1
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Xin DE, Liao Y, Rao R, Ogurek S, Sengupta S, Xin M, Bayat AE, Seibel WL, Graham RT, Koschmann C, Lu QR. Chaetocin-mediated SUV39H1 inhibition targets stemness and oncogenic networks of diffuse midline gliomas and synergizes with ONC201. Neuro Oncol 2024; 26:735-748. [PMID: 38011799 PMCID: PMC10995509 DOI: 10.1093/neuonc/noad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.
Collapse
Affiliation(s)
- Dazhuan Eric Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yunfei Liao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Arman Esshaghi Bayat
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - William L Seibel
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard T Graham
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Goher SS, Abdrabo WS, Veerakanellore GB, Elgendy B. 2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents. Curr Pharm Des 2024; 30:597-623. [PMID: 38343054 DOI: 10.2174/0113816128291798240201112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 05/25/2024]
Abstract
2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Wessam S Abdrabo
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Wang L, Jiang Q, Chen S, Wang S, Lu J, Gao X, Zhang D, Jin X. Natural epidithiodiketopiperazine alkaloids as potential anticancer agents: Recent mechanisms of action, structural modification, and synthetic strategies. Bioorg Chem 2023; 137:106642. [PMID: 37276722 DOI: 10.1016/j.bioorg.2023.106642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Cancer has become a grave health crisis that threatens the lives of millions of people worldwide. Because of the drawbacks of the available anticancer drugs, the development of novel and efficient anticancer agents should be encouraged. Epidithiodiketopiperazine (ETP) alkaloids with a 2,5-diketopiperazine (DKP) ring equipped with transannular disulfide or polysulfide bridges or S-methyl moieties constitute a special subclass of fungal natural products. Owing to their privileged sulfur units and intriguing architectural structures, ETP alkaloids exhibit excellent anticancer activities by regulating multiple cancer proteins/signaling pathways, including HIF-1, NF-κB, NOTCH, Wnt, and PI3K/AKT/mTOR, or by inducing cell-cycle arrest, apoptosis, and autophagy. Furthermore, a series of ETP alkaloid derivatives obtained via structural modification showed more potent anticancer activity than natural ETP alkaloids. To solve supply difficulties from natural resources, the total synthetic routes for several ETP alkaloids have been designed. In this review, we summarized several ETP alkaloids with anticancer properties with particular emphasis on their underlying mechanisms of action, structural modifications, and synthetic strategies, which will offer guidance to design and innovate potential anticancer drugs.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Siyu Chen
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Siyi Wang
- The 1st Clinical Department, China Medical University, Shenyang 110122, China
| | - Jingyi Lu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xun Gao
- Jiangsu Institute Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dongfang Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Zhao Y, Wang H, Yin Y, Shi H, Wang D, Shu F, Wang R, Wang L. Anti-melanoma action of small molecular peptides derived from Brucea javanica(L.)Merr. globulin in vitro. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Campillo-Marcos I, Monte-Serrano E, Navarro-Carrasco E, García-González R, Lazo PA. Lysine Methyltransferase Inhibitors Impair H4K20me2 and 53BP1 Foci in Response to DNA Damage in Sarcomas, a Synthetic Lethality Strategy. Front Cell Dev Biol 2021; 9:715126. [PMID: 34540832 PMCID: PMC8446283 DOI: 10.3389/fcell.2021.715126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chromatin is dynamically remodeled to adapt to all DNA-related processes, including DNA damage responses (DDR). This adaptation requires DNA and histone epigenetic modifications, which are mediated by several types of enzymes; among them are lysine methyltransferases (KMTs). Methods KMT inhibitors, chaetocin and tazemetostat (TZM), were used to study their role in the DDR induced by ionizing radiation or doxorubicin in two human sarcoma cells lines. The effect of these KMT inhibitors was tested by the analysis of chromatin epigenetic modifications, H4K16ac and H4K20me2. DDR was monitored by the