1
|
Zhou H, Balint D, Shi Q, Vartanian T, Kriegel MA, Brito I. Lupus and inflammatory bowel disease share a common set of microbiome features distinct from other autoimmune disorders. Ann Rheum Dis 2024:ard-2024-225829. [PMID: 39299726 DOI: 10.1136/ard-2024-225829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols. METHODS We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways. RESULTS Distinct microbial signatures were identified across autoimmune disorders, with notable overlaps between SLE and IBD, suggesting shared microbial underpinnings. Significant predictive biomarkers highlighted the diverse microbial influences across these conditions. Protein-protein interaction analyses revealed interactions targeting glucocorticoid signalling, antigen presentation and interleukin-12 signalling pathways, offering insights into possible common disease mechanisms. Experimental validation confirmed interactions between the host protein glucocorticoid receptor (NR3C1) and specific gut bacteria-derived proteins, which may have therapeutic implications for inflammatory disorders like SLE and IBD. CONCLUSIONS Our findings underscore the gut microbiome's critical role in autoimmune diseases, offering insights into shared and distinct microbial signatures. The study highlights the potential importance of microbial biomarkers in understanding disease mechanisms and guiding treatment strategies, paving the way for novel therapeutic approaches based on microbial profiles. TRIAL REGISTRATION NUMBER NCT02394964.
Collapse
Affiliation(s)
- Hao Zhou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Diana Balint
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, Münster, Germany
- Section of Rheumatology and Clinical Immunology, University Hospital Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ilana Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Tramonti A, Donkor AK, Parroni A, Musayev FN, Barile A, Ghatge MS, Graziani C, Alkhairi M, AlAwadh M, di Salvo ML, Safo MK, Contestabile R. Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli: a pivotal enzyme in the vitamin B6 salvage pathway. FEBS J 2023; 290:5628-5651. [PMID: 37734924 PMCID: PMC10872706 DOI: 10.1111/febs.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Akua K. Donkor
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Alessia Parroni
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Faik N. Musayev
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Mohini. S. Ghatge
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudio Graziani
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Roma, Italy
| | - Mona Alkhairi
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed AlAwadh
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Roma, Italy
| | - Martin K. Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
3
|
da Silva CVF, Bacila Sade Y, Naressi Scapin SM, da Silva-Boghossian CM, de Oliveira Santos E. Comparative proteomics of saliva of healthy and gingivitis individuals from Rio de Janeiro. Proteomics Clin Appl 2023; 17:e2200098. [PMID: 36764829 DOI: 10.1002/prca.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE In this work, we identified human and bacterial proteomes in the saliva from volunteers with gingivitis or healthy. EXPERIMENTAL DESIGN The reported population consisted of 18 volunteers (six with gingivitis and 12 healthy controls). Proteomics characterization was performed using a quantitative mass spectrometry method. RESULTS A total of 74 human and 116 bacterial proteins were identified in saliva. The major functional category that was modified in the human proteome was the immune response, followed by transport and protease inhibition. In the bacterial proteome, most of the proteins identified were from the Fusobacteria phylum, followed by Chlamydiae and Spirochaetes. CONCLUSIONS AND CLINICAL RELEVANCE We observed statistically relevant differences in the data between the groups. The 15 most important human proteins affecting the variation between case and control groups included cystatin S, alpha amylase, lactotransferrin, and negative elongation factor E. We found that bacterial proteins from Porphyromonas gingivalis and Fusobacterium nucleatum subsp. nucleatum related to the red and orange complexes were closely correlated with the occurrence of periodontal diseases.
