1
|
Alam MM, Hodaei M, Hartnett E, Gincley B, Khan F, Kim GY, Pinto AJ, Bradley IM. Community structure and function during periods of high performance and system upset in a full-scale mixed microalgal wastewater resource recovery facility. WATER RESEARCH 2024; 259:121819. [PMID: 38823147 DOI: 10.1016/j.watres.2024.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Microalgae have the potential to exceed current nutrient recovery limits from wastewater, enabling water resource recovery facilities (WRRFs) to achieve increasingly stringent effluent permits. The use of photobioreactors (PBRs) and the separation of hydraulic retention and solids residence time (HRT/SRT) further enables increased biomass in a reduced physical footprint while allowing operational parameters (e.g., SRT) to select for desired functional communities. However, as algal technology transitions to full-scale, there is a need to understand the effect of operational and environmental parameters on complex microbial dynamics among mixotrophic microalgae, bacterial groups, and pests (i.e., grazers and pathogens) and to implement robust process controls for stable long-term performance. Here, we examine a full-scale, intensive WRRF utilizing mixed microalgae for tertiary treatment in the US (EcoRecover, Clearas Water Recovery Inc.) during a nine-month monitoring campaign. We investigated the temporal variations in microbial community structure (18S and 16S rRNA genes), which revealed that stable system performance of the EcoRecover system was marked by a low-diversity microalgal community (DINVSIMPSON = 2.01) dominated by Scenedesmus sp. (MRA = 55 %-80 %) that achieved strict nutrient removal (effluent TP < 0.04 mg·L-1) and steady biomass concentration (TSSmonthly avg. = 400-700 mg·L-1). Operational variables including pH, alkalinity, and influent ammonium (NH4+), correlated positively (p < 0.05, method = Spearman) with algal community during stable performance. Further, the use of these parameters as operational controls along with N/P loading and SRT allowed for system recovery following upset events. Importantly, the presence or absence of bacterial nitrification did not directly impact algal system performance and overall nutrient recovery, but partial nitrification (potentially resulting from NO2- accumulation) inhibited algal growth and should be considered during long-term operation. The microalgal communities were also adversely affected by zooplankton grazers (ciliates, rotifers) and fungal parasites (Aphelidium), particularly during periods of upset when algal cultures were experiencing culture turnover or stress conditions (e.g., nitrogen limitation, elevated temperature). Overall, the active management of system operation in order to maintain healthy algal cultures and high biomass productivity can result in significant periods (>4 months) of stable system performance that achieve robust nutrient recovery, even in winter months in northern latitudes (WI, USA).
Collapse
Affiliation(s)
- Md Mahbubul Alam
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Mahdi Hodaei
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | - Benjamin Gincley
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Farhan Khan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ga-Yeong Kim
- Department of Civil and Environmental Engineering, Newmark Civil Engineering Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ian M Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
2
|
Litti Y, Elcheninov A, Botchkova E, Chernyh N, Merkel A, Vishnyakova A, Popova N, Zhang Y, Safonov A. Metagenomic evidence of a novel anammox community in a cold aquifer with high nitrogen pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121629. [PMID: 38944958 DOI: 10.1016/j.jenvman.2024.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The process of anaerobic ammonium oxidation by nitrite (anammox) is a globally essential part of N cycle. To date, 8 Candidatus genera and more than 22 species of anammox bacteria have been discovered in various anthropogenic and natural habitats, including nitrogen-polluted aquifers. In this work, anammox bacteria were detected for the first time in the groundwater ecosystem with high anthropogenic nitrogen pollution (up to 1760 mg NO3--N/L and 280 mg NH4+-N/L) and low year-round temperature (7-8 °C) in the zone of a uranium sludge repository. Further metagenomic analysis resulted in retrieval of metagenome-assembled genomes of 4 distinct anammox bacteria: a new genus named Ca. Frigussubterria, new species in Ca. Kuenenia, and two strains of a new species in Ca. Scalindua. Analysis of the genomes revealed essential genes involved in anammox metabolism. Both strains of Ca. Scalindua chemeplantae had a high copy number of genes encoding the cold shock proteins CspA/B, which can also function as an antifreeze protein (CspB). Ca. Kuenenia glazoviensis and Ca. Frigussubterria udmurtiae were abundant in less N-polluted site, while Ca. Scalindua chemeplantae inhabited both sites. Genes for urea utilization, reduction of insoluble Fe2O3 or MnO2, assimilatory sulfate reduction, reactive oxygen detoxification, nitrate reduction to ammonium, and putatively arsenate respiration were found. These findings enrich knowledge of the functional and phylogenetic diversity of anammox bacteria and improve understanding of the nitrogen cycle in polluted aquifers.