formation of γH2AX, MDC1, NBS1 and 53BP1 foci, and the induction of apoptosis. Results Chaetocin and tazemetostat treatments caused a significant increase of H4K16 acetylation, associated with chromatin relaxation, and increased DNA damage, detected by the labeling of free DNA-ends. These inhibitors significantly reduced H4K20 dimethylation levels in response to DNA damage and impaired the recruitment of 53BP1, but not of MDC1 and NBS1, at DNA damaged sites. This modification of epigenetic marks prevents DNA repair by the NHEJ pathway and leads to cell death. Conclusion KMT inhibitors could function as sensitizers to DNA damage-based therapies and be used in novel synthetic lethality strategies for sarcoma treatment.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.,Cancer Epigenetics Group, Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Elena Navarro-Carrasco
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raúl García-González
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules 2021; 11:biom11091380. [PMID: 34572593 PMCID: PMC8470332 DOI: 10.3390/biom11091380] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is typically found in a latent, asymptomatic state in immunocompetent individuals. Perturbations of the host immune system can stimulate viral reactivation. Furthermore, there are a myriad of EBV-associated illnesses including various cancers, post-transplant lymphoproliferative disease, and autoimmune conditions. A thorough understanding of this virus, and the interplay between stress and the immune system, is essential to establish effective treatment. This review will provide a summary of the interaction between both psychological and cellular stressors resulting in EBV reactivation. It will examine mechanisms by which EBV establishes and maintains latency and will conclude with a brief overview of treatments targeting EBV.
Collapse
|
8
|
Martínez-Noël G, Vieira VC, Szajner P, Lilienthal EM, Kramer RE, Boyland KA, Smith JA, Howley PM. Live cell, image-based high-throughput screen to quantitate p53 stabilization and viability in human papillomavirus positive cancer cells. Virology 2021; 560:96-109. [PMID: 34051479 DOI: 10.1016/j.virol.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Approximately 5% of cancers are caused by high-risk human papillomaviruses. Although very effective preventive vaccines will reduce this cancer burden significantly over the next several decades, they have no therapeutic effect for those already infected and remaining at risk for malignant progression of hrHPV lesions. HPV-associated cancers are dependent upon the expression of the viral E6 and E7 oncogenes. The oncogenic function of hrHPV E6 relies partially on its ability to induce p53 degradation. Since p53 is generally wildtype in hrHPV-associated cancers, p53 stabilization arrests proliferation, induces apoptosis and/or results in senescence. Here we describe a live cell, image-based high-throughput screen to identify compounds that stabilize p53 and/or affect viability in HPV-positive cancer HeLa cells. We validate the robustness and potential of this screening assay by assessing the activities of approximately 6,500 known bioactive compounds, illustrating its capability to function as a platform to identify novel therapeutics for hrHPV.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Valdimara Corrêa Vieira
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Patricia Szajner
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Erin M Lilienthal
- ICCB-Longwood Screening Facility, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Rebecca E Kramer
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kathleen A Boyland
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Jennifer A Smith
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA; ICCB-Longwood Screening Facility, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Peter M Howley
