1
|
Meyer A, Zack SR, Nijim W, Burgos A, Patel V, Zanotti B, Volin MV, Amin MA, Lewis MJ, Pitzalis C, Arami S, Karam JA, Sweiss NJ, Shahrara S. Metabolic reprogramming by Syntenin-1 directs RA FLS and endothelial cell-mediated inflammation and angiogenesis. Cell Mol Immunol 2024; 21:33-46. [PMID: 38105293 PMCID: PMC10757714 DOI: 10.1038/s41423-023-01108-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
A novel rheumatoid arthritis (RA) synovial fluid protein, Syntenin-1, and its receptor, Syndecan-1 (SDC-1), are colocalized on RA synovial tissue endothelial cells and fibroblast-like synoviocytes (FLS). Syntenin-1 exacerbates the inflammatory landscape of endothelial cells and RA FLS by upregulating transcription of IRF1/5/7/9, IL-1β, IL-6, and CCL2 through SDC-1 ligation and HIF1α, or mTOR activation. Mechanistically, Syntenin-1 orchestrates RA FLS and endothelial cell invasion via SDC-1 and/or mTOR signaling. In Syntenin-1 reprogrammed endothelial cells, the dynamic expression of metabolic intermediates coincides with escalated glycolysis along with unchanged oxidative factors, AMPK, PGC-1α, citrate, and inactive oxidative phosphorylation. Conversely, RA FLS rewired by Syntenin-1 displayed a modest glycolytic-ATP accompanied by a robust mitochondrial-ATP capacity. The enriched mitochondrial-ATP detected in Syntenin-1 reprogrammed RA FLS was coupled with mitochondrial fusion and fission recapitulated by escalated Mitofusin-2 and DRP1 expression. We found that VEGFR1/2 and Notch1 networks are responsible for the crosstalk between Syntenin-1 rewired endothelial cells and RA FLS, which are also represented in RA explants. Similar to RA explants, morphological and transcriptome studies authenticated the importance of VEGFR1/2, Notch1, RAPTOR, and HIF1α pathways in Syntenin-1 arthritic mice and their obstruction in SDC-1 deficient animals. Consistently, dysregulation of SDC-1, mTOR, and HIF1α negated Syntenin-1 inflammatory phenotype in RA explants, while inhibition of HIF1α impaired synovial angiogenic imprint amplified by Syntenin-1. In conclusion, since the current therapies are ineffective on Syntenin-1 and SDC-1 expression in RA synovial tissue and blood, targeting this pathway and its interconnected metabolic intermediates may provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie R Zack
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Wes Nijim
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Adel Burgos
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Vishwa Patel
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
- Department of Biomedical Sciences, Humanitas University, and Humanitas Research Hospital, Milan, Italy
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph A Karam
- Department of Orthopedic Surgery, the University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera J Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Meyer A, Sienes RE, Nijim W, Zanotti B, Umar S, Volin MV, Van Raemdonck K, Lewis M, Pitzalis C, Arami S, Al-Awqati M, Chang HJ, Jetanalin P, Schett G, Sweiss N, Shahrara S. Syntenin-1-mediated arthritogenicity is advanced by reprogramming RA metabolic macrophages and Th1 cells. Ann Rheum Dis 2023; 82:483-495. [PMID: 36593091 PMCID: PMC10314955 DOI: 10.1136/ard-2022-223284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Syntenin-1, a novel endogenous ligand, was discovered to be enriched in rheumatoid arthritis (RA) specimens compared with osteoarthritis synovial fluid and normal synovial tissue (ST). However, the cellular origin, immunoregulation and molecular mechanism of syntenin-1 are undescribed in RA. METHODS RA patient myeloid and lymphoid cells, as well as preclinical models, were used to investigate the impact of syntenin-1/syndecan-1 on the inflammatory and metabolic landscape. RESULTS Syntenin-1 and syndecan-1 (SDC-1) co-localise on RA ST macrophages (MΦs) and endothelial cells. Intriguingly, blood syntenin-1 and ST SDC-1 transcriptome are linked to cyclic citrullinated peptide, erythrocyte sedimentation rate, ST thickness and bone erosion. Metabolic CD14+CD86+GLUT1+MΦs reprogrammed by