Collapse
Affiliation(s)
- Yuriy Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Alexander Elcheninov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Ekaterina Botchkova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Nikolay Chernyh
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Alexander Merkel
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Anastasia Vishnyakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky Prospect, 119071, Moscow, Russia.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky Prospect, 119071, Moscow, Russia.
| |
Collapse
|
3
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. The Bacterial Microbiome of the Coral Skeleton Algal Symbiont Ostreobium Shows Preferential Associations and Signatures of Phylosymbiosis. MICROBIAL ECOLOGY 2023; 86:2032-2046. [PMID: 37002423 PMCID: PMC10497448 DOI: 10.1007/s00248-023-02209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Ostreobium, the major algal symbiont of the coral skeleton, remains understudied despite extensive research on the coral holobiont. The enclosed nature of the coral skeleton might reduce the dispersal and exposure of residing bacteria to the outside environment, allowing stronger associations with the algae. Here, we describe the bacterial communities associated with cultured strains of 5 Ostreobium clades using 16S rRNA sequencing. We shed light on their likely physical associations by comparative analysis of three datasets generated to capture (1) all algae associated bacteria, (2) enriched tightly attached and potential intracellular bacteria, and (3) bacteria in spent media. Our data showed that while some bacteria may be loosely attached, some tend to be tightly attached or potentially intracellular. Although colonised with diverse bacteria, Ostreobium preferentially associated with 34 bacterial taxa revealing a core microbiome. These bacteria include known nitrogen cyclers, polysaccharide degraders, sulphate reducers, antimicrobial compound producers, methylotrophs, and vitamin B12 producers. By analysing co-occurrence networks of 16S rRNA datasets from Porites lutea and Paragoniastrea australensis skeleton samples, we show that the Ostreobium-bacterial associations present in the cultures are likely to also occur in their natural environment. Finally, our data show significant congruence between the Ostreobium phylogeny and the community composition of its tightly associated microbiome, largely due to the phylosymbiotic signal originating from the core bacterial taxa. This study offers insight into the Ostreobium microbiome and reveals preferential associations that warrant further testing from functional and evolutionary perspectives.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Tasmania, 7000, Victoria, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
4
|
Zhao R, Le Moine Bauer S, Babbin AR. " Candidatus Subterrananammoxibiaceae," a New Anammox Bacterial Family in Globally Distributed Marine and Terrestrial Subsurfaces. Appl Environ Microbiol 2023; 89:e0080023. [PMID: 37470485 PMCID: PMC10467342 DOI: 10.1128/aem.00800-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteria specialized in anaerobic ammonium oxidation (anammox) are widespread in many anoxic habitats and form an important functional guild in the global nitrogen cycle by consuming bio-available nitrogen for energy rather than biomass production. Due to their slow growth rates, cultivation-independent approaches have been used to decipher their diversity across environments. However, their full diversity has not been well recognized. Here, we report a new family of putative anammox bacteria, "Candidatus Subterrananammoxibiaceae," existing in the globally distributed terrestrial and marine subsurface (groundwater and sediments of estuary, deep-sea, and hadal trenches). We recovered a high-quality metagenome-assembled genome of this family, tentatively named "Candidatus Subterrananammoxibius californiae," from a California groundwater site. The "Ca. Subterrananammoxibius californiae" genome not only contains genes for all essential components of anammox metabolism (e.g., hydrazine synthase, hydrazine oxidoreductase, nitrite reductase, and nitrite oxidoreductase) but also has the capacity for urea hydrolysis. In an Arctic ridge sediment core where redox zonation is well resolved, "Ca. Subterrananammoxibiaceae" is confined within the nitrate-ammonium transition zone where the anammox rate maximum occurs, providing environmental proof of the