- Department of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Nicotinamide inhibits melanoma in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:211. [PMID: 33028392 PMCID: PMC7542872 DOI: 10.1186/s13046-020-01719-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Background Even though new therapies are available against melanoma, novel approaches are needed to overcome resistance and high-toxicity issues. In the present study the anti-melanoma activity of Nicotinamide (NAM), the amide form of Niacin, was assessed in vitro and in vivo. Methods Human (A375, SK-MEL-28) and mouse (B16-F10) melanoma cell lines were used for in vitro investigations. Viability, cell-death, cell-cycle distribution, apoptosis, Nicotinamide Adenine Dinucleotide+ (NAD+), Adenosine Triphosphate (ATP), and Reactive Oxygen Species (ROS) levels were measured after NAM treatment. NAM anti-SIRT2 activity was tested in vitro; SIRT2 expression level was investigated by in silico transcriptomic analyses. Melanoma growth in vivo was measured in thirty-five C57BL/6 mice injected subcutaneously with B16-F10 melanoma cells and treated intraperitoneally with NAM. Interferon (IFN)-γ-secreting murine cells were counted with ELISPOT assay. Cytokine/chemokine plasmatic levels were measured by xMAP technology. Niacin receptors expression in human melanoma samples was also investigated by in silico transcriptomic analyses. Results NAM reduced up to 90% melanoma cell number and induced: i) accumulation in G1-phase (40% increase), ii) reduction in S- and G2-phase (about 50% decrease), iii) a 10-fold increase of cell-death and 2.5-fold increase of apoptosis in sub-G1 phase, iv) a significant increase of NAD+, ATP, and ROS levels, v) a strong inhibition of SIRT2 activity in vitro. NAM significantly delayed tumor growth in vivo (p ≤ 0.0005) and improved survival of melanoma-bearing mice (p ≤ 0.0001). About 3-fold increase (p ≤ 0.05) of Interferon-gamma (IFN-γ) producing cells was observed in NAM treated mice. The plasmatic expression levels of 6 cytokines (namely: Interleukin 5 (IL-5), Eotaxin, Interleukin 12 (p40) (IL12(p40)), Interleukin 3 (IL-3), Interleukin 10 (IL-10) and Regulated on Activation Normal T Expressed and Secreted (RANTES) were significantly changed in the blood of NAM treated mice, suggesting a key role of the immune response. The observed inhibitory effect of NAM on SIRT2 enzymatic activity confirmed previous evidence; we show here that SIRT2 expression is significantly increased in melanoma and inversely related to melanoma-patients survival. Finally, we show for the first time that the expression levels of Niacin receptors HCAR2 and HCAR3 is almost abolished in human melanoma samples. Conclusion NAM shows a relevant anti-melanoma activity in vitro and in vivo and is a suitable candidate for further clinical investigations.
Collapse
|
10
|
SPT6-driven error-free DNA repair safeguards genomic stability of glioblastoma cancer stem-like cells. Nat Commun 2020; 11:4709. [PMID: 32948765 PMCID: PMC7501306 DOI: 10.1038/s41467-020-18549-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma. Cancer stem cells can evade treatment. Here, the authors perform an in vitro screen to identify proteins that are involved in protecting glioma cancer stem cells from therapy and find that SPT6 increases BRCA1 expression and drives error-free DNA repair, thereby ensuring the survival of the cells.
Collapse
|
11
|
Yang Z, Wang H, Zhang N, Xing T, Zhang W, Wang G, Li C, Yu C. Chaetocin Abrogates the Self-Renewal of Bladder Cancer Stem Cells via the Suppression of the KMT1A-GATA3-STAT3 Circuit. Front Cell Dev Biol 2020; 8:424. [PMID: 32626701 PMCID: PMC7311639 DOI: 10.3389/fcell.2020.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer stem cells (BCSCs) have the abilities of self-renewal, differentiation, and metastasis; confer drug resistance; and exhibit high tumorigenicity. We previously identified that the KMT1A–GATA3–STAT3 axis drives the self-renewal of BCSCs. However, the therapeutic effect of targeting KMT1A in BCSCs remains unknown. In this study, we confirmed that the expression of KMT1A was remarkably higher in BCSCs (3–5-fold) than those in bladder cancer non-stem cells or normal bladder epithelial cells. Among the six KMT1A inhibitors, chaetocin significantly suppressed the cell propagation (inhibition ratio: 65%–88%, IC50 = 24.4–32.5 nM), induced apoptosis (2–5-fold), and caused G1 phase cell cycle arrest (68.9 vs 55.5%) of bladder cancer (BC) cells, without influencing normal bladder epithelial cells. More importantly, chaetocin abrogated the self-renewal of BCSCs (inhibition ratio: 80.1%) via the suppression of the KMT1A–GATA3–STAT3 circuit and other stemness-related pathways. Finally, intravesical instillation of chaetocin remarkably inhibited the growth of xenograft tumors (inhibition ratio: 71–82%) and prolonged the survival of tumor-bearing mice (70 vs 53 days). In sum, chaetocin abrogated the stemness maintenance and tumor growth of BCSCs via the suppression of the KMT1A–GATA3–STAT3 circuit. Chaetocin is an effective inhibitor targeting KMT1A in BCSCs and could be a promising therapeutic strategy for BC.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haifeng Wang