syntenin-1 exhibit a wide range of proinflammatory interferon transcription factors, monokines and glycolytic factors, along with reduced oxidative intermediates that are downregulated by blockade of SDC-1, glucose uptake and/or mTOR signalling. Inversely, IL-5R and PDZ1 inhibition are ineffective on RA MΦs-reprogrammed by syntenin-1. In syntenin-1-induced arthritis, F4/80+iNOS+RAPTOR+MΦs represent glycolytic RA MΦs, by amplifying the inflammatory and glycolytic networks. Those networks are abrogated in SDC-1-/- animals, while joint prorepair monokines are unaffected and the oxidative metabolites are moderately replenished. In RA cells and/or preclinical model, syntenin-1-induced arthritogenicity is dependent on mTOR-activated MΦ remodelling and its ability to cross-regulate Th1 cells via IL-12 and IL-18 induction. Moreover, RA and joint myeloid cells exposed to Syntenin-1 are primed to transform into osteoclasts via SDC-1 ligation and RANK, CTSK and NFATc1 transcriptional upregulation. CONCLUSION The syntenin-1/SDC-1 pathway plays a critical role in the inflammatory and metabolic landscape of RA through glycolytic MΦ and Th1 cell cross-regulation (graphical abstract).
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ryan E Sienes
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Wes Nijim
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
- Centre for Translational Bioinformatics, Queen Mary University of London William Harvey Research Institute, London, UK
| | - Costantino Pitzalis
- Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
| | - Shiva Arami
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Pim Jetanalin
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nadera Sweiss
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Mohammad DN, Ibraheem BF, Khudair HH, Mahmood DK. Expression of Syndecan-1 and Cyclin D1 in Salivary Gland Tumors in Relation to Clinicopathological Parameters. Int J Gen Med 2023; 16:823-835. [PMID: 36883123 PMCID: PMC9985872 DOI: 10.2147/ijgm.s401747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Background Salivary tumors have various morphological features and might share some histopathological findings. They are considered a problematic area in diagnosis due to complex clinicopathological features and different biological behavior. Objective To identify the pathological behavior of salivary tumors immunohistochemically. Methodology This retrospective study involved thirty formalin-fixed paraffin-embedded blocks of salivary gland tumors. These tumors were stained immunohistochemically with syndecan-1 and cyclin D1. Chi-Square test was used to relate immunoscoring, intracellular localization, intensity, and invasion to different salivary tumors. The correlation of these two markers was done by spearman's rho test. P-value <0.05 was considered statistically significant. Results The mean age of the patients was 48.69 ± 17.7. The parotid gland was the most commonly reported site in benign tumors, and regarding malignant tumors, maxilla was the most prevalent site. Syndecan-1 in benign tumors showed a predominate score 3, most widely detected in pleomorphic adenoma. Malignant salivary tumors showed 89.4% positive expression with a more frequent score 3, most commonly found in adenocystic carcinoma. Cyclin D1 expressed in all benign salivary tumors, with prominent diffuse mixed intracellular localization in pleomorphic adenoma. Malignant tumors revealed an expression of 94.7%. Moderate scoring with mixed intracellular localization was recorded in adenocystic carcinoma, followed by mucoepidermoid carcinoma. There was a significant correlation between the two markers in response to the distribution of immunostaining in different cell compartments. Conclusion Syndecan-1 and cyclin D1 showed a significant combined role in salivary tumor progression. Interestingly notable ductal-myoepithelial cells affect epithelial morphogenesis, and growth of pleomorphic adenoma was observed. Furthermore, basophilic cells of cribriform adenocystic carcinomas might control the aggressiveness and proliferation rate of these tumors.
