1
|
Baum L, Lee CC, Ye R, Zhong Y, Hung SF, Tang CP, Ho TP, Swanson JM, Moyzis RK, Sham PC, Leung PWL. Attention-deficit/hyperactivity disorder and dopamine receptor D4 (DRD4) exon 3 variable number of tandem repeats (VNTR) 2-repeat allele. Ann Hum Genet 2024; 88:382-391. [PMID: 38624263 DOI: 10.1111/ahg.12560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
To investigate the association of attention-deficit/hyperactivity disorder (ADHD) with the 48-base pair (bp) variable number of tandem repeats (VNTR) in exon 3 of the dopamine receptor D4 (DRD4) gene, we genotyped 240 ADHD patients and their parents from Hong Kong. The 4R allele was most common, followed by 2R. We examined association between the 2R allele (relative to 4R) and ADHD by Transmission Disequilibrium Test (TDT). The odds ratio (OR) (95% confidence interval) was 0.90 (0.64-1.3). The p-value was 0.6. Examining subgroups revealed nominally significant association of 2R with inattentive ADHD: OR = 0.33 (0.12-0.92) and p = 0.03. Because our study used TDT analysis, we meta-analyzed the association of 2R with ADHD in Asians (1329 patient alleles), revealing results similar to ours: OR = 0.97 (0.80-1.2) and p = 0.8. To examine the association of 2R with inattentive ADHD, we meta-analyzed all studies (regardless of analysis type or ethnicity, in order to increase statistical power): 702 patient alleles, 1420 control alleles, OR = 0.81 (0.57-1.1) and p = 0.2. Overall, there is no evidence of association between ADHD and the 2R allele, but the suggestive association with the inattentive type warrants further investigation.
Collapse
Affiliation(s)
- Larry Baum
- Department of Psychiatry, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi Chiu Lee
- Department of Psychiatry, Kwai Chung Hospital, Hospital Authority, Hong Kong, China
| | - Rui Ye
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Yuanxin Zhong
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Se Fong Hung
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Tang
- Department of Psychiatry, Kwai Chung Hospital, Hospital Authority, Hong Kong, China
| | - Ting Pong Ho
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - James M Swanson
- Department of Pediatrics, University of Irvine, Irvine, California, USA
| | - Robert K Moyzis
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Pak-Chung Sham
- Department of Psychiatry, The State Key Laboratory of Brain and Cognitive Sciences, Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
2
|
Custodio RJP, Hengstler JG, Cheong JH, Kim HJ, Wascher E, Getzmann S. Adult ADHD: it is old and new at the same time - what is it? Rev Neurosci 2024; 35:225-241. [PMID: 37813870 DOI: 10.1515/revneuro-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Even though the number of studies aiming to improve comprehension of ADHD pathology has increased in recent years, there still is an urgent need for more effective studies, particularly in understanding adult ADHD, both at preclinical and clinical levels, due to the increasing evidence that adult ADHD is highly distinct and a different entity from childhood ADHD. This review paper outlines the symptoms, diagnostics, and neurobiological mechanisms of ADHD, with emphasis on how adult ADHD could be different from childhood-onset. Data show a difference in the environmental, genetic, epigenetic, and brain structural changes, when combined, could greatly impact the behavioral presentations and the severity of ADHD in adults. Furthermore, a crucial aspect in the quest to fully understand this disorder could be through longitudinal analysis. In this way, we will determine if and how the pathology and pharmacology of ADHD change with age. This goal could revolutionize our understanding of the disorder and address the weaknesses in the current clinical classification systems, improving the characterization and validity of ADHD diagnosis, specifically those in adults.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jan G Hengstler
- Systems Toxicology, Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, South Korea
| | - Edmund Wascher
- Experimental Ergonomics, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Stephan Getzmann
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| |
Collapse
|
3
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
4
|
Chan WWY, Shum KKM, Sonuga-Barke EJS. Attention-deficit/hyperactivity disorder (ADHD) in cultural context: Do parents in Hong Kong and the United Kingdom adopt different thresholds when rating symptoms, and if so why? Int J Methods Psychiatr Res 2022; 31:e1923. [PMID: 35670761 PMCID: PMC9464328 DOI: 10.1002/mpr.1923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Attention-deficit/hyperactivity disorder (ADHD) prevalence is similar across world regions. However, because informants' decision thresholds may vary between regions, these similarities may mask regional variations in actual ADHD behaviours. We tested this by comparing the relationship between informant's ratings and children's measured activity in United Kingdom (UK) and Hong Kong (HK) and then explored whether any national differences in endorsement thresholds discovered are linked to cultural variations in parenting factors. METHODS Parents rated the 18 ADHD symptoms in 112 three-to-five-year-old children stratified for ADHD symptom levels (49 girls and 63 boys; 55 from the UK and 57 from HK) and completed some parenting questionnaires. Children's task-related activity was measured using actometers. RESULTS In both groups, measured activity was positively correlated with hyperactivity/impulsivity (r = 0.44HK ; r = 0.41UK ). While HK children were less active than UK children (p < 0.01), HK parents rated their children as more hyperactive/impulsive and inattentive (ps < 0.05). The lower rating threshold indicated by this pattern in HK parents were explained by their higher child-related stress levels. CONCLUSIONS UK and HK parents operated different ADHD symptom endorsement thresholds. The link between these and child-related stress may mark a more general role of cultural pressure for child conformity and school achievement in HK.
