1
|
Palir N, Stajnko A, Mazej D, France Štiglic A, Rosolen V, Mariuz M, Ronfani L, Snoj Tratnik J, Runkel AA, Tursunova V, Marc J, Prpić I, Špirić Z, Barbone F, Horvat M, Falnoga I. Maternal APOE ε2 as a possible risk factor for elevated prenatal Pb levels. ENVIRONMENTAL RESEARCH 2024; 260:119583. [PMID: 38992759 DOI: 10.1016/j.envres.2024.119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Lead (Pb) is a global contaminant associated with multiple adverse health effects. Humans are especially vulnerable during critical developmental stages. During pregnancy, exposure to Pb can occur through diet and release from maternal bones. Apolipoprotein E gene (APOE) variants (ɛ2, ɛ3, ɛ4 alleles) may influence sex steroid hormones, bone metabolism, and Pb kinetics. We examined the interplay among maternal APOE (mAPOE) genotypes, fetal sex, parity, and Pb in maternal and cord blood (mB-Pb, CB-Pb) using linear regression models. Our study involved 817 pregnant women and 772 newborns with measured adequate levels of zinc and selenium. We compared carriers of the ε2 and ε4 alleles to those with the ε3/ε3 genotype. The geometric means (range) of mB-Pb and CB-Pb were 11.1 (3.58-87.6) and 9.31 (1.82-47.0) ng/g, respectively. In cases with female fetuses, the maternal mAPOE ε2 allele was associated with higher, while the mAPOE ε4 allele was associated with lower mB-Pb and CB-Pb levels. Nulliparity increased the strength of the observed associations. These findings highlight the significance of mAPOE genetics, fetal sex, and parity in prenatal Pb kinetics. Notably, the maternal ε2 allele may increase the risk of Pb exposure.
Collapse
Affiliation(s)
- Neža Palir
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Alenka France Štiglic
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34124, Trieste, Italy
| | - Marika Mariuz
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34124, Trieste, Italy
| | - Luca Ronfani
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | | | - Janja Marc
- Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Pediatrics, University Hospital Centre Rijeka, 51000, Rijeka, Croatia; Faculty of Medicine, University of Rijeka, 51000, Rijeka, Croatia
| | | | - Fabio Barbone
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34124, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129, Trieste, Italy
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Fevereiro-Martins M, Santos AC, Marques-Neves C, Bicho M, Guimarães H. Retinopathy of Prematurity in Eight Portuguese Neonatal Intensive Care Units: Incidence, Risk Factors, and Progression-A Prospective Multicenter Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1154. [PMID: 39457121 PMCID: PMC11505647 DOI: 10.3390/children11101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND/OBJECTIVES Retinopathy of prematurity (ROP) is a retinal neovascular disease affecting preterm infants. Identifying risk factors for its development and progression is critical for effective screening and prevention. This study aimed to analyze the incidence of ROP and identify key risk factors for its development and progression. METHODS We conducted a prospective, observational cohort study on 455 neonates (gestational age [GA] < 32 weeks or birth weight < 1500 g) across eight Portuguese NICUs. RESULTS ROP incidence was 37.8%, with 4.6% requiring treatment. Multivariate analysis identified low GA and the number of red blood cell (RBC) transfusions as significant factors for ROP development and progression. After adjusting for these variables, platelet transfusions, high maximum fraction of inspired oxygen (FiO2) in the second week, and surfactant use remained significantly associated with ROP development, while early and late sepsis, maternal chronic hypertension, and delayed enteral nutrition were associated with progression to ROP requiring treatment. CONCLUSIONS These findings underscore the importance of addressing low GAs and adult RBC transfusions in ROP risk management and suggest that maximum FiO2, platelet transfusions, and sepsis also play crucial roles. Larger studies are needed to validate these results and explore preventive interventions, particularly regarding the impact of multiple adult RBC transfusions on fetal hemoglobin percentages.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Institute for Scientific Research Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
- Department of Ophthalmology, Cuf Descobertas Hospital, Rua Mário Botas, 1998-018 Lisboa, Portugal
| | - Ana Carolina Santos
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carlos Marques-Neves
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Center for the Study of Vision Sciences, University Ophthalmology Clinic, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisboa, Portugal
| | - Manuel Bicho
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Institute for Scientific Research Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
| | - Hercília Guimarães
- Department of Gynecology—Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | |
Collapse
|
3
|
Richardson BS, Rajagopaul A, de Vrijer B, Eastabrook G, Regnault TRH. Fetal sex impacts birth to placental weight ratio and umbilical cord oxygen values with implications for regulatory mechanisms. Biol Sex Differ 2022; 13:35. [PMID: 35768846 PMCID: PMC9245359 DOI: 10.1186/s13293-022-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Background We determined the effect of fetal sex on birth/placental weight and umbilical vein and artery oxygen values with implications for placental efficiency and regulatory mechanisms underlying fetal–placental growth differences.