Collapse
Affiliation(s)
- Carlos Vinicius Ferreira da Silva
- Faculdade de Ciências Biológicas e da Saúde, Universidade do Estado do Rio de Janeiro, Campus Zona Oeste (UERJ-ZO), Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Youssef Bacila Sade
- Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | | | | | - Eidy de Oliveira Santos
- Faculdade de Ciências Biológicas e da Saúde, Universidade do Estado do Rio de Janeiro, Campus Zona Oeste (UERJ-ZO), Rio de Janeiro, RJ, Brazil
- Programa da Pós-graduação em Biomedicina Translacional, Unigranrio-INMETRO-UERJ-ZO, Duque de Caxias, Brazil
| |
Collapse
|
4
|
Lu P, Dong X, Ji X. Cronobacter sakazakii Pyridoxal Kinase PdxY Mediated by TreR and pESA3 Is Essential for Vitamin B 6 (PLP) Maintenance and Virulence. Appl Environ Microbiol 2023; 89:e0092423. [PMID: 37458600 PMCID: PMC10467337 DOI: 10.1128/aem.00924-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 08/31/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen capable of causing severe infections, particularly in neonates. Despite the bacterium's strong pathogenicity, the pathogenicity of C. sakazakii is not yet well understood. Using a comparative proteomic profiling approach, we successfully identified pdxY, encoding a pyridoxal kinase involved in the recycling of pyridoxal 5'-phosphate (PLP), as a gene essential for the successful pathogenesis of C. sakazakii. Knocking out the pdxY gene resulted in slower growth and reduced virulence. Our study sheds light on the fundamental importance of pyridoxal kinase for the survival and virulence of C. sakazakii. The identification of pdxY as gene essential for successful pathogenesis provides a potential target for the development of new antibiotic treatments. IMPORTANCE The opportunistic pathogen Cronobacter sakazakii is known to cause severe infections, particularly in neonates, and can result in high mortality rates. In this study, we used a comparative proteomic profiling approach to identify genes essential for the successful pathogenesis of C. sakazakii. We successfully identified pdxY, encoding a pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate (PLP), as a gene essential for the successful pathogenesis of C. sakazakii. Knocking out the pdxY gene resulted in impaired growth and reduced virulence. This study sheds light on the fundamental importance of pyridoxal kinase for the survival and virulence of C. sakazakii, which can be a potential target for the development of new antibiotic treatments. This study highlights the importance of comparative proteomic profiling in identifying virulence factors that can be targeted for the development of new antibiotics.
Collapse
Affiliation(s)
- Ping Lu
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xiaoli Dong
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xuemeng Ji
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Swanepoel S, Visser EA, Shuey LS, Naidoo S. The In Planta Gene Expression of Austropuccinia psidii in Resistant and Susceptible Eucalyptus grandis. PHYTOPATHOLOGY 2023; 113:1066-1076. [PMID: 36611233 DOI: 10.1094/phyto-07-22-0257-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Austropuccinia psidii, commonly known as myrtle rust, is an obligate, biotrophic rust pathogen that causes rust disease in a broad host range of Myrtaceae species. Eucalyptus grandis, a widely cultivated hardwood Myrtaceae species, is susceptible to A. psidii infection, with this pathogen threatening both their natural range and various forest plantations across the world. This study aimed to investigate the A. psidii transcriptomic responses in resistant and susceptible E. grandis at four time points. RNA-seq reads were mapped to the A. psidii reference genome to quantify expressed genes at 12 h postinoculation and 1, 2, and 5 days postinoculation (dpi). A total of eight hundred and ninety expressed genes were found, of which 43 were candidate effector protein genes. These included rust transferred protein 1 (RTP1), expressed in susceptible hosts at 5 dpi, and a hydrolase protein gene expressed in both resistant and susceptible hosts over time. Functional categorization of expressed genes revealed processes enriched in susceptible hosts, including malate metabolic and malate dehydrogenase activity, implicating oxalic acid in disease susceptibility. These results highlight putative virulence or pathogenicity mechanisms employed by A. psidii to cause disease, and they provide the first insight into the molecular responses of A. psidii in E. grandis over time.
Collapse
Affiliation(s)
- Shae Swanepoel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - Louise S Shuey
- Department of Agriculture and Fisheries, Queensland Government, Australia
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| |
Collapse
|
6
|
Taylor M, Janasky L, Vega N. Convergent structure with divergent adaptations in combinatorial microbiome communities. FEMS Microbiol Ecol 2022; 98:6726631. [PMID: 36170949 DOI: 10.1093/femsec/fiac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Adaptation of replicate microbial communities frequently produces shared trajectories of community composition and structure. However, divergent adaptation of individual community members can occur and is associated with community-level divergence. The extent to which community-based adaptation of microbes should be convergent when community members are similar but not identical is, therefore, not well-understood. In these experiments, adaptation of combinatorial minimal communities of bacteria with the model host Caenorhabditis elegans produces structurally similar communities over time, but with divergent adaptation of member taxa and differences in community-level resistance to invasion. These results indicate that community-based adaptation from taxonomically similar starting points can produce compositionally similar communities that differ in traits of member taxa and in ecological properties.