anammox activity of this new family. Phylogenetic analysis of nitrite oxidoreductase suggests that a horizontal transfer facilitated the spreading of the nitrite oxidation capacity between anammox bacteria (in the Planctomycetota phylum) and nitrite-oxidizing bacteria from Nitrospirota and Nitrospinota. By recognizing this new anammox family, we propose that all lineages within the "Ca. Brocadiales" order have anammox capacity. IMPORTANCE Microorganisms called anammox bacteria are efficient in removing bioavailable nitrogen from many natural and human-made environments. They exist in almost every anoxic habitat where both ammonium and nitrate/nitrite are present. However, only a few anammox bacteria have been cultured in laboratory settings, and their full phylogenetic diversity has not been recognized. Here, we present a new bacterial family whose members are present across both the terrestrial and marine subsurface. By reconstructing a high-quality genome from the groundwater environment, we demonstrate that this family has all critical enzymes of anammox metabolism and, notably, also urea utilization. This bacterium family in marine sediments is also preferably present in the niche where the anammox process occurs. These findings suggest that this novel family, named "Candidatus Subterrananammoxibiaceae," is an overlooked group of anammox bacteria, which should have impacts on nitrogen cycling in a range of environments.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sven Le Moine Bauer
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Barbosa FAS, Brait LAS, Coutinho FH, Ferreira CM, Moreira EF, de Queiroz Salles L, Meirelles PM. Ecological landscape explains aquifers microbial structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160822. [PMID: 36526191 DOI: 10.1016/j.scitotenv.2022.160822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Aquifers have significant social, economic, and ecological importance. They supply 30 % of the freshwater for human consumption worldwide, including agricultural and industrial use. Despite aquifers' importance, the relationships between aquifer categories and their inhabiting microbial communities are still unknown. Characterizing variations within microbial communities' function and taxonomy structure at different aquifers could give a panoramic view of patterns that may enable the detection and prediction of environmental impact caused by multiple sources. Using publicly available shotgun metagenomic datasets, we examined whether soil properties, land use, and climate variables would have a more significant influence on the taxonomy and functional structure of the microbial communities than the ecological landscapes of the aquifer (i.e., Karst, Porous, Saline, Geyser, and Porous Contaminated). We found that these categories are stronger predictors of microbial communities' structure than geographical localization. In addition, our results show that microbial richness and dominance patterns are the opposite of those found in multicellular life, where extreme habitats harbour richer functional and taxonomic microbial communities. We found that low-abundant and recently described candidate taxa, such as the chemolithoautotrophic genus Candidatus Altiarcheum and the Candidate phylum Parcubacteria, are the main contributors to aquifer microbial communities' dissimilarities. Genes related to gram-negative bacteria proteins, cell wall structures, and phage activity were the primary contributors to aquifer microbial communities' dissimilarities among the aquifers' ecological landscapes. The results reported in the present study highlight the utility of using ecological landscapes for investigating aquifer microbial communities. In addition, we suggest that functions played by recently described and low abundant bacterial groups need further investigation once they might affect water quality, geochemical cycles, and the effects of anthropogenic disturbances such as pollution and climatic events on aquifers.
Collapse
Affiliation(s)
| | | | - Felipe Hernandes Coutinho
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Camilo M Ferreira
- Institute of Biology, Federal University of Bahia, Salvador, Brazil; National Institute of Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (IN-TREE), Brazil
| | | | | | - Pedro Milet Meirelles
- Institute of Biology, Federal University of Bahia, Salvador, Brazil; National Institute of Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (IN-TREE), Brazil.
