1
|
Mo XH, Sun YM, Bi YX, Zhao Y, Yu GH, Tan LL, Yang S. Characterization of C 30 carotenoid and identification of its biosynthetic gene cluster in Methylobacterium extorquens AM1. Synth Syst Biotechnol 2023; 8:527-535. [PMID: 37637201 PMCID: PMC10448405 DOI: 10.1016/j.synbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4'-diapolycopene-4,4'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Man Sun
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yu-Xing Bi
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yan Zhao
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gui-Hong Yu
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ling-ling Tan
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
The squalene route to C30 carotenoid biosynthesis and the origins of carotenoid biosynthetic pathways. Proc Natl Acad Sci U S A 2022; 119:e2210081119. [PMID: 36534808 PMCID: PMC9907078 DOI: 10.1073/pnas.2210081119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Carotenoids are isoprenoid lipids found across the tree of life with important implications in oxidative stress adaptations, photosynthetic metabolisms, as well as in membrane dynamics. The canonical view is that C40 carotenoids are synthesized from phytoene and C30 carotenoids from diapophytoene. Squalene is mostly associated with the biosynthesis of polycyclic triterpenes, although there have been suggestions that it could also be involved in the biosynthesis of C30 carotenoids. However, demonstration of the existence of this pathway in nature is lacking. Here, we demonstrate that C30 carotenoids are synthesized from squalene in the Planctomycetes bacteria and that this squalene route to C30 carotenoids is the most widespread in prokaryotes. Using the evolutionary history of carotenoid and squalene amino oxidases, we propose an evolutionary scenario to explain the origin and diversification of the different carotenoid and squalene-related pathways. We show that carotenoid biosynthetic pathways have been constantly transferred and neofunctionalized during prokaryotic evolution. One possible origin of the squalene pathway connects it with the one of C40 carotenoid synthesis of Cyanobacteria. The widespread occurrence of the squalene route to C30 carotenoids in Bacteria increases the functional repertoire of squalene, establishing it as a general hub of carotenoids and polycyclic triterpenes synthesis.
Collapse
|
3
|
Elling FJ, Evans TW, Nathan V, Hemingway JD, Kharbush JJ, Bayer B, Spieck E, Husain F, Summons RE, Pearson A. Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols. GEOBIOLOGY 2022; 20:399-420. [PMID: 35060273 DOI: 10.1111/gbi.12484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Hopanoid lipids, bacteriohopanols and bacteriohopanepolyols, are membrane components exclusive to bacteria. Together with their diagenetic derivatives, they are commonly used as biomarkers for specific bacterial groups or biogeochemical processes in the geologic record. However, the sources of hopanoids to marine and freshwater environments remain inadequately constrained. Recent marker gene studies suggest a widespread potential for hopanoid biosynthesis in marine bacterioplankton, including nitrifying (i.e., ammonia- and nitrite-oxidizing) bacteria. To explore their hopanoid biosynthetic capacities, we studied the distribution of hopanoid biosynthetic genes in the genomes of cultivated and uncultivated ammonia-oxidizing (AOB), nitrite-oxidizing (NOB), and complete ammonia-oxidizing (comammox) bacteria, finding that biosynthesis of diverse hopanoids is common among seven of the nine presently cultivated clades of nitrifying bacteria. Hopanoid biosynthesis genes are also conserved among the diverse lineages of bacterial nitrifiers detected in environmental metagenomes. We selected seven representative NOB isolated from marine, freshwater, and engineered environments for phenotypic characterization. All tested NOB produced diverse types of hopanoids, with some NOB producing primarily diploptene and others producing primarily bacteriohopanepolyols. Relative and absolute abundances of hopanoids were distinct among the cultures and dependent on growth conditions, such as oxygen and nitrite limitation. Several novel nitrogen-containing bacteriohopanepolyols were tentatively identified, of which the so called BHP-743.6 was present in all NOB. Distinct carbon isotopic signatures of biomass, hopanoids, and fatty acids in four tested NOB suggest operation of the reverse tricarboxylic acid cycle in Nitrospira spp. and Nitrospina gracilis and of the Calvin-Benson-Bassham cycle for carbon fixation in Nitrobacter vulgaris and Nitrococcus mobilis. We suggest that the contribution of hopanoids by NOB to environmental samples could be estimated by their carbon isotopic compositions. The ubiquity of nitrifying bacteria in the ocean today and the antiquity of this metabolic process suggest the potential for significant contributions to the geologic record of hopanoids.
