1
|
Shee NK, Lee GS, Kim HJ. Sn(IV)porphyrin-Incorporated TiO 2 Nanotubes for Visible Light-Active Photocatalysis. Molecules 2024; 29:1612. [PMID: 38611891 PMCID: PMC11013583 DOI: 10.3390/molecules29071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction conditions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegradation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP, leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical stability, unique morphology, and outstanding visible light photodegradation of cationic methylene blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min-1), SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst loading, positioning them as more efficient than conventional catalysts. This report introduces a novel direction for porphyrin-incorporated catalytic systems, holding significance for future applications in environmental remediation.
Collapse
Affiliation(s)
| | | | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
2
|
Oyim J, Amuhaya E, Nyokong T. Activated carbon-decorated polyacrylonitrile fibers and their porphyrin-immobilized composites for removal of methylene blue dye and Ciprofloxacin in water. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2183868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- James Oyim
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Edith Amuhaya
- School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
3
|
Ramakrishnan K, Gayathri V, Aravinthkumar K, Ramachandran K, Ajitha B, Rameshbabu M, Sasiflorence S, S.Karazhanov, Praba K, Raja Mohan C. TiO2/CeO2 Core/Shell Nanostructures for Photocatalytic and Photo Electrochemical Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Abdullayev Y, Rzayev R, Autschbach J. Computational mechanistic studies on persulfate assisted p-phenylenediamine polymerization. J Comput Chem 2022; 43:1313-1319. [PMID: 35648394 DOI: 10.1002/jcc.26943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
p-Phenylenediamine (p-PDA) is a monomer of many important polymers such as kevlar, twaron, poly-p-PDA. Most of the noticed polymers formation is initiated by a free-radical, but their polymerization mechanism is not elucidated computationally. The proposed study helps to fully understand the frequently utilized initiator/oxidant, potassium persulfate (K2 S2 O8 ) role in the aromatic diamines polymerization, which support experimental protocols, and a polymer scope. The formation of the poly-p-PDA is studied with the density functional theory (DFT) B3LYP-D3 functional using experimental polymerization parameters (0°C and aqueous media). K2 S2 O8 initiated free-radical polymerization of p-PDA is studied in detail, taking into account sulfate free-radical (SO4 - )· , SFR, persulfate anion (S2 O8 )2- , PA and K2 S2 O8 cluster, PP. The reaction mechanism is calculated as the conversion of p-PDA to free-radical, the p-PDA free-radical attack to the next p-PDA (dimerization), ammonia extrusion from the dimer adduct, the dimer adduct conversion to the free-radical (completion of p-PDA polymerization cycle) for the polymer chain elongation. Calculations show that the dimerization step is the rate-limiting step with a 29.2 kcal/mol energy barrier when SFR initiates polymerization. In contrast, the PA-assisted dimerization energy barrier is only 12.7 kcal/mol. PP supported polymerization is calculated to have very shallow energy barriers completing the polymerization cycle, i.e., dimerization (TS2K, ∆G‡ = 11.6 kcal/mol) and ammonia extrusion (TS3K, ∆G‡ = 6.7 kcal/mol).
Collapse
Affiliation(s)
- Yusif Abdullayev
- Department of Chemical Engineering, Baku Engineering University, Baku, Azerbaijan.,Institute of Petrochemical Processes, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Ramil Rzayev
- Department of Chemical Engineering, Baku Engineering University, Baku, Azerbaijan.,Institute of Polymer Materials, Azerbaijan National Academy of Sciences, Sumgait, Azerbaijan
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
5
|
Li G, Chen M, Wang B, Wang C, Wu G, Liang J, Zhou Z. Dual-signal sandwich-type aptasensor based on H-rGO-Mn3O4 nanozymes for ultrasensitive Golgi protein 73 determination. Anal Chim Acta 2022; 1221:340102. [DOI: 10.1016/j.aca.2022.340102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
|
6
|
Dong W, Yang C, Zhang L, Su Q, Zou X, Xu W, Gao X, Xie K, Wang W. Highly efficient UV/H2O2 technology for the removal of nifedipine antibiotics: Kinetics, co-existing anions and degradation pathways. PLoS One 2021; 16:e0258483. [PMID: 34710109 PMCID: PMC8553136 DOI: 10.1371/journal.pone.0258483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
This study investigates the degradation of nifedipine (NIF) by using a novel and highly efficient ultraviolet light combined with hydrogen peroxide (UV/H2O2). The degradation rate and degradation kinetics of NIF first increased and then remained constant as the H2O2 dose increased, and the quasi-percolation threshold was an H2O2 dose of 0.378 mmol/L. An increase in the initial pH and divalent anions (SO42- and CO32-) resulted in a linear decrease of NIF (the R2 of the initial pH, SO42- and CO32- was 0.6884, 0.9939 and 0.8589, respectively). The effect of monovalent anions was complex; Cl- and NO3- had opposite effects: low Cl- or high NO3- promoted degradation, and high Cl- or low NO3- inhibited the degradation of NIF. The degradation rate and kinetics constant of NIF via UV/H2O2 were 99.94% and 1.45569 min-1, respectively, and the NIF concentration = 5 mg/L, pH = 7, the H2O2 dose = 0.52 mmol/L, T = 20 ℃ and the reaction time = 5 min. The ·OH was the primary key reactive oxygen species (ROS) and ·O2- was the secondary key ROS. There were 11 intermediate products (P345, P329, P329-2, P315, P301, P274, P271, P241, P200, P181 and P158) and 2 degradation pathways (dehydrogenation of NIF → P345 → P274 and dehydration of NIF → P329 → P315).