Collapse
Affiliation(s)
- Megan Taylor
- Biology Department, Emory University, Atlanta, GA, 30322, United States
| | - Lili Janasky
- Biology Department, Emory University, Atlanta, GA, 30322, United States
| | - Nic Vega
- Biology Department, Emory University, Atlanta, GA, 30322, United States.,Physics Department, Emory University, Atlanta, GA, 30322, United States
| |
Collapse
|
7
|
Zhang L, Zhao F, Xu H, Chen Y, Qi C, Liu J. HtrA of Actinobacillus pleuropneumoniae is a virulence factor that confers resistance to heat shock and oxidative stress. Gene 2022; 841:146771. [PMID: 35905850 DOI: 10.1016/j.gene.2022.146771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, which is a severe and often fatal disease that results in significant economic loss. The means by which A. pleuropneumoniae survives within the host are not clear. High temperature requirement A (HtrA) proteases have been shown to affect cell viability during stressful conditions and are virulence factors in many bacterial species. In this study, we examined the biological role of HtrA during A. pleuropneumoniae infection by analyzing the impact of htrA mutation on virulence-associated phenotypes. We found that htrA mutation had a dramatic impact on stress tolerance. The htrA mutant (ΔhtrA) displayed a lethal phenotype at elevated temperature (42°C). Further, ΔhtrA exhibited increased susceptibility to H2O2-induced oxidative stress when compared to the parental strain (SLW01) and a complementation strain (ΔhtrA-Compl). Animal infection assays demonstrated that absence of HtrA led to decreased in vivo colonization ability, and ΔhtrA is less virulent in pigs relative to SLW01. Furthermore, pig competitive infection assays demonstrated fewer blood associated CFUs with ΔhtrA infection than with SLW01. These results demonstrate HtrA plays a significant role in the survival and growth of A. pleuropneumoniae during stressful conditions, and that immune escape and invasiveness are important to the process of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Fan Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Huan Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yubing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
8
|
Wang Y, Zhao Y, Xia L, Chen L, Liao Y, Chen B, Liu Y, Gong W, Tian Y, Hu B. yggS Encoding Pyridoxal 5'-Phosphate Binding Protein Is Required for Acidovorax citrulli Virulence. Front Microbiol 2022; 12:783862. [PMID: 35087487 PMCID: PMC8787154 DOI: 10.3389/fmicb.2021.783862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial fruit blotch, caused by seed-borne pathogen Acidovorax citrulli, poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco. The disrupted gene in this mutant was determined to be Aave_0638, which is predicted to encode a YggS family pyridoxal phosphate-dependent enzyme. YggS is a highly conserved protein among multiple organisms, and is responsible for maintaining the homeostasis of pyridoxal 5′-phosphate and amino acids in cells. yggS deletion mutant of A. citrulli strain XjL12 displayed attenuated virulence, delayed hypersensitive response, less tolerance to H2O2 and pyridoxine, increased sensitivity to antibiotic β-chloro-D-alanine, and reduced swimming. In addition, RNA-Seq analysis demonstrated that yggS was involved in regulating the expression of certain pathogenicity-associated genes related to secretion, motility, quorum sensing and oxidative stress response. Importantly, YggS significantly affected type III secretion system and its effectors in vitro. Collectively, our results suggest that YggS is indispensable for A.citrulli virulence and expands the role of YggS in the biological processes.