Collapse
Affiliation(s)
- Felix J Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Thomas W Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jordon D Hemingway
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jenan J Kharbush
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Barbara Bayer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Fatima Husain
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Roger E Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Summons RE, Welander PV, Gold DA. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat Rev Microbiol 2022; 20:174-185. [PMID: 34635851 DOI: 10.1038/s41579-021-00636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
Fossilized lipids preserved in sedimentary rocks offer singular insights into the Earth's palaeobiology. These 'biomarkers' encode information pertaining to the oxygenation of the atmosphere and oceans, transitions in ocean plankton, the greening of continents, mass extinctions and climate change. Historically, biomarker interpretations relied on inventories of lipids present in extant microorganisms and counterparts in natural environments. However, progress has been impeded because only a small fraction of the Earth's microorganisms can be cultured, many environmentally significant microorganisms from the past no longer exist and there are gaping holes in knowledge concerning lipid biosynthesis. The revolution in genomics and bioinformatics has provided new tools to expand our understanding of lipid biomarkers, their biosynthetic pathways and distributions in nature. In this Review, we explore how preserved organic molecules provide a unique perspective on the history of the Earth's microbial life. We discuss how advances in molecular biology have helped elucidate biomarker origins and afforded more robust interpretations of fossil lipids and how the rock record provides vital calibration points for molecular clocks. Such studies are open to further exploitation with the expansion of sequenced microbial genomes in accessible databases.
Collapse
Affiliation(s)
- Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - David A Gold
- Department of Earth & Planetary Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
5
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
6
|
Rizk S, Henke P, Santana-Molina C, Martens G, Gnädig M, Nguyen NA, Devos DP, Neumann-Schaal M, Saenz JP. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1. Mol Microbiol 2021; 116:1064-1078. [PMID: 34387371 DOI: 10.1111/mmi.14794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE, and crtB we disrupted the production of squalene, and phytoene in Methylobacterium extorquens PA1, which are the presumed precursors for hopanoids and carotenoids, respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.
Collapse
Affiliation(s)
- Sandra Rizk
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Petra Henke
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Carlos Santana-Molina
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Gesa Martens
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Marén Gnädig
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | | | - Damien P Devos
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| |
Collapse
|
7
|
Chwastek G, Surma MA, Rizk S, Grosser D, Lavrynenko O, Rucińska M, Jambor H, Sáenz J. Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling. Cell Rep 2021; 32:108165. [PMID: 32966790 DOI: 10.1016/j.celrep.2020.108165] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cells, from microbes to mammals, adapt their membrane lipid composition in response to environmental changes to maintain optimal properties. Global patterns of lipidome remodeling are poorly understood, particularly in organisms with simple lipid compositions that can provide insight into fundamental principles of membrane adaptation. Using shotgun lipidomics, we examine the simple yet, as we show here, adaptive lipidome of the plant-associated Gram-negative bacterium Methylobacterium extorquens. We observe that minimally 11 lipids account for 90% of total variability, thus constraining the upper limit of variable lipids required for an adaptive living membrane. Through lipid features analysis, we reveal that acyl chain remodeling is not evenly distributed across lipid classes, resulting in headgroup-specific effects of acyl chain variability on membrane properties. Results herein implicate headgroup-specific acyl chain remodeling as a mechanism for fine-tuning the membrane's physical state and provide a resource for using M. extorquens to explore the design principles of living membranes.