| |
Collapse
|
6
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks. Sci Rep 2023; 13:2743. [PMID: 36797257 PMCID: PMC9935533 DOI: 10.1038/s41598-023-27816-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Interactions between microalgae and bacteria can directly influence the global biogeochemical cycles but the majority of such interactions remain unknown. 16S rRNA gene-based co-occurrence networks have potential to help identify microalgal-bacterial interactions. Here, we used data from 10 Earth microbiome projects to identify potential microalgal-bacterial associations in aquatic ecosystems. A high degree of clustering was observed in microalgal-bacterial modules, indicating densely connected neighbourhoods. Proteobacteria and Bacteroidetes predominantly co-occurred with microalgae and represented hubs of most modules. Our results also indicated that species-specificity may be a global characteristic of microalgal associated microbiomes. Several previously known associations were recovered from our network modules, validating that biologically meaningful results can be inferred using this approach. A range of previously unknown associations were recognised such as co-occurrences of Bacillariophyta with uncultured Planctomycetes OM190 and Deltaproteobacteria order NB1-j. Planctomycetes and Verrucomicrobia were identified as key associates of microalgae due to their frequent co-occurrences with several microalgal taxa. Despite no clear taxonomic pattern, bacterial associates appeared functionally similar across different environments. To summarise, we demonstrated the potential of 16S rRNA gene-based co-occurrence networks as a hypothesis-generating framework to guide more focused research on microalgal-bacterial associations.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Hobart, TAS, 7000, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Botchkova E, Vishnyakova A, Popova N, Sukhacheva M, Kolganova T, Litti Y, Safonov A. Characterization of Enrichment Cultures of Anammox, Nitrifying and Denitrifying Bacteria Obtained from a Cold, Heavily Nitrogen-Polluted Aquifer. BIOLOGY 2023; 12:biology12020221. [PMID: 36829499 PMCID: PMC9952944 DOI: 10.3390/biology12020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Anammox bacteria related to Candidatus Scalindua were recently discovered in a cold (7.5 °C) aquifer near sludge repositories containing solid wastes of uranium and processed polymetallic concentrate. Groundwater has a very high level of nitrate and ammonia pollution (up to 10 and 0.5 g/L, respectively) and a very low content of organic carbon (2.5 mg/L). To assess the potential for bioremediation of polluted groundwater in situ, enrichment cultures of anammox, nitrifying, and denitrifying bacteria were obtained and analyzed. Fed-batch enrichment of anammox bacteria was not successful. Stable removal of ammonium and nitrite (up to 100%) was achieved in a continuous-flow reactor packed with a nonwoven fabric at 15 °C, and enrichment in anammox bacteria was confirmed by FISH and qPCR assays. The relatively low total N removal efficiency (up to 55%) was due to nonstoichiometric nitrate buildup. This phenomenon can be explained by a shift in the metabolism of anammox bacteria towards the production of more nitrates and less N2 at low temperatures compared to the canonical stoichiometry. In addition, the too high an estimate of specific anammox activity suggests that N cycle microbial groups other than anammox bacteria may have contributed significantly to N removal. Stable nitrite production was observed in the denitrifying enrichment culture, while no "conventional" nitrifiers were found in the corresponding enrichment cultures. Xanthomonadaceae was a common taxon for all microbial communities, indicating its exclusive role in this ecosystem. This study opens up new knowledge about the metabolic capabilities of N cycle bacteria and potential approaches for sustainable bioremediation of heavily N-polluted cold ecosystems.
Collapse
Affiliation(s)
- Ekaterina Botchkova
- Winogradsky Institute of Microbiology, “Fundamentals of Biotechnology” Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, “Fundamentals of Biotechnology” Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Marina Sukhacheva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Tatyana Kolganova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, “Fundamentals of Biotechnology” Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-9263699243
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 117312 Moscow, Russia
| |
Collapse
|
8
|
Kagemasa S, Kuroda K, Nakai R, Li YY, Kubota K. Diversity of <i>Candidatus</i> Patescibacteria in Activated Sludge Revealed by a Size-Fractionation Approach. Microbes Environ 2022; 37. [PMID: 35676047 PMCID: PMC9530733 DOI: 10.1264/jsme2.me22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncultivated members of Candidatus Patescibacteria are commonly found in activated sludge treating sewage and are widely distributed in wastewater treatment plants in different regions and countries. However, the phylogenetic diversity of Ca. Patescibacteria is difficult to examine because of their low relative abundance in the environment. Since Ca. Patescibacteria members have small cell sizes, we herein collected small microorganisms from activated sludge using a filtration-based size-fractionation approach (i.e., 0.45–0.22 μm and 0.22–0.1 μm fractions). Fractionated samples were characterized using 16S rRNA gene amplicon and shotgun metagenomic sequence analyses. The amplicon analysis revealed that the relative abundance of Ca. Patescibacteria increased to 73.5% and 52.5% in the 0.45–0.22 μm and 0.22–0.1 μm fraction samples, respectively, from 5.8% in the unfractionated sample. The members recovered from the two size-fractionated samples included Ca. Saccharimonadia, Ca. Gracilibacteria, Ca. Paceibacteria, Ca. Microgenomatia, class-level uncultured lineage ABY1, Ca. Berkelbacteria, WS6 (Ca. Dojkabacteria), and WWE3, with Ca. Saccharimonadia being predominant in both fraction samples. The number of operational taxonomic units belonging to Ca. Patescibacteria was approximately 6-fold higher in the size-fractionated samples than in the unfractionated sample. The shotgun metagenomic analysis of the 0.45–0.22 μm fractioned sample enabled the reconstruction of 24 high-quality patescibacterial bins. The bins obtained were classified into diverse clades at the family and genus levels, some of which were rarely detected in previous activated sludge studies. Collectively, the present results suggest that the overall diversity of Ca. Patescibacteria inhabiting activated sludge is higher than previously expected.