Collapse
Affiliation(s)
- Wendy W Y Chan
- School of Academic Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Psychology, The University of Hong Kong, Hong Kong, China
| | | | - Edmund J S Sonuga-Barke
- School of Academic Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Child & Adolescent Psychiatry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
6
|
Dairaghi L, Constantin S, Oh A, Shostak D, Wray S. The Dopamine D4 Receptor Regulates Gonadotropin-Releasing Hormone Neuron Excitability in Male Mice. eNeuro 2022; 9:ENEURO.0461-21.2022. [PMID: 35165199 PMCID: PMC8896547 DOI: 10.1523/eneuro.0461-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility. The release of GnRH peptide regulates the synthesis and release of both luteinizing hormone (LH) and Follicle stimulation hormone (FSH) from the anterior pituitary. While it is known that dopamine regulates GnRH neurons, the specific dopamine receptor subtype(s) involved remain unclear. Previous studies in adult rodents have reported juxtaposition of fibers containing tyrosine hydroxylase (TH), a marker of catecholaminergic cells, onto GnRH neurons and that exogenous dopamine inhibits GnRH neurons postsynaptically through dopamine D1-like and/or D2-like receptors. Our microarray data from GnRH neurons revealed a high level of Drd4 transcripts [i.e., dopamine D4 receptor (D4R)]. Single-cell RT-PCR and immunocytochemistry confirmed GnRH cells express the Drd4 transcript and protein, respectively. Calcium imaging identified changes in GnRH neuronal activity during application of subtype-specific dopamine receptor agonists and antagonists when GABAergic and glutamatergic transmission was blocked. Dopamine, dopamine with D1/5R-specific or D2/3R-specific antagonists or D4R-specific agonists decreased the frequency of calcium oscillations. In contrast, D1/5R-specific agonists increased the frequency of calcium oscillations. The D4R-mediated inhibition was dependent on Gαi/o protein coupling, while the D1/5R-mediated excitation required Gαs protein coupling. Together, these results indicate that D4R plays an important role in the dopaminergic inhibition of GnRH neurons.
Collapse
Affiliation(s)
| | | | - Andrew Oh
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | - David Shostak
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
7
|
Li XN, Zheng JL, Wei XH, Wang BJ, Yao J. No association between the Ser9Gly polymorphism of the dopamine receptor D3 gene and schizophrenia: a meta-analysis of family-based association studies. BMC MEDICAL GENETICS 2020; 21:85. [PMID: 32316934 PMCID: PMC7171831 DOI: 10.1186/s12881-020-01018-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/31/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous studies found that Ser9Gly (rs6280) might be involved in the occurrence of schizophrenia. However, no consist conclusion has yet been achieved. Compared to the case-control study, the family-based study took into account stratification bias. Thus, we conducted a meta-analysis of family-based studies to measure a pooled effect size of the association between Ser9Gly and the risk of schizophrenia. METHODS The relevant family-based studies were screened using the electronic databases by the inclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to measure the correction between Ser9Gly polymorphism and schizophrenia susceptibility. Subgroup analysis was performed by stratification of ethnicity (i.e., East Asian, Caucasian, and other populations). Additionally, publication bias was evaluated by the funnel plot. RESULTS After literature searching, a total of 13 family-based association studies were included, which contained 11 transmission disequilibrium test (TDT) studies with 1219 informative meiosis and 5 haplotype-based haplotype relative risk (HRR) studies. No statistical significance of the heterogeneity was detected in TDT and HRR studies. Thus, the pooled effect size was calculated under the fixed effect model. The results found that the association was significantly protective in East Asian in TDT studies (204 informative meiosis, OR = 0.744, 95% CI = 0.564-0.980, Z-value = - 2.104, p = 0.035). CONCLUSIONS The meta-analysis based on the family study found a protective association of Ser9Gly in East Asian. In future, large sample molecular epidemiology studies are needed to validate our findings.
Collapse
Affiliation(s)
- Xiao-Na Li
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.,School of Fundamental Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Ji-Long Zheng
- Department of Forensic Medicine, Criminal Investigation Police University of China, Shenyang, Liaoning, 110035, People's Republic of China
| | - Xiao-Han Wei
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
8
|
Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019; 8:cells8080907. [PMID: 31426340 PMCID: PMC6721689 DOI: 10.3390/cells8080907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 × 10−4), rs2282794-FGF1 (A allele; p = 1.33 × 10−2), rs2122642-ADGRL3 (C allele, p = 3.5 × 10−2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
Collapse
|
9
|
Dopamine D4 receptor gene expression plays important role in extinction and reinstatement of cocaine-seeking behavior in mice. Behav Brain Res 2019; 365:1-6. [DOI: 10.1016/j.bbr.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
|
10
|
Patrick KS, Radke JL, Raymond JR, Koller L, Nguyen LV, Rodriguez W, Straughn AB. Drug Regimen Individualization for Attention‐Deficit/Hyperactivity Disorder: Guidance for Methylphenidate and Dexmethylphenidate Formulations. Pharmacotherapy 2018; 39:677-688. [PMID: 30351459 DOI: 10.1002/phar.2190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kennerly Sexton Patrick
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Jennifer L. Radke
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - John R. Raymond
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Lauren Koller
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Linda V. Nguyen
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Wendy Rodriguez
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Arthur B. Straughn
- Department of Pharmaceutical Sciences University of Tennessee Health Sciences Center, College of Pharmacy Memphis Tennessee
| |
Collapse
|