1
|
Lü P, Zhang R, Yang Y, Tang M, Chen K, Pan Y. Transcriptome analysis indicates the mechanisms of BmNPV resistance in Bombyx mori midgut. J Invertebr Pathol 2024; 204:108103. [PMID: 38583693 DOI: 10.1016/j.jip.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) caused serious economic losses in sericulture. Analyzing the molecular mechanism of silkworms (B. mori) resistance to BmNPV is of great significance for the prevention and control of silkworm virus diseases and the biological control of agricultural lepidopteran pests. In order to clarify the defense mechanisms of silkworms against BmNPV, we constructed a near isogenic line BC8 with high resistance to BmNPV through the highly BmNPV-resistant strain NB and the highly BmNPV-susceptible strain 306. In this study, RNA-Seq technique was used to analyze the transcriptome level differences in the midgut of BC8 and 306 following BmNPV infection. A total of 1350 DEGs were identified. Clustering analysis showed that these genes could be divided into 8 clusters with different expression patterns. Functional annotations based on GO and KEGG analysis indicated that they were involved in various metabolism pathways. Finally, 32 BmNPV defense responsive genes were screened. They were involved in metabolism, reactive oxygen species (ROS), signal transduction and immune response, and insect hormones. The further verification shows that HSP70 should participate in resistance responses of anti-BmNPV. These findings have paved the way in further functional characterization of candidate genes and subsequently can be used in breeding of BmNPV resistance dominant silkworms.
Collapse
Affiliation(s)
- Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Awais MM, Fei S, Xia J, Feng M, Sun J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front Immunol 2024; 15:1349428. [PMID: 38420120 PMCID: PMC10899340 DOI: 10.3389/fimmu.2024.1349428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.
Collapse
Affiliation(s)
| | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Hu Z, Zhu F, Chen K. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:381-399. [PMID: 36689303 DOI: 10.1146/annurev-ento-120220-112317] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| |
Collapse
|
4
|
Shen Y, Zeng X, Chen G, Wu X. Comparative transcriptome analysis reveals regional specialization of gene expression in larval silkworm (Bombyx mori) midgut. INSECT SCIENCE 2022; 29:1329-1345. [PMID: 34997945 DOI: 10.1111/1744-7917.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Insect midgut plays a central role in food digestion and nutrition absorption. Larval silkworm midgut could be divided into 3 distinct regions based on their morphological colors. However, it remains rudimentary of regional gene expression and physiological function in larval silkworm midgut. Through transcriptome sequencing of 3 midgut compartments, a comprehensive analysis of gene expression atlas along the anterior-posterior axis was conducted. Posterior midgut was found transcriptionally divergent from anterior and middle midgut. Differentially expressed gene analysis revealed the regional specialization of digestive enzyme production, transmembrane transport, chitin metabolism, and hormone regulation in different midgut regions. In addition, gene subsets of pan-midgut and region-specific transcription factors (TFs) along the length of midgut were also identified. The results suggested that homeobox TFs might play an essential role in transcriptional variations across the midgut. Altogether, our study provided the first fundamental resource to investigate physiological function and regulation mechanism in larval midgut compartmentalization.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
6
|
Shen Y, Chen G, Zhao S, Wu X. Genome-wide identification of lipases in silkworm (Bombyx mori) and their spatio-temporal expression in larval midgut. Gene 2021; 813:146121. [PMID: 34915049 DOI: 10.1016/j.gene.2021.146121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
Lipases play crucial roles in food digestion by degrading dietary lipids into free fatty acids and glycerols. The domesticated silkworm (Bombyx mori) has been widely used as an important Lepidopteran model for decades. However, little is known about the lipase gene family in the silkworm, especially their hydrolytic activities as digestive enzymes. In this study, a total of 38 lipase genes were identified in the silkworm genome. Phylogenetic analysis indicated that they were divided into three major groups. Twelve lipases were confirmed to be expressed in the midgut at both transcriptional and translational levels. They were grouped into the same gene cluster, suggesting that they could have similar physiological functions. Quantitative real-time PCR (qRT-PCR) analyses indicated that lipases were mainly expressed in anterior and middle midgut regions, and their expression levels varied greatly along the length of midgut. A majority of lipases were down-regulated in the midgut when larvae stopped feeding. However, a unique lipase gene (Bmlip10583) showed low expression level during feeding stage, but it was significantly up-regulated during the larvae-pupae transition. These results demonstrated that expression of silkworm lipases was spatially and temporally regulated in the midgut during larval development. Taken together, our results provide a fundamental research of the lipase gene family in the silkworm.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
7
