1
|
Murali S, Aradhyam GK. Divergent roles of DRY and NPxxY motifs in selective activation of downstream signalling by the apelin receptor. Biochem J 2024; 481:1707-1722. [PMID: 39513765 DOI: 10.1042/bcj20240320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
G protein-coupled receptors (GPCRs) serve as critical communication hubs, translating a wide range of extracellular signals into intracellular responses that govern numerous physiological processes. In class-A GPCRs, conserved motifs mediate conformational changes of the active states of the receptor, and signal transduction is achieved by selectively binding to Gα proteins and/or adapter protein, arrestin. Apelin receptor (APJR) is a class-A GPCR that regulates a wide range of intracellular signalling cascades in response to apelin and elabela peptide ligands. Understanding how conserved motifs within APJR mediate activation and signal specificity remains unexplored. This study focuses on the functional roles of the DRY and NPxxY motifs within APJR by analyzing their impact on downstream signaling pathways across the receptor's conformational ensembles. Our findings provide compelling evidence that mutations within the conserved DRY and NPxxY motifs of APJR significantly alter its conformational preferences where modification of DRY motif leads to abrogation of G-protein coupling and mutation of NPxxY motif causing abolition of β-arrestin-2 recruitment. These observations shed light on the importance of these motifs in APJR activation and its potential for functional selectivity, highlighting the role of DRY/NPxxY as conformational switches of APJR signalling.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Salve BG, Sharma S, Vijay N. Evolutionary diversity of CXCL16-CXCR6: Convergent substitutions and recurrent gene loss in sauropsids. Immunogenetics 2024; 76:397-415. [PMID: 39400711 DOI: 10.1007/s00251-024-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The CXCL16-CXCR6 axis is crucial for regulating the persistence of CD8 tissue-resident memory T cells (TRM). CXCR6 deficiency lowers TRM cell numbers in the lungs and depletes ILC3s in the lamina propria, impairing mucosal defence. This axis is linked to diseases like HIV/SIV, cancer, and COVID-19. Together, these highlight that the CXCL16-CXCR6 axis is pivotal in host immunity. Previous studies of the CXCL16-CXCR6 axis found genetic variation among species but were limited to primates and rodents. To understand the evolution and diversity of CXCL16-CXCR6 across vertebrates, we compared approximately 400 1-to-1 CXCR6 orthologs spanning diverse vertebrates. The unique DRF motif of CXCR6 facilitates leukocyte adhesion by interacting with cell surface-expressed CXCL16 and plays a key role in G-protein selectivity during receptor signalling; however, our findings show that this motif is not universal. The DRF motif is restricted to mammals, turtles, and frogs, while the DRY motif, typical in other CKRs, is found in snakes and lizards. Most birds exhibit the DRL motif. These substitutions at the DRF motif affect the receptor-Gi/o protein interaction. We establish recurrent CXCR6 gene loss in 10 out of 36 bird orders, including Galliformes and Passeriformes, Crocodilia, and Elapidae, attributed to segmental deletions and/or frame-disrupting changes. Notably, single-cell RNA sequencing of the lung shows a drop in TRM cells in species with CXCR6 loss, suggesting a possible link. The concurrent loss of ITGAE, CXCL16, and CXCR6 in chickens may have altered CD8 TRM cell abundance, with implications for immunity against viral diseases and vaccines inducing CD8 TRM cells.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Stasiak P, Snarski E, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS). Cancers (Basel) 2024; 16:3246. [PMID: 39409868 PMCID: PMC11476337 DOI: 10.3390/cancers16193246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is a type of leukemia with a very poor prognosis. Consequently, this neoplasm is extensively researched to discover new therapeutic strategies. One area of investigation is the study of intracellular communication and the impact of the bone marrow microenvironment on AML cells, with chemokines being a key focus. The roles of β-chemokines, γ-chemokines, and δ-chemokines in AML processes have not yet been sufficiently characterized. METHODS This publication summarizes all available knowledge about these chemotactic cytokines in AML and myelodysplastic neoplasm (MDS) processes and presents potential therapeutic strategies to combat the disease. The significance of β-chemokines, γ-chemokines, and δ-chemokines is detailed, including CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CCL23, CCL28, and CX3CL1 (fractalkine). Additionally, the importance of atypical chemokine receptors in AML is discussed, specifically ACKR1, ACKR2, ACKR4, and CCRL2. RESULTS/CONCLUSIONS The focus is on the effects of these chemokines on AML cells, particularly their influence on proliferation and resistance to anti-leukemic drugs. Intercellular interactions with non-AML cells, such as mesenchymal stem cells (MSC), macrophages, and regulatory T cells (Treg), are also characterized. The clinical aspects of chemokines are thoroughly explained, including their effect on overall survival and the relationship between their blood levels and AML characteristics.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland; (J.K.); (P.S.)