Methods A hospital database was used to obtain birth/placental weight, cord PO2 and other information on patients delivering between Jan 1, 1990 and Jun 15, 2011 with GA > 34 weeks (N = 69,836). Oxygen saturation was calculated from the cord PO2 and pH data, while fractional O2 extraction was calculated from the oxygen saturation data. The effect of fetal sex on birth/placental weight, cord PO2, O2 saturation, and fractional O2 extraction was examined in all patients adjusting for pregnancy and labor/delivery covariates, and in a subset of low-risk patients. Results Birth/placental weights were lower in females indicating decreased placental efficiency. Umbilical vein oxygen values were higher in females attributed to increased uterine blood flow, while artery oxygen values were lower in females attributed to decreased hemoglobin and umbilical blood flow, and increased oxygen consumption. Fetal O2 extraction was increased in females confirming increased O2 consumption relative to delivery. Conclusions Sex-related differences in uterine/umbilical blood flows, placental development, and fetal O2 consumption can be linked to the differences observed in cord oxygen. The lower umbilical artery oxygen in females as a measure of systemic oxygenation signaling growth could account for their decreased birth weights, while slower development in female placentae could account for their lower placental weights, which could be differentially effected contributing to their lower birth/placental weights. Birth/placental wt is decreased in females as a measure of placental efficiency. Cord vein O2 is increased in females as a measure of placental O2 transport. Cord artery O2 is decreased in females as a measure of fetal systemic O2 levels. Sex differences in placental development link to cord O2-birth/placental wt findings.
Collapse
Affiliation(s)
- Bryan S Richardson
- Department of Obstetrics and Gynecology, Western University, London, Canada. .,Department of Physiology and Pharmacology, Western University, London, Canada. .,Department of Pediatrics, Western University, London, Canada. .,Children's Health Research Institute, London, Canada. .,Department of Obstetrics and Gynecology, London Health Sciences Centre, Victoria Hospital, 800 Commissioners Road E, London, ON, N6A 5W9, Canada.