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
8
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
9
|
Zhang SZ, Zhu LB, You LL, Wang J, Cao HH, Liu YX, Toufeeq S, Wang YL, Kong X, Xu JP. A Novel Digestive Proteinase Lipase Member H-A in Bombyx mori Contributes to Digestive Juice Antiviral Activity Against B. mori Nucleopolyhedrovirus. INSECTS 2020; 11:insects11030154. [PMID: 32121517 PMCID: PMC7143000 DOI: 10.3390/insects11030154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 11/23/2022]
Abstract
Previous studies have revealed that some proteins in Bombyx mori larvae digestive juice show antiviral activity. Here, based on the label-free proteomics data, BmLipase member H-A (BmLHA) was identified as being involved in the response to BmNPV infection in B. mori larvae digestive juice. In the present study, a gene encoding the BmLHA protein in B. mori was characterized. The protein has an open reading fragment of 999 bp, encoding a predicted 332 amino acid residue-protein with a molecular weight of approximately 35.9 kDa. The phylogenetic analysis revealed that BmLHA shares a close genetic distance with Papilio xuthus Lipase member H-A. BmLHA was highly expressed in the middle part of the B. mori gut, and the expression level increased with instar rising in larvae. There was higher expression of BmLHA in A35 than in P50 strains, and it was upregulated in both A35 and P50 strains, following BmNPV infection. The expression level of VP39 decreased significantly in appropriate recombinant-BmLHA-treated groups compared with the PBS-treated group in B. mori larvae and BmN cells. Meanwhile, overexpression of BmLHA significantly reduced the infectivity of BmNPV in BmN cells. These results indicated that BmLHA did not have digestive function but had anti-BmNPV activity. Taken together, our work provides valuable data for the clarification of the molecular characterization BmLHA and supplements research on proteins of anti-BmNPV activity in B. mori.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence: ; Tel.: +86-0551-65786691
| |
Collapse
|
10
|
Norseeda K, Chaisan N, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Metal-Free Synthesis of 4-Chloroisocoumarins by TMSCl-Catalyzed NCS-Induced Chlorinative Annulation of 2-Alkynylaryloate Esters. J Org Chem 2019; 84:16222-16236. [DOI: 10.1021/acs.joc.9b02793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Krissada Norseeda
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Nattawadee Chaisan
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
11
|
Zhang SZ, Wang J, Zhu LB, Toufeeq S, Xu X, You LL, Li B, Hu P, Xu JP. Quantitative label-free proteomic analysis reveals differentially expressed proteins in the digestive juice of resistant versus susceptible silkworm strains and their predicted impacts on BmNPV infection. J Proteomics 2019; 210:103527. [PMID: 31610263 PMCID: PMC7102787 DOI: 10.1016/j.jprot.2019.103527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. Previous studies have revealed that some proteins in silkworm digestive juice show antiviral activity. In this study, antiviral activity examination of different resistant strains showed that the digestive juice of the resistant strain (A35) had higher inhibition to virus than the susceptible strain (P50). Subsequently, the label-free quantitative proteomics was used to study the midgut digestive juice response to BmNPV infection in P50 and A35 strains. A total of 98 proteins were identified, of which 80 were differentially expressed proteins (DEPs) with 54 enzymes and 26 nonenzymatic proteins by comparing the proteomes of infected and non-infected P50 and A35 silkworms. These DEPs are mainly involved in metabolism, proteolysis, neuroactive ligand receptor interaction, starch and sucrose metabolism and glutathione metabolism. After removing the genetic background and individual immune stress response proteins, 9 DEPs were identified potentially involved in resistance to BmNPV. Further studies showed that a serine protease, an alkaline phosphatase and serine protease inhibitor 2 isoform X1 were differentially expressed in A35 compared to P50 or post BmNPV infection. Taken together, these results provide insights into the potential mechanisms for silkworm digestive juice to provide resistance to BmNPV infection. Signifcance: Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, which has a great impact on the sericulture. BmNPV entered the midgut lumen and exposed to digestive juices after oral infection. Previous studies have revealed that some proteins in silkworm digestive juice show antiviral activity, however, current information on the digestive juice proteome of high resistant silkworm strain after BmNPV challenge compared to susceptible strain is incomprehensive. Here, we combined label-free quantification method, bioinformatics, RT-qPCR and western blot analysis and found that BmNPV infection causes some protein changes in the silkworm midgut digestive juice. The DEPs were identified in the digestive juices of different resistant strains following BmNPV infection, and screened out some proteins potentially related to resistance to BmNPV. Three important differentially expression proteins were validated by independent approaches. These findings uncover the potential role of silkworm digestive juice in providing resistance to BmNPV and supplemented the profile of the proteome of the digestive juices in B. mori.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Xin Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, China.