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland; (J.K.); (P.S.)
| | - Emilian Snarski
- Institute of Medical Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland;
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| |
Collapse
|
4
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Yun CS, Saito Y, Rahman ANMI, Suzuki T, Takahashi H, Kizaki K, Khandoker MAMY, Yamauchi N. C-C motif chemokine ligand 2 regulates prostaglandin synthesis and embryo attachment of the bovine endometrium during implantation. Cell Tissue Res 2024; 396:231-243. [PMID: 38438567 DOI: 10.1007/s00441-024-03869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
C-C motif chemokine ligand 2 (CCL2) has been reported to be expressed in the bovine endometrium during pregnancy. However, the details of its functions involved in the implantation mechanism are still not clear. The purpose of this study is to analyze the functional properties of CCL2 in the bovine endometrium and embryos. The expression of CCR2 was not different between the luteal phase and implantation phase of their endometrial tissues, but was significantly high in IFNa treated bovine endometrial stromal (BES) cells in vitro. The expressions of PGES1, PGES2, AKR1C4, and AKR1C4 were high at the implantation stage compared with the luteal stage. On the other hand, PGES2 and AKR1B1 in BEE and PGES3 and AKR1A1 in BES were significantly increased by CCL2 treatment, respectively. The expressions of PCNA and IFNt were found significantly high in the bovine trophoblastic cells (BT) treated with CCL2 compared to the control. CCL2 significantly increased the attachment rate of BT vesicles to BEE in in vitro co-culture system. The expression of OPN and ICAM-1 increased in BEE, and ICAM-1 increased in BT by CCL2 treatment, respectively. The present results indicate that CCL2 has the potential to regulate the synthesis of PGs in the endometrium and the embryo growth. In addition, CCL2 has the possibility to regulate the process of bovine embryo attachment to the endometrium by modulation of binding molecules expression.
Collapse
Affiliation(s)
- Chi Sun Yun
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuyu Saito
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Al-Nur Md Iftekhar Rahman
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Shere-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hideyuki Takahashi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keiichiro Kizaki
- Cooperative Department of Veterinary Medicine, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - M A M Yahia Khandoker
- Department of Animal Breeding and Genetics, Bangladesh , Agricultural University, Mymensingh, 2202, Bangladesh
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
7
|
Korbecki J, Kupnicka P, Barczak K, Bosiacki M, Ziętek P, Chlubek D, Baranowska-Bosiacka I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers (Basel) 2023; 15:4555. [PMID: 37760523 PMCID: PMC10526350 DOI: 10.3390/cancers15184555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French-American-British (FAB) classification and FLT3 gene mutations.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| |
Collapse
|
8
|
Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med 2023; 10:1200341. [PMID: 37600028 PMCID: PMC10434786 DOI: 10.3389/fcvm.2023.1200341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis and its complications are a major cause of morbidity and mortality worldwide in spite of the improved medical and invasive treatment in terms of revascularization. Atherosclerosis is a dynamic, multi-step process in which inflammation is a ubiquitous component participating in the initiation, development, and entanglements of the atherosclerotic plaque. After activation, the immune system, either native or acquired, is part of the atherosclerotic dynamics enhancing the pro-atherogenic function of immune or non-immune cells, such as endothelial cells, smooth muscle cells, or platelets, through mediators such as cytokines or directly by cell-to-cell interaction. Cytokines are molecules secreted by the activated cells mentioned above that mediate the inflammatory component of atherosclerosis whose function is to stimulate the immune cells and the production of further cytokines. This review provides insights of the cell axis activation and specific mechanisms and pathways through which inflammation actuates atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital, Bucharest, Romania