Collapse
Affiliation(s)
- Wenping Dong
- Shandong Academy of Environmental Science Co., Ltd., Jinan, China
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan, China
| | - Chuanxi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Lingli Zhang
- Hi-tech Science Park Branch of Weihai Municipal Bureau of Ecological Environment, Weihai, China
| | - Qiang Su
- Shandong Academy of Environmental Science Co., Ltd., Jinan, China
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan, China
| | - Xiaofeng Zou
- Shandong Academy of Environmental Science Co., Ltd., Jinan, China
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan, China
| | - Wenfeng Xu
- Shandong Think-eee Environmental Technology Co., Ltd., Jinan, China
| | - Xingang Gao
- Qingdao Jiaming Measurement and Control Technology Co., Ltd., Qingdao, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Weiliang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
7
|
Song M, Sun H, Yu J, Wang Y, Li M, Liu M, Zhao G. Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37212-37222. [PMID: 34327984 DOI: 10.1021/acsami.1c10242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a label-free nonenzymatic photoelectrochemical (PEC) sensor is successfully developed for the detection of a typical pollutant, microcystin-LR (MC-LR), based on a visible-light-responsive alloy oxide, with highly ordered and vertically aligned Ti-Fe-O nanotubes (NTs) as substrates. Ti-Fe-O NTs consisting mainly of TiO2 and atomically doped Fe2O3 are in situ prepared on a Ti-Fe alloy by electrochemical anodic oxidation. Using a simple electrochemical deposition technique, reduced graphene oxide (RGO) could be grown onto Ti-Fe-O NTs, exhibiting significant bifunctions. It not only provides an ideal microenvironment for functionalization of molecularly imprinted polymers (MIPs) on the surface but also serves as the PEC signal amplification element because of its outstanding conductivity for photons and electrons. The designed MIP/RGO/Ti-Fe-O NT PEC sensor exhibits high sensitivity toward MC-LR with a limit of detection as low as 10 pM. High selectivity toward MC-LR is also proven for the sensor. A promising detection platform not only for MC-LR but also for other pollutants has therefore been provided.
Collapse
Affiliation(s)
- Menglin Song
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Huanhuan Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Jing Yu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Mingfang Li
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
8
|
Optical Properties of Composites Based on Poly(o-phenylenediamine), Poly(vinylenefluoride) and Double-Wall Carbon Nanotubes. Int J Mol Sci 2021; 22:ijms22158260. [PMID: 34361025 PMCID: PMC8348311 DOI: 10.3390/ijms22158260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
In this work, synthesis and optical properties of a new composite based on poly(o-phenylenediamine) (POPD) fiber like structures, poly(vinylidene fluoride) (PVDF) spheres and double-walled carbon nanotubes (DWNTs) are reported. As increasing the PVDF weight in the mixture of the chemical polymerization reaction of o-phenylenediamine, the presence of the PVDF spheres onto the POPD fibers surface is highlighted by scanning electron microscopy (SEM). The down-shift of the Raman line from 1421 cm−1 to 1415 cm−1 proves the covalent functionalization of DWNTs with the POPD-PVDF blends. The changes in the absorbance of the IR bands peaked around 840, 881, 1240 and 1402 cm−1 indicate hindrance steric effects induced of DWNTs to the POPD fiber like structures and the PVDF spheres, as a consequence of the functionalization process of carbon nanotubes with macromolecular compounds. The presence of the PVDF spheres onto the POPD fiber like structures surface induces a POPD photoluminescence (PL) quenching process. An additional PL quenching process of the POPD-PVDF blends is reported to be induced in the presence of DWNTs. The studies of anisotropic PL highlight a change of the angle of the binding of the PVDF spheres onto the POPD fiber like structures surface from 50.2° to 38° when the carbon nanotubes concentration increases in the POPD-PVDF/DWNTs composites mass up to 2 wt.%.