Collapse
Affiliation(s)
- Grzegorz Chwastek
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany
| | | | - Sandra Rizk
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany
| | - Daniel Grosser
- DZD-Paul Langerhans Institute Dresden, Fetscherstraße 74, Dresden, Germany
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, Germany
| | | | - Helena Jambor
- Technische Universität Dresden, Medizinische Fakultät, Fetscherstraße 74, Dresden, Germany
| | - James Sáenz
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany.
| |
Collapse
|
8
|
Dichloromethane Degradation Pathway from Unsequenced Hyphomicrobium sp. MC8b Rapidly Explored by Pan-Proteomics. Microorganisms 2020; 8:microorganisms8121876. [PMID: 33260855 PMCID: PMC7760279 DOI: 10.3390/microorganisms8121876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Several bacteria are able to degrade the major industrial solvent dichloromethane (DCM) by using the conserved dehalogenase DcmA, the only system for DCM degradation characterised at the sequence level so far. Using differential proteomics, we rapidly identified key determinants of DCM degradation for Hyphomicrobium sp. MC8b, an unsequenced facultative methylotrophic DCM-degrading strain. For this, we designed a pan-proteomics database comprising the annotated genome sequences of 13 distinct Hyphomicrobium strains. Compared to growth with methanol, growth with DCM induces drastic changes in the proteome of strain MC8b. Dichloromethane dehalogenase DcmA was detected by differential pan-proteomics, but only with poor sequence coverage, suggesting atypical characteristics of the DCM dehalogenation system in this strain. More peptides were assigned to DcmA by error-tolerant search, warranting subsequent sequencing of the genome of strain MC8b, which revealed a highly divergent set of dcm genes in this strain. This suggests that the dcm enzymatic system is less strongly conserved than previously believed, and that substantial molecular evolution of dcm genes has occurred beyond their horizontal transfer in the bacterial domain. Our study showed the power of pan-proteomics for quick characterization of new strains belonging to branches of the Tree of Life that are densely genome-sequenced.
Collapse
|
9
|
Mo XH, Zhang H, Wang TM, Zhang C, Zhang C, Xing XH, Yang S. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol 2020; 104:4515-4532. [PMID: 32215707 DOI: 10.1007/s00253-020-10543-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023]
Abstract
The methylotrophic bacterium Methylorubrum extorquens AM1 holds a great potential of a microbial cell factory in producing high value chemicals with methanol as the sole carbon and energy source. However, many gene functions remain unknown, hampering further rewiring of metabolic networks. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been demonstrated to be a robust tool for gene knockdown in diverse organisms. In this study, we developed an efficient CRISPRi system through optimizing the promoter strength of Streptococcus pyogenes-derived deactivated cas9 (dcas9). When the dcas9 and sgRNA were respectively controlled by medium PR/tetO and strong PmxaF-g promoters, dynamic repression efficacy of cell growth through disturbing a central metabolism gene glyA was achieved from 41.9 to 96.6% dependent on the sgRNA targeting sites. Furthermore, the optimized CRISPRi system was shown to effectively decrease the abundance of exogenous fluorescent protein gene mCherry over 50% and to reduce the expression of phytoene desaturase gene crtI by 97.7%. We then used CRISPRi technology combined with 26 sgRNAs pool to rapidly discover a new phytoene desaturase gene META1_3670 from 2470 recombinant mutants. The gene function was further verified through gene deletion and complementation as well as phylogenetic tree analysis. In addition, we applied CRISPRi to repress the transcriptional level of squalene-hopene cyclase gene shc involved in hopanoid biosynthesis by 64.9%, which resulted in enhancing 1.9-fold higher of carotenoid production without defective cell growth. Thus, the CRISPRi system developed here provides a useful tool in mining functional gene of M. extorquens as well as in biotechnology for producing high-valued chemicals from methanol. KEY POINTS: Developing an efficient CRISPRi to knockdown gene expression in C1-utilizing bacteria CRISPRi combined with sgRNAs pool to rapidly discover a new phytoene desaturase gene Improvement of carotenoid production by repressing a competitive pathway.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Hui Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Tian-Min Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Chong Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