| | - Corina-Elena Ferdoschi
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
| | | |
Collapse
|
9
|
Abdelbary M, Hobbs SJ, Gibbs JS, Yewdell JW, Nolz JC. T cell receptor signaling strength establishes the chemotactic properties of effector CD8 + T cells that control tissue-residency. Nat Commun 2023; 14:3928. [PMID: 37402742 PMCID: PMC10319879 DOI: 10.1038/s41467-023-39592-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - James S Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Ye F, Wong T, Chen G, Zhang Z, Zhang B, Gan S, Gao W, Li J, Wu Z, Pan X, Du Y. Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein. MedComm (Beijing) 2022; 3:e159. [PMID: 36105372 PMCID: PMC9464062 DOI: 10.1002/mco2.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
GPR17 is a class A orphan G protein-coupled receptor (GPCR) expressed in neurons and oligodendrocyte progenitors of the central nervous system (CNS). The signalling of GPR17 occurs through the heterotrimeric Gi, but its activation mechanism is unclear. Here, we employed cryo-electron microscopy (cryo-EM) technology to elucidate the structure of activated GPR17-Gi complex. The 3.02 Å resolution structure, together with mutagenesis studies, revealed that the extracellular loop2 of GPR17 occupied the orthosteric binding pocket to promote its self-activation. The active GPR17 carried several typical microswitches like other class A GPCRs. Moreover, the Gi interacted with the key residues of transmembrane helix 3 (TM3), the amphipathic helix 8 (Helix8), and intracellular loops 3 (ICL3) in GPR17 to engage in the receptor core. In summary, our results highlight the activation mechanism of GPR17 from the structural basis. Elucidating the structural and activation mechanism of GPR17 may facilitate the pharmacological intervention for acute/chronic CNS injury.
Collapse
Affiliation(s)
- Fang Ye
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| | - Thian‐Sze Wong
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Geng Chen
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Wei Gao
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Jiancheng Li
- Instrumental Analysis CenterShenzhen UniversityShenzhenGuangdongChina
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Xin Pan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Yang Du
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| |
Collapse
|
12
|
Mabrouk N, Tran T, Sam I, Pourmir I, Gruel N, Granier C, Pineau J, Gey A, Kobold S, Fabre E, Tartour E. CXCR6 expressing T cells: Functions and role in the control of tumors. Front Immunol 2022; 13:1022136. [PMID: 36311728 PMCID: PMC9597613 DOI: 10.3389/fimmu.2022.1022136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
CXCR6 is a receptor for the chemokine CXCL16, which exists as a membrane or soluble form. CXCR6 is a marker for resident memory T (TRM) cells that plays a role in immunosurveillance through their interaction with epithelial cells. The interaction of CXCR6 with CXCL16 expressed at the membrane of certain subpopulations of intratumor dendritic cells (DC) called DC3, ideally positions these CXCR6+ T cells to receive a proliferation signal from IL-15 also presented by DC3. Mice deficient in cxcr6 or blocking the interaction of CXCR6 with its ligand, experience a poorer control of tumor proliferation by CD8+ T cells, but also by NKT cells especially in the liver. Intranasal vaccination induces CXCL16 production in the lungs and is associated with infiltration by TRM expressing CXCR6, which are then required for the efficacy of anti-tumor vaccination. Therapeutically, the addition of CXCR6 to specific CAR-T cells enhances their intratumoral accumulation and prolongs survival in animal models of pancreatic, ovarian and lung cancer. Finally, CXCR6 is part of immunological signatures that predict response to immunotherapy based on anti-PD-(L)1 in various cancers. In contrast, a protumoral role of CXCR6+T cells has also been reported mainly in Non-alcoholic steatohepatitis (NASH) due to a non-antigen specific mechanism. The targeting and amplification of antigen-specific TRM expressing CXCR6 and its potential use as a biomarker of response to immunotherapy opens new perspectives in cancer treatment.
