalamus and accumbens in CUD was normalized by MPH (reducing negative connectivity). Our findings identify the thalamus as a target of MPH, which increased its metabolism and connectivity. The reduced metabolism in nucleus accumbens and the disrupted thalamo-accumbens connectivity (enhanced negative connectivity) in CUD is consistent with impaired reactivity of the brain reward's circuit. MPH's normalization of thalamo-accumbens connectivity (reduced negative connectivity) brings forth its potential therapeutic value in CUD, which merits investigation.
Collapse
Affiliation(s)
- Şükrü Barış Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA. .,Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Dardo Tomasi
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Corinde E. Wiers
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Peter Manza
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Ehsan Shokri-Kojori
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Yana Studentsova
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Gene-Jack Wang
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Nora D. Volkow
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,0000 0001 2297 5165grid.94365.3dNational Institute on Drug Abuse, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
10
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
11
|
Abstract
Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiotracers enable regional evaluation of blood flow and glucose metabolism, of receptors and transporters of several molecules, and of abnormal deposition of peptides and proteins in the brain. The cerebellum has been used as a reference region for different radiotracers in several disease conditions. Whole-brain voxel-wise analysis is not affected by a priori knowledge bias and should be preferred. SPECT and PET have contributed to establishing the cerebellum role in motion, cognition, and emotion control in physiologic and pathophysiologic conditions. The basic abnormal imaging findings include decreased or increased uptake of flow or metabolism tracers in the cerebellum alone or as part of a network. Decreased uptake is generally observed in primary structural damage of the cerebellum, but can also represent a distant effect of cerebral damage (crossed diaschisis). Increased uptake can be observed in Freidreich ataxia, inflammatory or immune-mediated diseases of the cerebellum, and in status epilepticus. The possibility is also recognized that primary structural damage of the cerebellum might determine distance effects on other brain structures (reversed diaschisis). So far, SPECT and PET have been predominantly used in clinical studies to investigate cerebellar changes in neurologic and psychiatric diseases and in connection with pharmacologic, transcranial magnetic stimulation, deep-brain stimulation, or surgical treatments.
Collapse
|
12
|
Sarro L, Nanetti L, Castaldo A, Mariotti C. Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 2017; 17:919-931. [PMID: 28805093 DOI: 10.1080/14737175.2017.1364628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by progressive gait and limb incoordination, disequilibrium, dysarthria, and eye movement disturbances. Approximately 40 genetic subtypes of SCAs are known and classified according to the causative disease gene/locus. With the possibility of the specific genetic diagnosis in patients and at-risk family members, several clinical scales and functional tests have been validated and used in ataxic patients with the purposes of measuring the entity of disease progression in natural history studies and the possible slowing of neurological impairment in therapeutic trials. Areas covered: This paper reviews the most widely used clinical scales and quantitative tests that contributed in monitoring disease progression of the most common forms of SCAs. Expert commentary: The currently available and validated clinical scales and quantitative performance scores are adequate to measure disease severity, but may require a considerable number of subjects and a long period of treatment to allow the recognition of beneficial effect of interventional therapies. Advanced MRI techniques are a consistent biomarker and maybe useful to track disease progression from the preclinical to the manifest ataxic phase in association with appropriate clinical or paraclinical investigations.
Collapse
Affiliation(s)
- Lidia Sarro
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Lorenzo Nanetti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Anna Castaldo
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Caterina Mariotti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| |
Collapse
|