| | - Akasham Rajagopaul
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynecology, Western University, London, Canada.,Children's Health Research Institute, London, Canada
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynecology, Western University, London, Canada.,Children's Health Research Institute, London, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology, Western University, London, Canada.,Department of Physiology and Pharmacology, Western University, London, Canada.,Children's Health Research Institute, London, Canada
| |
Collapse
|
4
|
Boutet ML, Youssef L, Erlandsson L, Hansson E, Manau D, Crispi F, Casals G, Hansson SR. Differential concentrations of maternal and fetal hemopexin and α1-microglobulin in preeclampsia from IVF pregnancies depending on the presence of corpus luteum at embryo transfer. Reprod Biomed Online 2022; 45:135-145. [DOI: 10.1016/j.rbmo.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
|
5
|
Elrefaei A, Zakarya A, Abdel Motaal A, Assem A. Fetal hemoglobin as a predictor in cases of pre-eclampsia. AL-AZHAR ASSIUT MEDICAL JOURNAL 2022. [DOI: 10.4103/azmj.azmj_113_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Erlandsson L, Masoumi Z, Hansson LR, Hansson SR. The roles of free iron, heme, haemoglobin, and the scavenger proteins haemopexin and alpha-1-microglobulin in preeclampsia and fetal growth restriction. J Intern Med 2021; 290:952-968. [PMID: 34146434 DOI: 10.1111/joim.13349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a complex pregnancy syndrome characterised by maternal hypertension and organ damage after 20 weeks of gestation and is associated with an increased risk of cardiovascular disease later in life. Extracellular haemoglobin (Hb) and its metabolites heme and iron are highly toxic molecules and several defence mechanisms have evolved to protect the tissue. OBJECTIVES We will discuss the roles of free iron, heme, Hb, and the scavenger proteins haemopexin and alpha-1-microglobulin in pregnancies complicated by PE and fetal growth restriction (FGR). CONCLUSION In PE, oxidative stress causes syncytiotrophoblast (STB) stress and increased shedding of placental STB-derived extracellular vesicles (STBEV). The level in maternal circulation correlates with the severity of hypertension and supports the involvement of STBEVs in causing maternal symptoms in PE. In PE and FGR, iron homeostasis is changed, and iron levels significantly correlate with the severity of the disease. The normal increase in plasma volume taking place during pregnancy is less for PE and FGR and therefore have a different impact on, for example, iron concentration, compared to normal pregnancy. Excess iron promotes ferroptosis is suggested to play a role in trophoblast stress and lipotoxicity. Non-erythroid α-globin regulates vasodilation through the endothelial nitric oxide synthase pathway, and hypoxia-induced α-globin expression in STBs in PE placentas is suggested to contribute to hypertension in PE. Underlying placental pathology in PE with and without FGR might be amplified by iron and heme overload causing oxidative stress and ferroptosis. As the placenta becomes stressed, the release of STBEVs increases and affects the maternal vasculature.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lucas R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Obstetrics and Gynecology, Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
7
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Hypoxia-Induced Alpha-Globin Expression in Syncytiotrophoblasts Mimics the Pattern Observed in Preeclamptic Placentas. Int J Mol Sci 2021; 22:ijms22073357. [PMID: 33806017 PMCID: PMC8036899 DOI: 10.3390/ijms22073357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy disorder associated with placental dysfunction and elevated fetal hemoglobin (HbF). Early in pregnancy the placenta harbors hematopoietic stem and progenitor cells (HSPCs) and is an extramedullary source of erythropoiesis. However, globin expression is not unique to erythroid cells and can be triggered by hypoxia. To investigate the role of the placenta in increasing globin levels previously reported in PE, flow cytometry, histological and immunostaining and in situ analyses were used on placenta samples and ex vivo explant cultures. Our results indicated that in PE pregnancies, placental HSPC homing and erythropoiesis were not affected. Non-erythroid alpha-globin mRNA and protein, but not gamma-globin, were detected in syncytiotrophoblasts and stroma of PE placenta samples. Similarly, alpha-globin protein and mRNA were upregulated in normal placenta explants cultured in hypoxia. The upregulation was independent of HIF1 and NRF2, the two main candidates of globin transcription in non-erythroid cells. Our study is the first to demonstrate alpha-globin mRNA expression in syncytiotrophoblasts in PE, induced by hypoxia. However, gamma-globin was only expressed in erythrocytes. We conclude that alpha-globin, but not HbF, is expressed in placental syncytiotrophoblasts in PE and may contribute to the pathology of the disease.