Collapse
Affiliation(s)
| | - Thi Tran
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ikuan Sam
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ivan Pourmir
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Nadège Gruel
- Institut Curie, PSL Research University, Department of Translational Research, Paris, France
- INSERM U830, Equipe labellisée LNCC, Siredo Oncology Centre, Institut Curie, Paris, France
| | - Clémence Granier
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Joséphine Pineau
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Alain Gey
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Elizabeth Fabre
- Université ParisCité, INSERM, PARCC, Paris, France
- Lung Oncology Unit, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
- *Correspondence: Eric Tartour,
| |
Collapse
|
13
|
Li T, Pan J, Chen H, Fang Y, Sun Y. CXCR6-based immunotherapy in autoimmune, cancer and inflammatory infliction. Acta Pharm Sin B 2022; 12:3255-3262. [PMID: 35967287 PMCID: PMC9366225 DOI: 10.1016/j.apsb.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding authors.
| | - Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongliang Fang
- Department of Urology, Boston Children's Hospital, Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Corresponding authors.
| |
Collapse
|
14
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
15
|
Lee SC, Lee YJ, Choi I, Kim M, Sung JS. CXCL16/CXCR6 Axis in Adipocytes Differentiated from Human Adipose Derived Mesenchymal Stem Cells Regulates Macrophage Polarization. Cells 2021; 10:cells10123410. [PMID: 34943917 PMCID: PMC8699853 DOI: 10.3390/cells10123410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Adipocytes interact with adipose tissue macrophages (ATMs) that exist as a form of M2 macrophage in healthy adipose tissue and are polarized into M1 macrophages upon cellular stress. ATMs regulate adipose tissue inflammation by secreting cytokines, adipokines, and chemokines. CXC-motif receptor 6 (CXCR6) is the chemokine receptor and interactions with its specific ligand CXC-motif chemokine ligand 16 (CXCL16) modulate the migratory capacities of human adipose-derived mesenchymal stem cells (hADMSCs). CXCR6 is highly expressed on differentiated adipocytes that are non-migratory cells. To evaluate the underlying mechanisms of CXCR6 in adipocytes, THP-1 human monocytes that can be polarized into M1 or M2 macrophages were co-cultured with adipocytes. As results, expression levels of the M1 polarization-inducing factor were decreased, while those of the M2 polarization-inducing factor were significantly increased in differentiated adipocytes in a co-cultured environment with additional CXCL16 treatment. After CXCL16 treatment, the anti-inflammatory factors, including p38 MAPK ad ERK1/2, were upregulated, while the pro-inflammatory pathway mediated by Akt and NF-κB was downregulated in adipocytes in a co-cultured environment. These results revealed that the CXCL16/CXCR6 axis in adipocytes regulates M1 or M2 polarization and displays an immunosuppressive effect by modulating pro-inflammatory or anti-inflammatory pathways. Our results may provide an insight into a potential target as a regulator of the immune response via the CXCL16/CXCR6 axis in adipocytes.
Collapse
Affiliation(s)
- Seung-Cheol Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Yoo-Jung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Inho Choi
- Department of Pharmaceutical Engineering, Hoseo University, Asan 31499, Korea;
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.-C.L.); (Y.-J.L.); (M.K.)