Collapse
Affiliation(s)
- Dena Nadhim Mohammad
- Oral Pathology, Oral Diagnosis Department, College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Ban Falih Ibraheem
- Oral Pathology, Oral Diagnosis Department, College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Hassanain Hafidh Khudair
- General Pathology, Pathology Department, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Darya Khalid Mahmood
- Oral Pathology, Oral Diagnosis Department, College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
4
|
Su X, Wang B, Zhou Z, Li Z, Tong S, Chen S, Zhang N, Liu S, Zhang M. A positive feedback loop of heparanase/syndecan1/nerve growth factor regulates cancer pain progression. Korean J Pain 2023; 36:60-71. [PMID: 36536517 PMCID: PMC9812689 DOI: 10.3344/kjp.22277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this research was to assess the role of heparanase (HPSE)/syndecan1 (SDC1)/nerve growth factor (NGF) on cancer pain from melanoma. Methods The influence of HPSE on the biological function of melanoma cells and cancer pain in a mouse model was evaluated. Immunohistochemical staining was used to analyze HPSE and SDC1. HPSE, NGF, and SDC1 were detected using western blot. Inflammatory factors were detected using ELISA assay. Results HPSE promoted melanoma cell viability, proliferation, migration, invasion, and tumor growth, as well as cancer pain, while SST0001 treatment reversed the promoting effect of HPSE. HPSE up-regulated NGF, and NGF feedback promoted HPSE. High expression of NGF reversed the inhibitory effect of HPSE down-regulation on melanoma cell phenotype deterioration, including cell viability, proliferation, migration, and invasion. SST0001 down-regulated SDC1 expression. SDC1 reversed the inhibitory effect of SST0001 on cancer pain. Conclusions The results showed that HPSE promoted melanoma development and cancer pain by interacting with NGF/SDC1. It provides new insights to better understand the role of HPSE in melanoma and also provides a new direction for cancer pain treatment.
Collapse
Affiliation(s)
- Xiaohu Su
- Department of Anesthesiology, Suqian First People’s Hospital, Suqian City, Jiangsu Province, China
| | - Bingwu Wang
- Cancer Institute, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Zhaoyun Zhou
- Department of Anesthesiology, Tai’an Central Hospital, Tai’an City, Shandong Province, China
| | - Zixian Li
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Song Tong
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Simin Chen
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Nan Zhang
- Department of Anesthesiology, Graduate School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Su Liu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Maoyin Zhang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China,Correspondence: Maoyin Zhang Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Quanshan District, Xuzhou City, Jiangsu Province 221002, China, Tel: +86-18168777315, Fax: +86-0516-85805911, E-mail:
| |
Collapse
|
5
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
6
|
Histopathological, Immunohistochemical and Biochemical Studies of Murine Hepatosplenic Tissues Affected by Chronic Toxoplasmosis. J Parasitol Res 2022; 2022:2165205. [PMID: 35755604 PMCID: PMC9225867 DOI: 10.1155/2022/2165205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a serious health problem in humans and animals resulting from obligatory intracellular invasion of reticuloendothelial tissue by Toxoplasma gondii. The profound pathologic effect of toxoplasmosis is confined to nervous tissue, but many other organs, including the liver and spleen, are insulted. Many molecules like caspase-3, CD3, and CD138 are implicated in the tissue immune response in a trial to alleviate hazardous toxoplasmosis impact. This study aimed to investigate the effect of chronic toxoplasmosis on the liver and spleen tissues of mice using biochemical and histopathological techniques and to detect the activity and level of expression of caspase-3, CD3, and CD138 in these tissues using immunohistochemical labeling. Compared with normal control, altered normal histological features accompanied by inflammatory reaction were recorded in hepatosplenic reticuloendothelial tissues in chronically infected mice. The biochemical profile of the liver has been changed in the form of increased liver enzymes, and oxidative stress has been evidenced by elevated nitric oxide (NO) concentration in liver homogenate. The levels of caspase3, CD3, and CD138 were markedly expressed in the liver and spleen of infected mice. Our findings revealed the persistent effect of latent toxoplasmosis on the host's histological architecture, metabolic, and immunological profile, creating a continued challenging host-parasite relationship.