Collapse
|
9
|
Kristiansson A, Gram M, Flygare J, Hansson SR, Åkerström B, Storry JR. The Role of α 1-Microglobulin (A1M) in Erythropoiesis and Erythrocyte Homeostasis-Therapeutic Opportunities in Hemolytic Conditions. Int J Mol Sci 2020; 21:ijms21197234. [PMID: 33008134 PMCID: PMC7582998 DOI: 10.3390/ijms21197234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
α1-microglobulin (A1M) is a small protein present in vertebrates including humans. It has several physiologically relevant properties, including binding of heme and radicals as well as enzymatic reduction, that are used in the protection of cells and tissue. Research has revealed that A1M can ameliorate heme and ROS-induced injuries in cell cultures, organs, explants and animal models. Recently, it was shown that A1M could reduce hemolysis in vitro, observed with several different types of insults and sources of RBCs. In addition, in a recently published study, it was observed that mice lacking A1M (A1M-KO) developed a macrocytic anemia phenotype. Altogether, this suggests that A1M may have a role in RBC development, stability and turnover. This opens up the possibility of utilizing A1M for therapeutic purposes in pathological conditions involving erythropoietic and hemolytic abnormalities. Here, we provide an overview of A1M and its potential therapeutic effect in the context of the following erythropoietic and hemolytic conditions: Diamond-Blackfan anemia (DBA), 5q-minus myelodysplastic syndrome (5q-MDS), blood transfusions (including storage), intraventricular hemorrhage (IVH), preeclampsia (PE) and atherosclerosis.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden;
- Correspondence:
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 84 Lund, Sweden;
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden;
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Jill R. Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden;
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, 221 85 Lund, Sweden
| |
Collapse
|
10
|
Wittenmeier E, Lesmeister L, Schmidtmann I, Lotz J, Dette F, Mildenberger E. [Comparison of the Accuracy of the Measurement of Fetal Hemoglobin by Blood Gas Analysis and by Laboratory Gold Standard: a Prospective Diagnostic Study]. Z Geburtshilfe Neonatol 2020; 225:257-261. [PMID: 32992404 DOI: 10.1055/a-1250-9072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND In neonatologic clinical practice and research the percentage of fetal hemoglobin (HbF) of total hemoglobin can be of interest. Blood gas analyzers offer the measurement of HbF. However, it is not known if results are accurate enough to apply in clinical decision-making or scientific questions. In this prospective diagnostic study, we examined the accuracy of HbF measurement by a blood gas analyzer. METHODS On a neonatal intensive care and neonatal ward, the percentage of HbF was measured using both the laboratory gold standard (HbFlab, reference method) and the blood gas analyzer (HbFgas) (ABL 800 Flex, Radiometer). Agreement of HbFlab and HbFgas was assessed by the Bland-Altman method including bias and limits of agreement and by calculation of the root mean square error (RMSE). RESULTS Thirty-five measurements in 23 term and preterm infants with a median body weight of 2190 g (min-max 967-3800 g) and a median postmenstrual age of 36+1 weeks (min-max 29+6-43+2) were performed. The Bland-Altman diagram for the measurement of HbF(gas) versus HbF(lab) shows an overestimation of HbF by the blood gas analyzer (bias 9.3%, limits of agreement 1 to 17.6%). RMSE was 10.2%; 45.7% of HbFgas measurements were >10% out of range from HbFlab. There was no influence of age, body temperature or oxygen saturation on the bias (p=0,132; p=0,194; p=0,970), but bias increased with increasing HbFlab (Pearson correlation r=0,426; p=0,011). CONCLUSION The measurement of HbF in term and preterm infants by a blood gas analyzer lacked sufficient agreement with that of the reference method to recommend this application for clinical decision-making or scientific purposes.