Collapse
Affiliation(s)
- Yuanjie Wang
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing, China
| | - Liming Xia
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Lin Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yiyang Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Weirong Gong
- Plant Protection and Quarantine Station of Province, Nanjing, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Zhao T, Chen J, Liu S, Yang J, Wu J, Miao L, Sun W. Transcriptome analysis of Fusobacterium nucleatum reveals differential gene expression patterns in the biofilm versus planktonic cells. Biochem Biophys Res Commun 2022; 593:151-157. [PMID: 35085920 DOI: 10.1016/j.bbrc.2021.11.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
As a chronic infectious disease, periodontitis can cause gum recession, loss of alveolar bone, loosening of teeth, and even loss of teeth. Dental plaque biofilm is the initiating factor for the occurrence and development of periodontitis. Fusobacterium nucleatum (F. nucleatum) plays a vital role in the structure and ecology of dental plaque biofilms. It is a bridge between early and late colonization bacteria in dental plaque. Understanding the molecular mechanism of F. nucleatum during biofilm development is essential to control periodontitis. This study aimed to determine gene expression profiles of the F. nucleatum strain, ATCC 25586, in the planktonic and biofilm phase through RNA-sequencing approach. The results were confirmed by quantitative reverse transcriptase PCR (RT-qPCR). The results clearly illustrate the difference in gene expression of F. nucleatum under planktonic and biofilms. A total of 110 genes were differentially expressed by F. nucleatum in the biofilm state compared with the planktonic state. The 25 upregulated genes in the biofilm state were mainly related to carbohydrate and amino acid metabolism, while the 85 downregulated genes were primarily associated with cell growth, division, and oxidative stress; most of the upregulated genes of F. nucleatum involved in virulence and oral malodor. Furthermore, the transcriptome analysis and antibacterial activity test also identified Lysine might exhibit the antibacterial and antibiofilm activity of F. nucleatum for the first time. These new findings could provide caveats for future studies on the regulation and maintenance of plaque biofilm and the development of biomarkers for periodontitis.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiaqi Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Shuai Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
10
|
Pan C, Zimmer A, Shah M, Huynh MS, Lai CCL, Sit B, Hooda Y, Curran DM, Moraes TF. Actinobacillus utilizes a binding protein-dependent ABC transporter to acquire the active form of vitamin B 6. J Biol Chem 2021; 297:101046. [PMID: 34358566 PMCID: PMC8427247 DOI: 10.1016/j.jbc.2021.101046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Bacteria require high-efficiency uptake systems to survive and proliferate in nutrient-limiting environments, such as those found in host organisms. ABC transporters in the bacterial plasma membrane provide a mechanism for transport of many substrates. In this study, we examine an operon containing a periplasmic binding protein in Actinobacillus for its potential role in nutrient acquisition. The electron density map of 1.76 Å resolution obtained from the crystal structure of the periplasmic binding protein was best fit with a molecular model containing a pyridoxal-5'-phosphate (P5P/pyridoxal phosphate/the active form of vitamin B6) ligand within the protein's binding site. The identity of the P5P bound to this periplasmic binding protein was verified by isothermal titration calorimetry, microscale thermophoresis, and mass spectrometry, leading us to name the protein P5PA and the operon P5PAB. To illustrate the functional utility of this uptake system, we introduced the P5PAB operon from Actinobacillus pleuropneumoniae into an Escherichia coli K-12 strain that was devoid of a key enzyme required for P5P synthesis. The growth of this strain at low levels of P5P supports the functional role of this operon in P5P uptake. This is the first report of a dedicated P5P bacterial uptake system, but through bioinformatics, we discovered homologs mainly within pathogenic representatives of the Pasteurellaceae family, suggesting that this operon exists more widely outside the Actinobacillus genus.
Collapse
Affiliation(s)
- Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Zimmer
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minh Sang Huynh
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Brandon Sit
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yogesh Hooda
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David M Curran
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Nahar N, Turni C, Tram G, Blackall PJ, Atack JM. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. Adv Microb Physiol 2021; 78:179-216. [PMID: 34147185 DOI: 10.1016/bs.ampbs.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is responsible for high economic losses in swine herds across the globe. Pleuropneumonia is characterized by severe respiratory distress and high mortality. The knowledge about the interaction between bacterium and host within the porcine respiratory tract has improved significantly in recent years. A. pleuropneumoniae expresses multiple virulence factors, which are required for colonization, immune clearance, and tissue damage. Although vaccines are used to protect swine herds against A. pleuropneumoniae infection, they do not offer complete coverage, and often only protect against the serovar, or serovars, used to prepare the vaccine. This review will summarize the role of individual A. pleuropneumoniae virulence factors that are required during key stages of pathogenesis and disease progression, and highlight progress made toward developing effective and broadly protective vaccines against an organism of great importance to global agriculture and food production.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