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
16
|
Salazar JL, Yang SA, Lin YQ, Li-Kroeger D, Marcogliese PC, Deal SL, Neely GG, Yamamoto S. TM2D genes regulate Notch signaling and neuronal function in Drosophila. PLoS Genet 2021; 17:e1009962. [PMID: 34905536 PMCID: PMC8714088 DOI: 10.1371/journal.pgen.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/28/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Yong Qi Lin
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neurology, BCM, Houston, Texas, United States of America
- Center for Alzheimer’s and Neurodegenerative Diseases, BCM, Houston, Texas, United States of America
| | - Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Samantha L. Deal
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Center for Alzheimer’s and Neurodegenerative Diseases, BCM, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, Texas, United States of America
- Department of Neuroscience, BCM, Houston, Texas, United States of America
| |
Collapse
|
17
|
Muthuswamy R, McGray AR, Battaglia S, He W, Miliotto A, Eppolito C, Matsuzaki J, Takemasa T, Koya R, Chodon T, Lichty BD, Shrikant P, Odunsi K. CXCR6 by increasing retention of memory CD8 + T cells in the ovarian tumor microenvironment promotes immunosurveillance and control of ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-003329. [PMID: 34607898 PMCID: PMC8491420 DOI: 10.1136/jitc-2021-003329] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Resident memory CD8 T cells, owing to their ability to reside and persist in peripheral tissues, impart adaptive sentinel activity and amplify local immune response, and have beneficial implications for tumor surveillance and control. The current study aimed to clarify the less known chemotactic mechanisms that govern the localization, retention, and residency of memory CD8 T cells in the ovarian tumor microenvironment. Experimental design RNA and protein expressions of chemokine receptors in CD8+ resident memory T cells in human ovarian tumor-infiltrating CD8+ T cells and their association with survival were analyzed. The role of CXCR6 on antitumor T cells was investigated using prophylactic vaccine models in murine ovarian cancer. Results Chemokine receptor profiling of CD8+CD103+ resident memory tumor-infiltrating lymphocytes in patients with ovarian cancer revealed high expression of CXCR6. Analysis of The Cancer Genome Atlas (TCGA) (ovarian cancer database revealed CXCR6 to be associated with CD103 and increased patient survival. Functional studies in mouse models of ovarian cancer revealed that CXCR6 is a marker of resident, but not circulatory, tumor-specific memory CD8+ T cells. CXCR6-deficient tumor-specific CD8+ T cells showed reduced retention in tumor tissues, leading to diminished resident memory responses and poor control of ovarian cancer. Conclusions CXCR6, by promoting retention in tumor tissues, serves a critical role in resident memory T cell-mediated immunosurveillance and control of ovarian cancer. Future studies warrant exploiting CXCR6 to promote resident memory responses in cancers.
Collapse
Affiliation(s)
- Ravikumar Muthuswamy
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Aj Robert McGray
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sebastiano Battaglia
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Wenjun He
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anthony Miliotto
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Cheryl Eppolito
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Junko Matsuzaki
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - Tsuji Takemasa
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - Richard Koya
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - Thinle Chodon
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - Brian D Lichty
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Protul Shrikant
- Department of Microbiology and Immunology, University of Arizona, Tucson, Arizona, USA
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Di Pilato M, Kfuri-Rubens R, Pruessmann JN, Ozga AJ, Messemaker M, Cadilha BL, Sivakumar R, Cianciaruso C, Warner RD, Marangoni F, Carrizosa E, Lesch S, Billingsley J, Perez-Ramos D, Zavala F, Rheinbay E, Luster AD, Gerner MY, Kobold S, Pittet MJ, Mempel TR. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 2021; 184:4512-4530.e22. [PMID: 34343496 PMCID: PMC8719451 DOI: 10.1016/j.cell.2021.07.015] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Raphael Kfuri-Rubens
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Jasper N Pruessmann
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandra J Ozga
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Marius Messemaker
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Bruno L Cadilha
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - Ramya Sivakumar
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Chiara Cianciaruso
- Harvard Medical School, Boston, MA 02115, USA; Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Ross D Warner
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Francesco Marangoni
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Carrizosa
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie Lesch
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
| | - James Billingsley
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard School of Public Health, Boston, MA 21205, USA
| | - Daniel Perez-Ramos
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Esther Rheinbay
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael Y Gerner
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany; German Center for Translational Cancer Research (DKTK), partner site, Munich, Germany
| | - Mikael J Pittet
- Harvard Medical School, Boston, MA 02115, USA; Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology and Immunology, University of Geneva, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Vella JL, Molodtsov A, Angeles CV, Branchini BR, Turk MJ, Huang YH. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells. Life Sci Alliance 2021; 4:4/10/e202101056. [PMID: 34362825 PMCID: PMC8356251 DOI: 10.26508/lsa.202101056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory (TRM) T cells are emerging as critical components of the immune response to cancer; yet, requirements for their ongoing function and maintenance remain unclear. APCs promote TRM cell differentiation and re-activation but have not been implicated in sustaining TRM cell responses. Here, we identified a novel role for dendritic cells in supporting TRM to melanoma. We showed that CD8 TRM cells remain in close proximity to dendritic cells in the skin. Depletion of CD11c+ cells results in rapid disaggregation and eventual loss of melanoma-specific TRM cells. In addition, we determined that TRM migration and/or persistence requires chemotaxis and adhesion mediated by the CXCR6/CXCL16 axis. The interaction between CXCR6-expressing TRM cells and CXCL16-expressing APCs was found to be critical for sustaining TRM cell-mediated tumor protection. These findings substantially expand our knowledge of APC functions in TRM T-cell homeostasis and longevity.