- Department of Urology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Nan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
12
|
Gomes NGM, Pereira RB, Andrade PB, Valentão P. Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Mar Drugs 2019; 17:md17100551. [PMID: 31569621 PMCID: PMC6835637 DOI: 10.3390/md17100551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| |
Collapse
|
13
|
Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8127362. [PMID: 31636809 PMCID: PMC6766104 DOI: 10.1155/2019/8127362] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Strategies to battle malignant tumors have always been a dynamic research endeavour. Although various vehicles (e.g., chemotherapeutic therapy, radiotherapy, surgical resection, etc.) are used for skin cancer management, they mostly remain unsatisfactory due to the complex mechanism of carcinogenesis. Increasing evidence indicates that redox imbalance and aberrant reactive oxygen species (ROS) are closely implicated in the oncogenesis of skin cancer. When ROS production goes beyond their clearance, excessive or accumulated ROS could disrupt redox balance, induce oxidative stress, and activate the altered ROS signals. These would damage cellular DNA, proteins, and lipids, further leading to gene mutation, cell hyperproliferation, and fatal lesions in cells that contribute to carcinogenesis in the skin. It has been known that ROS-mediated skin carcinogenesis involves multiple ways, including modulating related signaling pathways, changing cell metabolism, and causing the instability of the genome and epigenome. Nevertheless, the exact role of ROS in skin cancer has not been thoroughly elucidated. In spite of ROS inducing skin carcinogenesis, toxic-dose ROS could trigger cell death/apoptosis and, therefore, may be an efficient therapeutic tool to battle skin cancer. Considering the dual role of ROS in the carcinogenesis and treatment of skin cancer, it would be essential to clarify the relationship between ROS and skin cancer. Thus, in this review, we get the related data together to seek the connection between ROS and skin carcinogenesis. Besides, strategies basing on ROS to fight skin cancer are discussed.
Collapse
|
14
|
Li Z, Huang L, Wei L, Hou Z, Ye W, Huang S. Chaetocin induces caspase-dependent apoptosis in ovarian cancer cells via the generation of reactive oxygen species. Oncol Lett 2019; 18:1915-1921. [PMID: 31423261 PMCID: PMC6614685 DOI: 10.3892/ol.2019.10507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/24/2019] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer among women worldwide. The majority of patients with OC respond to current chemotherapy approaches initially; however, patients are likely to experience cancer recurrence and become resistant to the chemotherapy. Therefore, novel agents for the treatment of OC are urgently required. Chaetocin, a natural product isolated from Chaetomium fungi, has been reported to exhibit anticancer activity against various types of cancer; however, the pharmacological action and detailed mechanism underlying the effects of chaetocin on OC cells remain unclear. Therefore, the present study investigated the cytotoxic effects of chaetocin on OC cells. A Cell Counting kit-8 assay was used to study cell viability, a colony formation assay was used to assess cell proliferation, flow cytometry was used to detect apoptosis, cell cycle and reactive oxygen species (ROS) generation, and western blotting was used to determine the protein levels of poly (ADP-ribose) polymerase, caspase-3 and cleaved-caspase-3. The results demonstrated that chaetocin significantly decreased the viability of OC cells. Chaetocin inhibited the proliferation and induced G2/M phase arrest of the OVCAR-3 OC cell line. Additionally, chaetocin induced apoptotic cell death in OVCAR-3 cells via the caspase pathway. It was observed that chaetocin induced the accumulation of ROS in OVCAR-3 cells. Treatment with the ROS scavenger N-acetyl-L-cysteine reversed the apoptotic effects and activation of the caspase pathway induced by chaetocin. Collectively, these results revealed that chaetocin suppressed the proliferation and promoted the caspase-dependent apoptosis of OC cells by increasing the levels of ROS. Therefore, chaetocin may serve as a potential therapeutic agent for the treatment of OC.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Lishan Huang