Collapse
|
9
|
Karimi MA, Ranjbar M, Mohadesi A. One‐step
ultrasonic production of the chitosan/lactose/
g‐C
3
N
4
nanocomposites with lactose as a biological capping agent: Photocatalytic activity study. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mehdi Ranjbar
- Neuroscience Research Center Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
- Pharmaceutics Research Center Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | | |
Collapse
|
10
|
Zulfiqar A, Temerov F, Saarinen JJ. Multilayer TiO 2 Inverse Opal with Gold Nanoparticles for Enhanced Photocatalytic Activity. ACS OMEGA 2020; 5:11595-11604. [PMID: 32478250 PMCID: PMC7254782 DOI: 10.1021/acsomega.0c00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 05/17/2023]
Abstract
Three-dimensional highly ordered multilayer titanium dioxide (TiO2) inverse opal (TIO) structures with two pore sizes were fabricated over a large surface using a self-convective method. The fabricated TIO multilayers were functionalized with gold nanoparticles (AuNPs) by immersing the samples in solution with gold nanoparticles. The photocatalytic activity of TiO2 was enhanced by 85% via plasmonic activation of AuNPs that increased the lifetime of photogenerated holes and electrons. The improved photocatalytic activity was characterized with both UVA and visible light irradiation using an in-house built gas-phase photoreactor.
Collapse
|
11
|
Photocatalytic Degradation of Profenofos and Triazophos Residues in the Chinese Cabbage, Brassica chinensis, Using Ce-Doped TiO2. Catalysts 2019. [DOI: 10.3390/catal9030294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO2/Ce) under the field conditions. The results showed that the degradation efficiency of these organophosphate pesticides in B. chinensis was significantly enhanced in the presence of TiO2/Ce. Specifically, the reactive oxygen species (ROS) contents were significantly increased in B. chinensis with TiO2/Ce treatment, accelerating the degradation of profenofos and triazophos. Ultra-performance liquid chromatography–mass spectroscopy (UPLC-MS) analysis detected 4-bromo-2-chlorophenol and 1-phenyl-3-hydroxy-1,2,4-triazole, the major photodegradation byproducts of profenofos and triazophos, respectively. To better understand the relationship between photodegradation and the molecular structure of these organophosphate pesticides, we investigated the spatial configuration, the bond length and Mulliken atomic charge using quantum chemistry. Ab initio analysis suggests that the bonds connected by P atom of profenofos/triazophos are the initiation cleavage site for photocatalytic degradation in B. chinensis.
Collapse
|
12
|
Preparation of TiO2-Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite for Selective Adsorption and Degradation of Dyes. TECHNOLOGIES 2018. [DOI: 10.3390/technologies6040092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report a new nanocomposite TiO2-poly(3-chloro-2-hydroxypropyl methacrylate) (TiO2-PCHPMA) for selective adsorption/degradation of cationic dyes and degradation of anionic dyes. TiO2-PCHPMA was prepared by free radical polymerization of CHPMA in the presence of TiO2 modified with 3-(trimethoxysilyl)propyl methacrylate. TiO2-PCHPMA adsorbed cationic methylene blue (MB), but did not adsorb anionic methyl orange (MO) in their aqueous solutions. The adsorption efficiency for MB reached 99% within 5 min at 28 °C, and adsorbed MB could be recycled in 96% efficiency. The adsorption accelerated degradation of MB under UV irradiation. The degradation of anionic MO proceeded completely with TiO2-PCHPMA under UV irradiation, and the efficiency was not affected by the PCHPMA layer. TiO2-PCHPMA is potentially applicable as a material capable of selective removal and recovery of cationic dyes, and degradation of other dyes from industrial effluents.