Collapse
Affiliation(s)
- Jennifer L Vella
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aleksey Molodtsov
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina V Angeles
- Department of Surgery, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA .,Norris Cotton Cancer Center, Lebanon, NH, USA.,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
20
|
Aguilera-Durán G, Romo-Mancillas A. Behavior of Chemokine Receptor 6 (CXCR6) in Complex with CXCL16 Soluble form Chemokine by Molecular Dynamic Simulations: General Protein‒Ligand Interaction Model and 3D-QSAR Studies of Synthetic Antagonists. Life (Basel) 2021; 11:life11040346. [PMID: 33920834 PMCID: PMC8071165 DOI: 10.3390/life11040346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
The CXCR6‒CXCL16 axis is involved in several pathological processes, and its overexpression has been detected in different types of cancer, such as prostate, breast, ovary, and lung cancer, along with schwannomas, in which it promotes invasion and metastasis. Moreover, this axis is involved in atherosclerosis, type 1 diabetes, primary immune thrombocytopenia, vitiligo, and other autoimmune diseases, in which it is responsible for the infiltration of different immune system cells. The 3D structure of CXCR6 and CXCL16 has not been experimentally resolved; therefore, homology modeling and molecular dynamics simulations could be useful for the study of this signaling axis. In this work, a homology model of CXCR6 and a soluble form of CXCL16 (CXCR6‒CXCL16s) are reported to study the interactions between CXCR6 and CXCL16s through coarse-grained molecular dynamics (CG-MD) simulations. CG-MD simulations showed the two activation steps of CXCR6 through a decrease in the distance between the chemokine and the transmembrane region (TM) of CXCR6 and transmembrane rotational changes and polar interactions between transmembrane segments. The polar interactions between TM3, TM5, and TM6 are fundamental to functional conformation and the meta-active state of CXCR6. The interactions between D77-R280 and T243-TM7 could be related to the functional conformation of CXCR6; alternatively, the interaction between Q195-Q244 and N248 could be related to an inactive state due to the loss of this interaction, and an arginine cage broken in the presence of CXCL16s allows the meta-active state of CXCR6. A general protein‒ligand interaction supports the relevance of TM3‒TM5‒TM6 interactions, presenting three relevant pharmacophoric features: HAc (H-bond acceptor), HDn (H-bond donator), and Hph (hydrophobic), distributed around the space between extracellular loops (ECLs) and TMs. The HDn feature is close to TM3 and TM6; likewise, the HAc and Hph features are close to ECL1 and ECL2 and could block the rotation and interactions between TM3‒TM6 and the interactions of CXCL16s with the ECLs. Tridimensional quantitative structure-activity relationships (3D-QSAR) models show that the positive steric (VdW) and electrostatic fields coincide with the steric and positive electrostatic region of the exo-azabicyclo[3.3.1]nonane scaffold in the best pIC50 ligands. This substructure is close to the E274 residue and therefore relevant to the activity of CXCR6. These data could help with the design of new molecules that inhibit chemokine binding or antagonize the receptor based on the activation mechanism of CXCR6 and provoke a decrease in chemotaxis caused by the CXCR6‒CXCL16 axis.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico;
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
- Correspondence:
| |
Collapse
|
21
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
22
|