Collapse
|
7
|
Chen W, Yu X, Wang N, Jing J, Li R, Lian M. Circ_RPPH1 regulates glioma cell malignancy by binding to miR-627-5p/miR-663a to induce SDC1 expression. Metab Brain Dis 2022; 37:1231-1245. [PMID: 35334040 DOI: 10.1007/s11011-022-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recent studies revealed the key role of circular RNA (circRNA) in glioma progression. However, the effect of circ_0000520, also named as circRNA ribonuclease P RNA component H1 (circ_RPPH1), in glioma development was unknown. The study aimed to reveal the role of circ_RPPH1 in glioma cell malignancy. METHODS Human astrocytes (NHA) and glioma cell lines (A172 and U251) were employed in this study. Quantitative real-time polymerase chain reaction and western blot were used to check the expression of circ_RPPH1, microRNA-627-5p (miR-627-5p), miR-663a and syndecan 1 (SDC1). Immunohistochemistry assay was conducted to assess the protein expression of nuclear proliferation marker ki67 and matrix metalloprotein 9 (MMP9). Cell viability was assessed by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation and apoptosis were investigated by flow cytometry analysis, 5-Ethynyl-29-deoxyuridine, or cell colony formation assay. Cell migration and invasion were evaluated by transwell assays. The interaction between miRNAs (miR-627-5p and miR-663a) and circ_RPPH1 or SDC1 was identified by a dual-luciferase reporter assay. A mouse model assay was performed to reveal the impact of circ_RPPH1 knockdown on glioma cell malignancy in vivo by analyzing neoplasm volume and weight. RESULTS Circ_RPPH1 and SDC1 expression were significantly increased, whereas miR-627-5p and miR-663a expression were decreased in glioma tissues and cells in comparison with healthy brain tissues or human astrocytes. Circ_RPPH1 depletion led to the decreased cell proliferation, migration and invasion, and the increased cell apoptosis. Additionally, circ_RPPH1 bound to miR-627-5p/miR-663a and mediated glioma cell processes by interacting with them. SDC1 overexpression attenuated miR-627-5p/miR-663a-mediated actions. Moreover, circ_RPPH1 regulated SDC1 expression through interaction with miR-627-5p and/or miR-663a. Furthermore, circ_RPPH1 knockdown inhibited glioma cell malignancy in vivo, accompanied by the decreases of ki67 and MMP9 expression. CONCLUSION Circ_RPPH1 knockdown inhibited glioma tumorigenesis by downregulating SDC1 by binding to miR-627-5p/miR-663a, showing that circ_RPPH1 might be an effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Jiangpeng Jing
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China.
- , Xi'an, China.
| |
Collapse
|
8
|
Andreuzzi E, Fejza A, Polano M, Poletto E, Camicia L, Carobolante G, Tarticchio G, Todaro F, Di Carlo E, Scarpa M, Scarpa M, Paulitti A, Capuano A, Canzonieri V, Maiero S, Fornasarig M, Cannizzaro R, Doliana R, Colombatti A, Spessotto P, Mongiat M. Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway. J Exp Clin Cancer Res 2022; 41:60. [PMID: 35148799 PMCID: PMC8840294 DOI: 10.1186/s13046-022-02271-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/22/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of the most frequent and deadly tumors. Among the key regulators of CRC growth and progression, the microenvironment has emerged as a crucial player and as a possible route for the development of new therapeutic opportunities. More specifically, the extracellular matrix acts directly on cancer cells and indirectly affecting the behavior of stromal and inflammatory cells, as well as the bioavailability of growth factors. Among the ECM molecules, EMILIN-2 is frequently down-regulated by methylation in CRC and the purpose of this study was to verify the impact of EMILIN-2 loss in CRC development and its possible value as a prognostic biomarker. METHODS The AOM/DSS CRC protocol was applied to Emilin-2 null and wild type mice. Tumor development was monitored by endoscopy, the molecular analyses performed by IHC, IF and WB and the immune subpopulations characterized by flow cytometry. Ex vivo cultures of monocyte/macrophages from the murine models were used to verify the molecular pathways. Publicly available datasets were exploited to determine the CRC patients' expression profile; Spearman's correlation analyses and Cox regression were applied to evaluate the association with the inflammatory response; the clinical outcome was predicted by Kaplan-Meier survival curves. Pearson correlation analyses were also applied to a cohort of patients enrolled in our Institute. RESULTS In preclinical settings, loss of EMILIN-2 associated with an increased number of tumor lesions upon AOM/DSS treatment. In addition, in the early stages of the disease, the Emilin-2 knockout mice displayed a myeloid-derived suppressor cells-rich infiltrate. Instead, in the late stages, lack of EMILIN-2 associated with a decreased number of M1 macrophages, resulting in a higher percentage of the tumor-promoting M2 macrophages. Mechanistically, EMILIN-2 triggered the activation of the Toll-like Receptor 4/MyD88/NF-κB pathway, instrumental for the polarization of macrophages towards the M1 phenotype. Accordingly, dataset and immunofluorescence analyses indicated that low EMILIN-2 expression levels correlated with an increased M2/M1 ratio and with poor CRC patients' prognosis. CONCLUSIONS These novel results indicate that EMILIN-2 is a key regulator of the tumor-associated inflammatory environment and may represent a promising prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Tarticchio
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Todaro
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Melania Scarpa
- Ricerca Traslazionale Avanzata, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Marco Scarpa
- Clinica Chirurgica I- Azienda Ospedaliera di Padova, Padua, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Stefania Maiero
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
9
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
11
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
13
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
14
|
Syndecan-1 Promotes Hepatocyte-Like Differentiation of Hepatoma Cells Targeting Ets-1 and AP-1. Biomolecules 2020; 10:biom10101356. [PMID: 32977498 PMCID: PMC7598270 DOI: 10.3390/biom10101356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.