| |
Collapse
|
12
|
Lü D, Xu P, Hou C, Gao K, Guo X. Label-free LC-MS/MS proteomic analysis of the hemolymph of silkworm larvae infected with Beauveria bassiana. J Invertebr Pathol 2019; 166:107227. [PMID: 31386830 DOI: 10.1016/j.jip.2019.107227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
Beauveria bassiana, a pathogen of the economically important silkworm (Bombyx mori), causes serious losses in the sericulture industry; however, the mechanisms underlying B. bassiana infection and the silkworm response are not fully understood. To obtain new insights into the interaction between B. bassiana and its host, hemolymph samples from fifth instar silkworm larvae infected with B. bassiana were analyzed at 36-h post-inoculation using a label-free LC-MS/MS proteomic technique. In total, 671 proteins were identified in the hemolymph, including 87 differentially expressed proteins, 42 up-regulated and 45 down-regulated in infected larvae. Six were detected only in infected larvae, and five were detected only in uninfected larvae. Based on GO annotations, 48 of the differentially expressed proteins were involved in molecular functions, 42 were involved in biological processes, and 39 were involved in cell components. A KEGG pathway analysis indicated that these differentially expressed proteins participate in 85 signal transduction pathways, including the amoebiasis, MAPK signaling, Hippo signaling, Toll and Imd signaling, and lysosome pathways. The silkworm hemolymph is the main site for B. bassiana replication. We identified differentially expressed proteins involved in the regulation of the host response to B. bassiana infection, providing important experimental data for the identification of key factors contributing to the interaction between the pathogenic fungus and its host.
Collapse
Affiliation(s)
| | - Ping Xu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Chengxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| |
Collapse
|
13
|
Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Qin Q, Long JQ, Chen P, Xu AY, Pan MH, Lu C. Specific genes related to nucleopolyhedrovirus in Bombyx mori susceptible and near-isogenic resistant strains through comparative transcriptome analysis. INSECT MOLECULAR BIOLOGY 2019; 28:473-484. [PMID: 30632225 DOI: 10.1111/imb.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens that causes severe economic losses to sericulture. Comparative transcriptomics analysis has been widely applied to explore the antiviral mechanism in resistant strains. Here, to identify genes involved in BmNPV infection, we identified differentially expressed genes (DEGs) and performed weighted gene co-expression network analysis (WGCNA) between two Bombyx mori strains: strain 871 (susceptible to BmNPV infection) and the near-isogenic strain 871C (resistant to BmNPV). Our results showed that 400 genes were associated with resistance in strain 871C, and 76 genes were related to susceptibility in strain 871. In addition, the correlation analysis of DEGs and WGCNA showed that 40 genes related to resistance were highly expressed in the resistant strain. Among them, gene BGIBMGA004291 was the most noticeable. We further identified the effect of gene BGIBMGA004291, which encoded a multiprotein bridge factor 2 (MBF2) family member (MBF2-10), on viral infection in cells. Our data suggested that MBF2-10 inhibited viral infection. Taken together, this study showed specific module trait correlations related to viral infection in strains 871 and 871C, and we identified a resistance-related gene. These findings suggested promising candidate genes with antiviral activity, aiding in the analysis of the antiviral molecular mechanisms in resistant strains.
Collapse
Affiliation(s)
- T-T Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - L-R Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - N Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Z-Q Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Z-G Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Q Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - J-Q Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - A-Y Xu
- Chinese Academy of Agricultural Sciences, Jiangsu, China
| | - M-H Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Selection and validation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) in silkworm infected with Bombyx mori bidensovirus. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0086-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|