Dunk CE, van Dijk M, Choudhury R, Wright TJ, Cox B, Leavey K, Harris LK, Jones RL, Lye SJ. Functional Evaluation of STOX1 (STORKHEAD-BOX PROTEIN 1) in Placentation, Preeclampsia, and Preterm Birth. Hypertension 2020; 77:475-490. [PMID: 33356399 DOI: 10.1161/hypertensionaha.120.15619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Revaluation of the association of the STOX1 (STORKHEAD_BOX1 PROTEIN 1) transcription factor mutation (Y153H, C allele) with the early utero-vascular origins of placental pathology is warranted. To investigate if placental STOX1 Y153H genotype affects utero-vascular remodeling-compromised in both preterm birth and preeclampsia-we utilized extravillous trophoblast (EVT) explant and placental decidual coculture models, transfection of STOX1 wild-type and mutant plasmids into EVT-like trophoblast cell lines, and a cohort of 75 placentas from obstetric pathologies. Primary EVT and HTR8/SVneo cells carrying STOX1 Y153H secreted lower levels of IL (interleukin) 6, and IL-8, and higher CXCL16 (chemokine [C-X-C motif] ligand 16) and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) than wild-type EVT and Swan71 cells. Media from wild-type EVT or Swan71 cells transfected with wild-type STOX1 stimulated: endothelial chemokine expression, angiogenesis, and decidual natural killer cell and monocyte migration. In contrast, Y153H EVT conditioned medium, Swan71 transfected with the Y153H plasmid, or HTR8/SVneo media had no effect. Genotyping of placental decidual cocultures demonstrated association of the placental STOX1 CC allele with failed vascular remodeling. Decidual GG NODAL R165H increased in failed cocultures carrying the placental CC alleles of STOX1. Multivariate analysis of the placental cohort showed that the STOX1 C allele correlated with premature birth, with or without severe early-onset preeclampsia, and small for gestational age babies. In conclusion, placental STOX1 Y153H is a precipitating factor in preterm birth and placental preeclampsia due to defects in early utero-placental development.
Collapse
Affiliation(s)
- Caroline E Dunk
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.)
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, the Netherlands (M.V.D.)
| | - Ruhul Choudhury
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Thomas J Wright
- Department of Ophthalmology, Kensington Eye Institute (T.J.W.), University of Toronto, Canada
| | - Brian Cox
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Katherine Leavey
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Division of Pharmacy and Optometry (L.K.H.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Stephen J Lye
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.).,Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada.,Department of Obstetrics and Gynaecology, Faculty of Medicine (S.J.L.), University of Toronto, Canada
| |
Collapse
|
23
|
Bitsi S. The chemokine CXCL16 can rescue the defects in insulin signaling and sensitivity caused by palmitate in C2C12 myotubes. Cytokine 2020; 133:155154. [PMID: 32535333 DOI: 10.1016/j.cyto.2020.155154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
In obesity, macrophages infiltrate peripheral tissues and secrete pro-inflammatory cytokines that impact local insulin sensitivity. Lipopolysaccharide (LPS) and the saturated fatty acid (FA) palmitate polarise macrophages towards a pro-inflammatory phenotype in vitro and indirectly cause insulin resistance (IR) in myotubes. In contrast, unsaturated FAs confer an anti-inflammatory phenotype and counteract the actions of palmitate. To explore paracrine mechanisms of interest, J774 macrophages were exposed to palmitate ± palmitoleate or control medium and the conditioned media generated were screened using a cytokine array. Of the 62 cytokines examined, 8 were significantly differentially expressed following FA treatments. Notably, CXCL16 secretion was downregulated by palmitate. In follow-up experiments using ELISAs, this downregulation was confirmed and reversed by simultaneous addition of palmitoleate or oleate, while LPS also diminished CXCL16 secretion. To dissect potential effects of CXCL16, C2C12 myotubes were treated with palmitate to induce IR, recombinant soluble CXCL16 (sCXCL16), combined treatment, or control medium. Palmitate caused the expected reduction of insulin-stimulated Akt activation and glycogen synthesis, whereas simultaneous treatment with sCXCL16 attenuated these effects. These data indicate a putative role for CXCL16 in preservation of Akt activation and insulin signaling in the context of chronic low-grade inflammation in skeletal muscle.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Comparative Biomedical Sciences Department, Royal Veterinary College, London NW1 0TU, United Kingdom.