Collapse
|
15
|
Hasegawa K, Kuwata K, Yoshitake J, Shimomura S, Uchida K, Shibata T. Extracellular vesicles derived from inflamed murine colorectal tissue induce fibroblast proliferation via epidermal growth factor receptor. FEBS J 2020; 288:1906-1917. [PMID: 32894891 DOI: 10.1111/febs.15557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, are chronic inflammatory disorders of the gastrointestinal tract. Although IBDs increase the risk of colitis-associated colon cancer, the underlying mechanisms are not fully understood. Extracellular vesicles (EVs) are lipid-bound sacs that transport proteins, RNA, and lipids between cells and are key mediators of cellular communication in both physiological and pathological settings. EVs have been implicated in many cancer hallmarks, including uncontrolled tumor growth and metastasis. In this study, we investigated the effects of colon-derived EVs on the proliferation of fibroblasts. We used comparative proteomics to characterize protein profiles of colorectal EVs isolated from healthy mice (Con-EVs) and those with dextran sulfate sodium-induced colitis (IBD-EVs). The results showed that 109 proteins were upregulated in IBD-EVs. Notably, expression of epidermal growth factor receptor (EGFR), which plays important roles in cell proliferation and development, was increased in IBD-EVs. We then examined the effect of EVs on murine NIH3T3 fibroblasts and found that IBD-EVs significantly promoted cell proliferation in EGFR- and ERK-dependent manner. Our findings suggest that inflamed colon-derived EVs promote tumor development thorough activation of fibroblasts.
Collapse
Affiliation(s)
- Kana Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Japan
| | - Jun Yoshitake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan
| | - Sayako Shimomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan
| |
Collapse
|
16
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
17
|
Kumar Katakam S, Tria V, Sim WC, Yip GW, Molgora S, Karnavas T, Elghonaimy EA, Pelucchi P, Piscitelli E, Ibrahim SA, Zucchi I, Reinbold R, Greve B, Götte M. The heparan sulfate proteoglycan syndecan-1 regulates colon cancer stem cell function via a focal adhesion kinase-Wnt signaling axis. FEBS J 2020; 288:486-506. [PMID: 32367652 DOI: 10.1111/febs.15356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of β1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.