12
|
Zheng W, Chen K, Fang S, Cheng X, Xu G, Yang L, Wu J. Construction and Application of PLP Self-sufficient Biocatalysis System for Threonine Aldolase. Enzyme Microb Technol 2020; 141:109667. [PMID: 33051017 DOI: 10.1016/j.enzmictec.2020.109667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023]
Abstract
A number of organic synthesis involve threonine aldolase (TA), a pyridoxal phosphate (PLP)-dependent enzyme. Although the addition of exogenous PLP is necessary for the reactions, it increases the cost and complicates the purification of the product. This work constructed a PLP self-sufficient biocatalysis system for TA, which included an improvement of the intracellular PLP level and co-immobilization of TA with PLP. Engineered strain BL-ST was constructed by introducing PLP synthase PdxS/T to Escherichia coli BL21(ED3). The intracellular PLP concentration of the strain increased approximately fivefold to 48.5 μmol/gDCW. l-TA, from Bacillus nealsonii (BnLTA), was co-expressed in the strain BL-ST with PdxS/T, resulting in the engineered strain BL-BnLTA-ST. Compared with the control strain BL-BnLTA (254.1 U/L), the enzyme activity of the strain BL-BnLTA-ST reached 1518.4 U/L without the addition of exogenous PLP. An efficient co-immobilization system was then designed. The epoxy resin LX-1000HFA wrapped by polyethyleneimine (PEI) acted as a carrier to immobilize the crude enzyme solution of the strain BL-BnLTA-ST mixed with an extra 100 μM of exogenous PLP, resulting in the catalyst HFAPEI-BnLTA-STPLP 100. HFAPEI-BnLTA-STPLP 100 exhibited a half-life of approximately 450 h, and the application of the catalyst in the continuous biosynthesis of 3-[4-(methylsulfonyl) phenyl] serine had more than 180 batch reactions (>60%conv) without the extra addition of exogenous PLP. The excellent compatibility and stability of the system were further confirmed by other TAs. This work introduced a PLP self-sufficient biocatalysis system that can reduce the cost of PLP and contribute to the industrial application of TA. In addition, the system may also be applied in other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Wenlong Zheng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaitong Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Fang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiuli Cheng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, China.
| |
Collapse
|
13
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|
14
|
Lee JH, Jeong H, Kim Y, Lee HS. Corynebacterium glutamicum whiA plays roles in cell division, cell envelope formation, and general cell physiology. Antonie van Leeuwenhoek 2019; 113:629-641. [DOI: 10.1007/s10482-019-01370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
|
15
|
Castro-Severyn J, Pardo-Esté C, Sulbaran Y, Cabezas C, Gariazzo V, Briones A, Morales N, Séveno M, Decourcelle M, Salvetat N, Remonsellez F, Castro-Nallar E, Molina F, Molina L, Saavedra CP. Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study. Front Microbiol 2019; 10:2161. [PMID: 31611848 PMCID: PMC6775490 DOI: 10.3389/fmicb.2019.02161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yoelvis Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alan Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Mathilde Decourcelle
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | | | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
16
|
Liu J, Cao Y, Gao L, Zhang L, Gong S, Yang J, Zhao H, Yang D, Zhao J, Meng J, Gao Q, Qi C. Outer Membrane Lipoprotein Lip40 Modulates Adherence, Colonization, and Virulence of Actinobacillus pleuropneumoniae. Front Microbiol 2018; 9:1472. [PMID: 30018613 PMCID: PMC6038445 DOI: 10.3389/fmicb.2018.01472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Bacterial lipoproteins are a set of membrane proteins with various functions; many of which are virulence factors of pathogenic bacteria. In the present study, we investigated the role of an outer membrane lipoprotein Lip40 in the pathogenesis of Actinobacillus pleuropneumoniae. A mutant strain (Δlip40) lacking Lip40 and a complemented strain (CΔlip40) were constructed. Δlip40 exhibited reduced adherence to the St. Jude porcine lung cells. The ability of the Δlip40 mutant to colonize the mouse lung tissues was significantly impaired compared to that of the wild type and complementation strains. Furthermore, an infection assay revealed that pigs infected with Δlip40 showed fewer clinical signs and lung lesions, indicating that Lip40 contributed to the development of porcine pleuropneumonia. Collectively, our data suggest that Lip40 is involved in the virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yurou Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lulu Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Siying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jihong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Dengfu Yang
- Lichuan Municipal Bureau of Animal Husbandry and Veterinary Medicine, Lichuan, China
| | - Jin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jianzhong Meng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Qishuang Gao
- Department of Animal Biotechnology and Cell Engineering, Wuhan Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|