Collapse
Affiliation(s)
- Shuka Kagemasa
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Tohoku University
| |
Collapse
|
9
|
O'Malley MA, Walsh DA. Rethinking microbial infallibility in the metagenomics era. FEMS Microbiol Ecol 2021; 97:6308366. [PMID: 34160589 DOI: 10.1093/femsec/fiab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
The 'principle of microbial infallibility' was a mainstay of microbial physiology and environmental microbiology in earlier decades. This principle asserts that wherever there is an energetic gain to be made from environmental resources, microorganisms will find a way to take advantage of the situation. Although previously disputed, this claim was revived with the discovery of anammox bacteria and other major contributors to biogeochemistry. Here, we discuss the historical background to microbial infallibility, and focus on its contemporary relevance to metagenomics. Our analysis distinguishes exploration-driven metagenomics from hypothesis-driven metagenomics. In particular, we show how hypothesis-driven metagenomics can use background assumptions of microbial infallibility to enable the formulation of hypotheses to be tested by enrichment cultures. Discoveries of comammox and the anaerobic oxidation of methane are major instances of such strategies, and we supplement them with outlines of additional examples. This overview highlights one way in which metagenomics is making the transition from an exploratory data-analysis programme of research to a hypothesis-testing one. We conclude with a discussion of how microbial infallibility is a heuristic with far-reaching implications for the investigation of life.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, Carslaw Building, University of Sydney, Sydney, NSW 2006, Australia
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
10
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
11
|
Ruiz-González C, Rodellas V, Garcia-Orellana J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol Rev 2021; 45:6128669. [PMID: 33538813 PMCID: PMC8498565 DOI: 10.1093/femsre/fuab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land–ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater–marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC). Passeig Marítim de la Barceloneta 37-49, E08003 Barcelona, Spain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| | - Jordi Garcia-Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain.,Departament de Física, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| |
Collapse
|
12
|
Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat Microbiol 2021; 6:354-365. [PMID: 33495623 PMCID: PMC7906910 DOI: 10.1038/s41564-020-00840-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproducibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health. Metagenomics and electron microscopy are combined to analyse the diversity of episymbiotic CPR bacteria and DPANN archaea in eight groundwater communities.
Collapse
|
13
|
Park M, Kim J, Lee T, Oh YK, Nguyen VK, Cho S. Correlation of microbial community with salinity and nitrogen removal in an anammox-based denitrification system. CHEMOSPHERE 2021; 263:128340. [PMID: 33297266 DOI: 10.1016/j.chemosphere.2020.128340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic ammonium oxidation (anammox), a low-energy-consuming technology, can be used to remove nitrogen from industrial saline wastewater. However, high salinity inhibits anammox microbial activity. This study investigated the effect of salinity on nitrogen removal performance and microbial community structure. The experiment used an up-flow anammox reactor fed with synthetic wastewater with salinity increased from 0.5 to 2.5%. Results indicated that 80% nitrogen removal efficiency can be achieved at 2% salinity with a nitrogen loading rate of 2.0 kg-N/m3/d. Anammox performance significantly deteriorated at 2.5% salinity. High-throughput sequencing revealed that Planctomycetes (representative anammox bacteria) increased with salinity, replacing Proteobacteria (representative heterotrophic denitrifying bacteria) in the microbial community. qPCR analysis indicated that relative abundance of "Candidatus Kuenenia" within anammox bacteria increased from 3.96 to 83.41%, corresponding to salinity of 0.5-2.0%, and subsequently decreased to 63.27% at 2.5% salinity, correlating with nitrogen-removal performance. Thus, anammox has potential in nitrogen removal from wastewater with salinity up to 2%.