10
|
Belin BJ, Tookmanian EM, de Anda J, Wong GCL, Newman DK. Extended Hopanoid Loss Reduces Bacterial Motility and Surface Attachment and Leads to Heterogeneity in Root Nodule Growth Kinetics in a Bradyrhizobium-Aeschynomene Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1415-1428. [PMID: 31170026 PMCID: PMC7583662 DOI: 10.1094/mpmi-04-19-0111-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hopanoids are steroid-like bacterial lipids that enhance membrane rigidity and promote bacterial growth under diverse stresses. Hopanoid biosynthesis genes are conserved in nitrogen-fixing plant symbionts, and we previously found that the extended (C35) class of hopanoids in Bradyrhizobium diazoefficiens are required for efficient symbiotic nitrogen fixation in the tropical legume host Aeschynomene afraspera. Here, we demonstrate that the nitrogen-fixation defect conferred by extended hopanoid loss can be fully explained by a reduction in root nodule sizes rather than per-bacteroid nitrogen-fixation levels. Using a single-nodule tracking approach to quantify A. afraspera nodule development, we provide a quantitative model of root nodule development in this host, uncovering both the baseline growth parameters for wild-type nodules and a surprising heterogeneity of extended hopanoid mutant developmental phenotypes. These phenotypes include a delay in root nodule initiation and the presence of a subpopulation of nodules with slow growth rates and low final volumes, which are correlated with reduced motility and surface attachment in vitro and lower bacteroid densities in planta, respectively. This work provides a quantitative reference point for understanding the phenotypic diversity of ineffective symbionts in A. afraspera and identifies specific developmental stages affected by extended hopanoid loss for future mechanistic work.
Collapse
Affiliation(s)
- Brittany J. Belin
- Division of Biology & Bioengineering, California Institute of Technology, Pasadena, CA, U.S.A
| | - Elise M. Tookmanian
- Division of Chemistry & Chemical Engineering, California Institute of Technology
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, U.S.A
| | - Gerard C. L. Wong
- Division of Geological & Planetary Sciences, California Institute of Technology
| | - Dianne K. Newman
- Division of Biology & Bioengineering, California Institute of Technology, Pasadena, CA, U.S.A
- Division of Geological & Planetary Sciences, California Institute of Technology
| |
Collapse
|
11
|
Welander PV. Deciphering the evolutionary history of microbial cyclic triterpenoids. Free Radic Biol Med 2019; 140:270-278. [PMID: 31071437 DOI: 10.1016/j.freeradbiomed.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022]
Abstract
Cyclic triterpenoids are a class of lipids that have fascinated chemists, biologist, and geologist alike for many years. These molecules have diverse physiological roles in a variety of bacterial and eukaryotic organisms and a shared evolutionary ancestry that is reflected in the elegant biochemistry required for their synthesis. Cyclic triterpenoids are also quite recalcitrant and are preserved in sedimentary rocks where they are utilized as "molecular fossils" or biomarkers that can physically link microbial taxa and their metabolisms to a specific time or event in Earth's history. However, a proper interpretation of cyclic triterpenoid biosignatures requires a robust understanding of their function in extant organisms and in the evolutionary history of their biosynthetic pathways. Here, I review two potential cyclic triterpenoid evolutionary scenarios and the recent genetic and biochemical studies that are providing experimental evidence to distinguish between these hypotheses. The study of cyclic triterpenoids will continue to provide a wealth of information that can significantly impact the interpretation of lipid biosignatures in the rock record and provides a compelling model of how two natural repositories of evolutionary history available on Earth, the geologic record in sedimentary rocks and the molecular record in living organisms, can be linked.