Collapse
Affiliation(s)
| | - Valeria Tria
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Wey-Cheng Sim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefano Molgora
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Theodoros Karnavas
- Chromatin Dynamics Unit, Vita Salute San Raffaele University and Research Institute, Milan, Italy.,Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Eslam A Elghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Paride Pelucchi
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Eleonora Piscitelli
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | | | - Ileana Zucchi
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Rolland Reinbold
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, University Hospital Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| |
Collapse
|
18
|
Wang S, Zhang X, Wang G, Cao B, Yang H, Jin L, Cui M, Mao Y. Syndecan-1 suppresses cell growth and migration via blocking JAK1/STAT3 and Ras/Raf/MEK/ERK pathways in human colorectal carcinoma cells. BMC Cancer 2019; 19:1160. [PMID: 31783811 PMCID: PMC6884902 DOI: 10.1186/s12885-019-6381-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Syndecan-1 (SDC-1) is a crucial membrane proteoglycan, which is confirmed to participate in several tumor cell biological processes. However, the biological significance of SDC-1 in colorectal carcinoma is not yet clear. An objective of this study was to investigate the role of SDC-1 in colorectal carcinoma cells. METHODS Expression of SDC-1 in colorectal carcinoma tissues was evaluated by Reverse transcription-quantitative real-time PCR (RT-qPCR) and western blot. After transfection with pcDNA3.1 or pc-SDC-1, the transfection efficiency was measured. Next, SW480, SW620 and LOVO cell viability, apoptosis, migration and adhesion were assessed to explore the effects of exogenous overexpressed SDC-1 on colorectal carcinoma. In addition, the influences of aberrant expressed SDC-1 in Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) and rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways were detected by western blot analysis. RESULTS SDC-1 mRNA and protein levels were down-regulated in human colorectal carcinoma tissues. SDC-1 overexpression inhibited cell proliferation via suppressing CyclinD1 and c-Myc expression, meanwhile stimulated cell apoptosis via increasing the expression levels of B-cell lymphoma-2-associated x (Bax) and Cleaved-Caspase-3. Additionally, SDC-1 overexpression restrained cell migration via inhibiting the protein expression of matrix metallopeptidase 9 (MMP-9), and elicited cell adhesion through increasing intercellular cell adhesion molecule-1 (ICAM-1). Furthermore, SDC-1 overexpression suppressed JAK1/STAT3 and Ras/Raf/MEK/ERK-related protein levels. CONCLUSIONS In general, the evidence from this study suggested that SDC-1 suppressed cell growth, migration through blocking JAK1/STAT3 and Ras/Raf/MEK/ERK pathways in human colorectal carcinoma cells.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaofei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Guimei Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Laoshan District, Qingdao, 266000, Shandong, China
| | - Bin Cao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Yang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lipeng Jin
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Mingjuan Cui
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongjun Mao
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Laoshan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
19
|
Liao S, Liu C, Zhu G, Wang K, Yang Y, Wang C. Relationship between SDC1 and cadherin signalling activation in cancer. Pathol Res Pract 2019; 216:152756. [PMID: 31810587 DOI: 10.1016/j.prp.2019.152756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022]
Abstract
E-cadherin and SDC1 are markers of epithelial-to-mesenchymal transition (EMT) that can be used to assess tumour prognosis. SDC1 has different effects in various types of cancers. On the one hand, reduced expression of SDC1 can leads to advantage stages of some cancers, such as gastric and colorectal cancer. On the other hand, SDC1 overexpression can also promote the growth and proliferation of cancer cells in pancreatic and breast cancer. However, the function of SDC1 is influenced and regulated by many factors. Exfoliated extracellular domain HS chain can mediate the function of SDC1 and play an important role in the occurrence and development of cancer. SDC1 binds to various ligands and influences the growth and reproduction of cancer cells via the activation of Wnt, the long isoform of FLICE-inhibitory protein (FLIP long), vascular endothelial growth factor receptor (VEGFR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/c-Jun N-terminal kinase (JNK) and other pathways. Cadherins occur in several types, but this review focuses on classical cadherins. N-cadherin and P-cadherin are activated during tumour development, whereas E-cadherin is a tumour suppressor. The cellular signalling pathways involved in classical cadherins, such as Wnt and VEGFR pathways, are also related to SDC1. The activation of E-cadherin caused by SDC1 knockdown has also been observed. Despite this evidence, no articles regarding the relationship of SDC1 and cadherin activation have been published. This review summarises the expressions of these two molecules in different cancers and analyses their possible relationship to provide insights into future cancer research and clinical treatment.