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Li Wei
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Zhiyong Hou
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Weibiao Ye
- Department of Pathology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Suran Huang
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
15
|
Liao X, Fan Y, Hou J, Chen X, Xu X, Yang Y, Shen J, Mi P, Huang X, Zhang W, Cao H, Hong X, Hu T, Zhan YY. Identification of Chaetocin as a Potent non-ROS-mediated Anticancer Drug Candidate for Gastric Cancer. J Cancer 2019; 10:3678-3690. [PMID: 31333785 PMCID: PMC6636309 DOI: 10.7150/jca.32803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
Chaetocin, a natural product extracted from Chaetomium species, possesses anticancer effects in several kinds of tumors. However, it remains unclear whether the potential indication for chaetocin could also include human gastric cancer. We found here that chaetocin induced caspase-dependent and -independent apoptosis in human gastric cancer cell lines, which greatly depended on BID-mediated AIF translocation. Despite not increasing the intercellular ROS levels in gastric cancer cells, chaetocin did cause a reduction in mitochondrial membrane potential probably through its regulation on the expression of Bcl-2 and BAX. Chaetocin could also induce autophagy in gastric cancer cells; blocking autophagy by chloroquine enhanced the cytotoxicity of chaetocin. Chaetocin was further found to suppress the growth of gastric cancer xenograft in nude mice. Therefore, our study provides first evidence that chaetocin has an anticancer efficacy against gastric cancer and the combined use of chaetocin with autophagy inhibitors may enhance the therapeutic effect for gastric cancer. As chronic and exorbitant ROS levels instigate drug resistance, chaetocin, which eradicates gastric cancer cells without increasing ROS levels, may initiate a new line of non-ROS-mediated anti-tumor strategy.
Collapse
Affiliation(s)
- Xinwen Liao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Yaqiong Fan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiaolin Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Yifan Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Jinying Shen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Panying Mi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiaohua Huang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Hanwei Cao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Xiaoting Hong
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, P.R. China
| |
Collapse
|
16
|
Dai F, Du YT, Zheng YL, Zhou B. A promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as a potent prooxidative anti-melanoma agent. Free Radic Biol Med 2019; 130:489-498. [PMID: 30458279 DOI: 10.1016/j.freeradbiomed.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Developing anti-melanoma agents with increased activity and specificity is highly desirable due to the increasing incidence, highly metastatic malignancy, and high mortality rate of melanoma. Abnormal redox characteristics such as higher levels of tyrosinase, NAD(P)H: quinone oxidoreductase-1 (NQO1) and reactive oxygen species (ROS) observed in melanoma cells than in other cancer cells and normal cells illustrate their redox vulnerability and have opened a window for developing prooxidative anti-melanoma agents (PAAs) to target the vulnerability. However, how to design PAAs which promote selectively the ROS accumulation in melanoma cells remains a challenge. This work describes a promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as such type of PAA. This molecule is capable of constructing an efficient catalytic redox cycle with tyrosinase and NQO1 in melanoma B16F1 cells to induce selectively the ROS (mainly including hydrogen peroxide, H2O2) accumulation in the cells, resulting in highly selective suppression of melanoma B16F1 cells over tyrosinase-deficient HeLa and normal L-02 cells.
Collapse
Affiliation(s)
- Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
17
|
BCI induces apoptosis via generation of reactive oxygen species and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells. SCIENCE CHINA-LIFE SCIENCES 2018. [DOI: 10.1007/s11427-017-9191-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|