Collapse
Affiliation(s)
- Myeonghwa Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Teaho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical & Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Van Khanh Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sunja Cho
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Chan AWY, Naphtali J, Schellhorn HE. High-throughput DNA sequencing technologies for water and wastewater analysis. Sci Prog 2019; 102:351-376. [PMID: 31818206 PMCID: PMC10424514 DOI: 10.1177/0036850419881855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional microbiological water monitoring uses culture-dependent techniques to screen indicator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-generation sequencing technologies becoming less expensive, water quality monitoring programs can now leverage the massively parallel nature of second-generation sequencing technologies for batch sample processing to simultaneously obtain compositional and functional information of culturable and as yet uncultured microbial organisms. This review provides an introduction to the technical capabilities and considerations necessary for the use of second-generation sequencing technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate the composition and functional potential of microbiomes found in water and wastewater systems.
Collapse
Affiliation(s)
| | - James Naphtali
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
16
|
Liu YC, Huang RM, Bao J, Wu KY, Wu HY, Gao XY, Zhang XY. The unexpected diversity of microbial communities associated with black corals revealed by high-throughput Illumina sequencing. FEMS Microbiol Lett 2019; 365:5047306. [PMID: 29982506 DOI: 10.1093/femsle/fny167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
The microbes associated with black corals remain poorly studied. The present study is the first attempt to investigate microbial community structure in the black corals Antipathes ceylonensis and A. dichotoma from the South China Sea by using high-throughput Illumina sequencing. A total of 52 bacterial and 3 archaeal phyla were recovered in this study, suggesting the black corals harboured highly diverse microbial communities. Among the 55 microbial phyla, Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Acidobacteria and Actinobacteria dominated in the two black corals from the South China Sea. Although most of the microbial phyla recovered from the two black corals have been reported in previous studies on coral-associated microbes, eight bacterial phyla including Synergistetes, Thermi, AncK6, GNO2, NKB19, NC10, WWE1 and GAL15, and the archaeal phylum Parvarchaeota are reported for the first time from corals in this study, which expands our knowledge about the diversity of coral-associated microbes. The comparison of microbial communities in the different black coral species indicated that A. ceylonensis harboured few abundant bacterial genera such as Citrobacter and Pseudomonas, whereas a high diversity of rare bacterial genera (<1% abundance), such as Winogradskyella and Rubricoccus, was detected only in A. dichotoma. These results suggested that the microbial community in black corals exhibited species-specific variation.
Collapse
Affiliation(s)
- Yong-Chun Liu
- College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Ri-Ming Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Ke-Yue Wu
- College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Heng-Yu Wu
- College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xiang-Yang Gao
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xiao-Yong Zhang
- College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
17
|
Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol 2019; 16:629-645. [PMID: 30181663 DOI: 10.1038/s41579-018-0076-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth's environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function.
Collapse
|
18
|
Spatial Pattern of Bacterial Community Diversity Formed in Different Groundwater Field Corresponding to Electron Donors and Acceptors Distributions at a Petroleum-Contaminated Site. WATER 2018. [DOI: 10.3390/w10070842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME JOURNAL 2018; 12:1344-1359. [PMID: 29416124 PMCID: PMC5932017 DOI: 10.1038/s41396-018-0070-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/08/2022]
Abstract
Here we used flow cytometry (FCM) and filtration paired with amplicon sequencing to determine the abundance and composition of small low nucleic acid (LNA)-content bacteria in a variety of freshwater ecosystems. We found that FCM clusters associated with LNA-content bacteria were ubiquitous across several ecosystems, varying from 50 to 90% of aquatic bacteria. Using filter-size separation, we separated small LNA-content bacteria (passing 0.4 µm filter) from large bacteria (captured on 0.4 µm filter) and characterized communities with 16S amplicon sequencing. Small and large bacteria each represented different sub-communities within the ecosystems' community. Moreover, we were able to identify individual operational taxonomical units (OTUs) that appeared exclusively with small bacteria (434 OTUs) or exclusively with large bacteria (441 OTUs). Surprisingly, these exclusive OTUs clustered at the phylum level, with many OTUs appearing exclusively with small bacteria identified as candidate phyla (i.e. lacking cultured representatives) and symbionts. We propose that LNA-content bacteria observed with FCM encompass several previously characterized categories of bacteria (ultramicrobacteria, ultra-small bacteria, candidate phyla radiation) that share many traits including small size and metabolic dependencies on other microorganisms.
Collapse
|