Collapse
Affiliation(s)
- Shiyao Liao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Chang Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China; Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guiying Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Kai Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Ying Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
20
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
21
|
Hong H, Song HK, Hwang ES, Lee AR, Han DS, Kim SE, Oh ES. Up-regulation of syndecan-2 in proximal colon correlates with acute inflammation. FASEB J 2019; 33:11381-11395. [PMID: 31311305 DOI: 10.1096/fj.201900561r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously reported that syndecan-2 expression is increased on the colonic epithelium during chronic inflammation. Here, we report that syndecan-2 exhibits a different pattern of site-specific colonic expression during acute inflammation. Syndecan-2 expression was up-regulated predominantly in the proximal colon of dextran sulfate sodium-induced colitis mice. The colitis-associated up-regulation of syndecan-2 was barely detected in Rag-1-/- (recombination activating gene 1 knockout) mice under colitis-inducing conditions. Increased syndecan-2 expression correlated with increased levels of infiltrated CD4+ IL-17A+ T cells in the proximal colon. Serum levels of IL-17A were increased during the acute inflammatory response in normal mice but not Rag-1-/- mice. IL-17A directly induced IL-17 receptor (IL-17RA) and syndecan-2 expression in ex vivo-cultured proximal colon tissues and adenoma cell lines from proximal colon. IL-17RA knockdown reduced the IL-17A-mediated syndecan-2 expression in SNU1235 cells. No elevation of syndecan-2 or IL-17RA was observed in colonic tissues from IL-17A-/- mice during colitis induction. Finally, increased expression of syndecan-2 and IL-17RA was observed in the proximal colons of cecal ligation and puncture-induced sepsis mice and infectious pan colitis patients. Together, these data suggest that acute inflammation induces syndecan-2 expression predominantly in the proximal colon via IL-17A-IL-17RA signaling during the early stage of the inflammatory response and that proximal colonic syndecan-2 might be a biomarker for acute inflammation.-Hong, H., Song, H.-K., Hwang, E. S., Lee, A. R., Han, D. S., Kim, S.-E., Oh, E.-S. Up-regulation of syndecan-2 in proximal colon correlates with acute inflammation.
Collapse
Affiliation(s)
- Heejeong Hong
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun-Kuk Song
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Eun Sook Hwang
- Department of Pharmacy, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - A Reum Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, South Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, South Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
22
|
Tzanakakis G, Neagu M, Tsatsakis A, Nikitovic D. Proteoglycans and Immunobiology of Cancer-Therapeutic Implications. Front Immunol 2019; 10:875. [PMID: 31068944 PMCID: PMC6491844 DOI: 10.3389/fimmu.2019.00875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Disparity during the resolution of inflammation is closely related with the initiation and progression of the tumorigenesis. The transformed cells, through continuously evolving interactions, participate in various exchanges with the surrounding microenvironment consisting of extracellular matrix (ECM) components, cytokines embedded in the ECM, as well as the stromal cells. Proteoglycans (PGs), complex molecules consisting of a protein core into which one or more glycosaminoglycan (GAG) chains are covalently tethered, are important regulators of the cell/matrix interface and, consecutively, biological functions. The discrete expression of PGs and their interacting partners has been distinguished as specific for disease development in diverse cancer types. In this mini-review, we will critically discuss the roles of PGs in the complex processes of cancer-associated modulation of the immune response and analyze their mechanisms of action. A deeper understanding of mechanisms which are capable of regulating the immune response could be harnessed to treat malignant disease.