Collapse
Affiliation(s)
- Paula V Welander
- Department of Earth System Science, Stanford University, 473 Via Ortega, Rm 140, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Nguyen AD, Kim D, Lee EY. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. BMC Genomics 2019; 20:130. [PMID: 30755173 PMCID: PMC6373157 DOI: 10.1186/s12864-019-5487-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Methanotrophs play an important role in biotechnological applications, with their ability to utilize single carbon (C1) feedstock such as methane and methanol to produce a range of high-value compounds. A newly isolated obligate methanotroph strain, Methylomonas sp. DH-1, became a platform strain for biotechnological applications because it has proven capable of producing chemicals, fuels, and secondary metabolites from methane and methanol. In this study, transcriptome analysis with RNA-seq was used to investigate the transcriptional change of Methylomonas sp. DH-1 on methane and methanol. This was done to improve knowledge about C1 assimilation and secondary metabolite pathways in this promising, but under-characterized, methane-bioconversion strain. Results We integrated genomic and transcriptomic analysis of the newly isolated Methylomonas sp. DH-1 grown on methane and methanol. Detailed transcriptomic analysis indicated that (i) Methylomonas sp. DH-1 possesses the ribulose monophosphate (RuMP) cycle and the Embden–Meyerhof–Parnas (EMP) pathway, which can serve as main pathways for C1 assimilation, (ii) the existence and the expression of a complete serine cycle and a complete tricarboxylic acid (TCA) cycle might contribute to methane conversion and energy production, and (iii) the highly active endogenous plasmid pDH1 may code for essential metabolic processes. Comparative transcriptomic analysis on methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, secondary metabolite pathways, and oxidative stress. Especially, these results suggest a shift of central metabolism when substrate changed from methane to methanol in which formaldehyde oxidation pathway and serine cycle carried more flux to produce acetyl-coA and NADH. Meanwhile, downregulation of TCA cycle when grown on methanol may suggest a shift of its main function is to provide de novo biosynthesis, but not produce NADH. Conclusions This study provides insights into the transcriptomic profile of Methylomonas sp. DH-1 grown on major carbon sources for C1 assimilation, providing in-depth knowledge on the metabolic pathways of this strain. These observations and analyses can contribute to future metabolic engineering with the newly isolated, yet under-characterized, Methylomonas sp. DH-1 to enhance its biochemical application in relevant industries. Electronic supplementary material The online version of this article (10.1186/s12864-019-5487-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering & School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
13
|
Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A, Newman DK. Hopanoid lipids: from membranes to plant-bacteria interactions. Nat Rev Microbiol 2018; 16:304-315. [PMID: 29456243 PMCID: PMC6087623 DOI: 10.1038/nrmicro.2017.173] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid research represents a frontier for microbiology, as showcased by hopanoid lipids. Hopanoids, which resemble sterols and are found in the membranes of diverse bacteria, have left an extensive molecular fossil record. They were first discovered by petroleum geologists. Today, hopanoid-producing bacteria remain abundant in various ecosystems, such as the rhizosphere. Recently, great progress has been made in our understanding of hopanoid biosynthesis, facilitated in part by technical advances in lipid identification and quantification. A variety of genetically tractable, hopanoid-producing bacteria have been cultured, and tools to manipulate hopanoid biosynthesis and detect hopanoids are improving. However, we still have much to learn regarding how hopanoid production is regulated, how hopanoids act biophysically and biochemically, and how their production affects bacterial interactions with other organisms, such as plants. The study of hopanoids thus offers rich opportunities for discovery.
Collapse
Affiliation(s)
- Brittany J. Belin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nicolas Busset
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, University of Montpellier, CIRAD, France
| | - Eric Giraud
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, University of Montpellier, CIRAD, France
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|