Collapse
|
13
|
Li M, Zhang X, Yang H, Li X, Cui Z. Soil sustainable utilization technology: mechanism of flavonols in resistance process of heavy metal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26669-26681. [PMID: 30003485 DOI: 10.1007/s11356-018-2485-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The soil ecosystem is critical for agricultural production, affecting many aspects of human health. Soil has more unknown biodiversity and edaphic parameters than any other ecosystem especially when polluted. Metagenomics and metatranscriptomics were applied to research on toxicological characteristics of Pb and resistance mechanism of flavonols. Rhizosphere microorganisms-plants system, a unified system closely related to soil environment was taken as research object. Results emphasize gene expression changes in different test groups. Gene ontology enrichment and eggNOG showed that Pb has a toxic effect on gene and protein function which concentrated on ATPase and ATP-dependent activity. Differentially expressed genes in the flavonols group indicated that flavonols regulate amino acid transport and other transportation process related to Pb stress. Kegg analysis represents that Pb interferences energy production process via not only the upstream like glycolysis and tricarboxylic acid (TCA) circle but also oxidative phosphorylation process, which can also produce reactive oxygen species and impact the eliminating process. Flavonols have shown the ability in alleviating toxic effect of Pb and improving the resistance of plants. Flavonols can recover the electronic transmission and other process in TCA and oxidative phosphorylation via ascorbic acid-glutathione metabolism. Flavonols activated antioxidative process and non-specific immunity via vitamins B2-B6 metabolism.
Collapse
Affiliation(s)
- Min Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| | - Huanhuan Yang
- School of Life Science, Shandong University, Jinan, 250100, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
14
|
Xing N, Ji L, Song J, Ma J, Li S, Ren Z, Xu F, Zhu J. Cadmium stress assessment based on the electrocardiogram characteristics of zebra fish (Danio rerio): QRS complex could play an important role. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:236-244. [PMID: 28869925 DOI: 10.1016/j.aquatox.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 05/05/2023]
Abstract
The electrocardiogram (ECG) of zebra fish (Danio rerio) expresses cardiac features that are similar to humans. Here we use sharp microelectrode measurements to obtain ECG characteristics in adult zebra fish and analyze the effects of cadmium chloride (CdCl2) on the heart. We observe the overall changes of ECG parameters in different treatments (0.1 TU, 0.5 TU and 1.0 TU CdCl2), including P wave, Q wave, R wave, S wave, T wave, PR interval (atrial contraction), QRS complex (ventricular depolarization), ST segment, and QT interval (ventricular repolarization). The trends of the ECG parameters showed some responses to the concentration and exposure time of CdCl2, but it was difficult to obtain more information about the useful indicators in water quality assessment depending on tendency analysis alone. A self-organizing map (SOM) showed that P values, R values, and T values were similar; R wave and T wave amplitude were similar; and most important, QRS value was similar to the CdCl2 stress according to the classified data patterns including CdCl2 stress (E) and ECG components based on the Ward linkage. It suggested that the duration of QRS complex was related to environmental stress E directly. The specification and evaluation of ECG parameters in Cd2+ pollution suggested that there is a markedly significant correlation between QRS complex and CdCl2 stress with the highest r (0.729) and the smallest p (0.002) among all ECG characteristics. In this case, it is concluded that QRS complex can be used as an indicator in the CdCl2 stress assessment due to the lowest AIC data abased on the linear regression model between the CdCl2 stress and ECG parameters.
Collapse
Affiliation(s)
- Na Xing
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Lizhen Ji
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Jie Song
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Jingchun Ma
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Shangge Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China.
| | - Fei Xu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Jianping Zhu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China.
| |
Collapse
|
15
|
Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W. Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv 2017. [DOI: 10.1039/c7ra02423a] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A photocatalytic activity enhanced mechanism accounting for the photosensitization synergetic effect is proposed, with MB degradation pathways including chromophoric and auxochrome group degradation.
Collapse
Affiliation(s)
- Chuanxi Yang
- College of Geography and Environment
- Shandong Normal University
- Jinan 250014
- P. R. China
- College of Resources and Environmental Sciences
| | - Wenping Dong
- Shandong Academy of Environmental Science and Environmental Engineering Co, Ltd
- Jinan 250013
- P. R. China
| | - Guanwei Cui
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yingqiang Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xinyuan Xia
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Weiliang Wang
- College of Geography and Environment
- Shandong Normal University
- Jinan 250014
- P. R. China
- Institute of Environment and Ecology
| |
Collapse
|