Collapse
Affiliation(s)
- George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | | | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
23
|
Parimon T, Brauer R, Schlesinger SY, Xie T, Jiang D, Ge L, Huang Y, Birkland TP, Parks WC, Habiel DM, Hogaboam CM, Gharib SA, Deng N, Liu Z, Chen P. Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1094-1103. [PMID: 29355516 DOI: 10.1016/j.ajpath.2017.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
Syndecan-1 is a transmembrane proteoglycan expressed prominently by lung epithelium and has pleiotropic functions such as regulating cell migration, proliferation, and survival. Loss of syndecan-1 expression by lung cancer cells is associated with higher-grade cancers and worse clinical prognosis. We evaluated the effects of syndecan-1 in various cell-based and animal models of lung cancer and found that lung tumorigenesis was moderated by syndecan-1. We also demonstrate that syndecan-1 (or lack thereof) alters the miRNA cargo carried within exosomes exported from lung cancer cells. Analysis of the changes in miRNA expression identified a distinct shift toward augmented procancer signaling consistent with the changes found in lung adenocarcinoma. Collectively, our work identifies syndecan-1 as an important factor in lung cancer cells that shapes the tumor microenvironment through alterations in miRNA packaging within exosomes.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Rena Brauer
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Saundra Y Schlesinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Ting Xie
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Lingyin Ge
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Ying Huang
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William C Parks
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - David M Habiel
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhenqui Liu
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
24
|
Carreón-Burciaga RG, González-González R, Molina-Frechero N, López-Verdín S, Pereira-Prado V, Bologna-Molina R. Differences in E-Cadherin and Syndecan-1 Expression in Different Types of Ameloblastomas. Anal Cell Pathol (Amst) 2018; 2018:9392632. [PMID: 29850393 PMCID: PMC5937611 DOI: 10.1155/2018/9392632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Ameloblastomas are a group of benign, locally aggressive, recurrent tumors characterized by their slow and infiltrative growth. E-Cadherin and syndecan-1 are cell adhesion molecules related to the behavior of various tumors, including ameloblastomas. Ninety-nine ameloblastoma samples were studied; the expression of E-cadherin and syndecan-1 were evaluated by immunohistochemistry. E-Cadherin and epithelial syndecan-1 were more highly expressed in intraluminal/luminal unicystic ameloblastoma than in mural unicystic ameloblastoma and solid/multicystic ameloblastoma, whereas the stromal expression of syndecan-1 was higher in mural unicystic ameloblastoma and solid/multicystic ameloblastoma. Synchronicity was observed between E-cadherin and epithelial syndecan-1; the expression was correlated with intensity in all cases. There was a strong association between expression and tumor size and recurrence. The evaluation of the expression of E-cadherin and syndecan-1 are important for determining the potential aggressiveness of ameloblastoma variants. Future studies are required to understand how the expression of these markers is related to tumor aggressiveness.
Collapse
Affiliation(s)
- Ramón G. Carreón-Burciaga
- 1Department of Research, School of Dentistry, Juarez University of the State of Durango, Durango, DGO, Mexico
| | - Rogelio González-González
- 1Department of Research, School of Dentistry, Juarez University of the State of Durango, Durango, DGO, Mexico
| | - Nelly Molina-Frechero
- 2Department of Health Care, Xochimilco Unit, Autonomous Metropolitan University, Mexico City, Mexico
| | - Sandra López-Verdín
- 3Research Institute of Dentistry, Health Science Center, Guadalajara University, Guadalajara, JAL, Mexico
| | - Vanesa Pereira-Prado
- 4Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo, Uruguay
| | - Ronell Bologna-Molina
- 4Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
25
|
Cui X, Jing X, Yi Q, Long C, Tian J, Zhu J. Clinicopathological and prognostic significance of SDC1 overexpression in breast cancer. Oncotarget 2017; 8:111444-111455. [PMID: 29340066 PMCID: PMC5762334 DOI: 10.18632/oncotarget.22820] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer death among global women, and its early diagnosis and treatment are very urgent. Syndecan-1 (SDC1) is a heparin sulfate proteoglycan, which has been linked with the prognosis and treatment response in a various tumor type. To investigate whether SDC1 can serve as a prognostic indictor in breast cancer, bioinformatic analyses were performed in the present study. Methods SDC1 expression was assessed using Oncomine analysis. Kaplan-Meier Plotter and bc-GenExMiner were performed to identify the prognostic roles of SDC1 in breast cancer. COSMIC analysis and cBioPortal database were performed to analysis the mutations of SDC1. The heat map and methylation status of SDC1 were identified by performing the UCSC. Results We found that SDC1 was more frequently overexpressed in breast cancer than their normal tissues and its expression might be negatively related with some CpG sites. Meanwhile, pooled data suggested that SDC1 mRNA expression is associated worse prognosis of breast cancer. Following data mining in multiple big databases confirmed a positive correlation between SDC1 mRNA expression and PLAU mRNA expression in breast cancer tissues. In addition, high SDC1 expression is associated with increased risked of age, nodal, HER2 and higher SBR grade status. Conclusion Our findings suggest that overexpressed SDC1 was identified in breast cancer than in matched normal tissues and is associated with methylation status of SDC1 promoter. Additionally, SDC1 is positively associated with PLAU and might act as a potential prognostic indicator for breast cancer.
Collapse
Affiliation(s)
- Xiangrong Cui
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan 030000, China
| | - Qin Yi
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|