| |
Collapse
|
24
|
Wetzel KS, Elliott STC, Collman RG. SIV Coreceptor Specificity in Natural and Non-Natural Host Infection: Implications for Cell Targeting and Differential Outcomes from Infection. Curr HIV Res 2019; 16:41-51. [PMID: 29173179 DOI: 10.2174/1570162x15666171124121805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Pathogenic HIV-1 infection of humans and SIVmac infection of macaques are the result of zoonotic transfer of primate immunodeficiency viruses from their natural hosts into non-natural host species. Natural host infections do not result in pathogenesis despite high levels of virus replication, and evidence suggests that differences in anatomical location and specific subsets of CD4+ T cells infected may underlie distinct outcomes from infection. The coreceptor CCR5 has long been considered the sole pathway for SIV entry and the key determinant of CD4+ cell targeting, but it has also been known that natural hosts express exceedingly low levels of CCR5 despite maintaining high levels of virus replication. This review details emerging data indicating that in multiple natural host species, CCR5 is dispensable for SIV infection ex vivo and/or in vivo and, contrary to the established dogma, alternative coreceptors, particularly CXCR6, play a central role in infection and cell targeting. Infections of non-natural hosts, however, are characterized by CCR5-exclusive entry. These findings suggest that alternative coreceptor-mediated cell targeting in natural hosts, combined with low CCR5 expression, may direct the virus to distinct populations of cells that are dispensable for immune homeostasis, particularly extralymphoid and more differentiated CD4+ T cells. In contrast, CCR5-mediated entry in non-natural hosts results in targeting of CD4+ T cells that are located in lymphoid tissues, critical for immune homeostasis, or necessary for gut barrier integrity. Thus, fundamental differences in viral entry coreceptor use may be central determinants of infection outcome. These findings redefine the normal SIV/host relationship in natural host species, shed new light on key features linked to zoonotic immunodeficiency virus transfer, and highlight important questions regarding how and why this coreceptor bottleneck occurs and the coevolutionary equilibrium is lost following cross-species transfer that results in AIDS.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sarah T C Elliott
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald G Collman
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
25
|
Blaho VA, Chun J. 'Crystal' Clear? Lysophospholipid Receptor Structure Insights and Controversies. Trends Pharmacol Sci 2018; 39:953-966. [PMID: 30343728 PMCID: PMC6201317 DOI: 10.1016/j.tips.2018.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
Abstract
Lysophospholipids (LPLs), particularly sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA), are bioactive lipid modulators of cellular homeostasis and pathology. The discovery and characterization of five S1P- and six LPA-specific G protein-coupled receptors (GPCRs), S1P1-5 and LPA1-6, have expanded their known involvement in all mammalian physiological systems. Resolution of the S1P1, LPA1, and LPA6 crystal structures has fueled the growing interest in these receptors and their ligands as targets for pharmacological manipulation. In this review, we have attempted to provide an integrated overview of the three crystallized LPL GPCRs with biochemical and physiological structure-function data. Finally, we provide a novel discussion of how chaperones for LPLs may be considered when extrapolating crystallographic and computational data toward understanding actual biological interactions and phenotypes.
Collapse
Affiliation(s)
- Victoria A Blaho
- Sanford Burnham Prebys Medical Discovery Institute, Degenerative Diseases Program, La Jolla, CA 92037, USA.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, Degenerative Diseases Program, La Jolla, CA 92037, USA.
| |
Collapse
|