Collapse
Affiliation(s)
- Eva Wittenmeier
- Abteilung für Klinische Anästhesie, Klinik für Anästhesiologie, Universitätsmedizin Mainz, Mainz
| | - Linda Lesmeister
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln, Köln
| | - Irene Schmidtmann
- Abteilung für Biometrie, Institut für Medizinische Biometrie, Epidemiologie und Informatik, Universitätsmedizin Mainz, Mainz
| | - Johannes Lotz
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Mainz, Mainz
| | - Frank Dette
- Abteilung für Klinische Anästhesie, Klinik für Anästhesiologie, Universitätsmedizin Mainz, Mainz
| | - Eva Mildenberger
- Sektion Neonatologie, Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Mainz, Mainz
| |
Collapse
|
11
|
Youssef L, Erlandsson L, Åkerström B, Miranda J, Paules C, Crovetto F, Crispi F, Gratacos E, Hansson SR. Hemopexin and α1-microglobulin heme scavengers with differential involvement in preeclampsia and fetal growth restriction. PLoS One 2020; 15:e0239030. [PMID: 32915914 PMCID: PMC7485876 DOI: 10.1371/journal.pone.0239030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Hemopexin and α1-microglobulin act as scavengers to eliminate free heme-groups responsible for hemoglobin-induced oxidative stress. The present study evaluated maternal and fetal plasma concentrations of these scavengers in the different phenotypes of placenta-mediated disorders. Singleton pregnancies with normotensive fetal growth restriction [FGR] (n = 47), preeclampsia without FGR (n = 45) and preeclampsia with FGR (n = 51) were included prospectively as well as uncomplicated pregnancies (n = 49). Samples were collected at delivery and ELISA analysis was applied to measure the hemopexin and α1-microglobulin concentrations. In maternal blood in preeclampsia with and without FGR, hemopexin was significantly lower (p = 0.003 and p<0.001, respectively) and α1-microglobulin was significantly higher (p<0.001 in both) whereas no difference existed in normotensive FGR mothers compared to controls. In contrast, in fetal blood in growth restricted fetuses with and without preeclampsia, both hemopexin and α1-microglobulin were significantly lower (p<0.001 and p = 0.001 for hemopexin, p = 0.016 and p = 0.013 for α1-microglobulin, respectively) with no difference in fetuses from preeclampsia without FGR in comparison to controls. Thus, hemopexin and α1-microglobulin present significantly altered concentrations in maternal blood in the maternal disease -preeclampsia- and in cord blood in the fetal disease -FGR-, which supports their differential role in placenta-mediated disorders in accordance with the clinical presentation of these disorders.
Collapse
Affiliation(s)
- Lina Youssef
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- * E-mail: ,
| | - Lena Erlandsson
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bo Åkerström
- Section of infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jezid Miranda
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Cristina Paules
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Fatima Crispi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Eduard Gratacos
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Stefan R. Hansson
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
12
|
Broere-Brown ZA, Adank MC, Benschop L, Tielemans M, Muka T, Gonçalves R, Bramer WM, Schoufour JD, Voortman T, Steegers EAP, Franco OH, Schalekamp-Timmermans S. Fetal sex and maternal pregnancy outcomes: a systematic review and meta-analysis. Biol Sex Differ 2020; 11:26. [PMID: 32393396 PMCID: PMC7216628 DOI: 10.1186/s13293-020-00299-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Since the placenta also has a sex, fetal sex–specific differences in the occurrence of placenta-mediated complications could exist. Objective To determine the association of fetal sex with multiple maternal pregnancy complications. Search strategy Six electronic databases Ovid MEDLINE, EMBASE, Cochrane Central, Web-of-Science, PubMed, and Google Scholar were systematically searched to identify eligible studies. Reference lists of the included studies and contact with experts were also used for identification of studies. Selection criteria Observational studies that assessed fetal sex and the presence of maternal pregnancy complications within singleton pregnancies. Data collection and analyses Data were extracted by 2 independent reviewers using a predesigned data collection form. Main results From 6522 original references, 74 studies were selected, including over 12,5 million women. Male fetal sex was associated with term pre-eclampsia (pooled OR 1.07 [95%CI 1.06 to 1.09]) and gestational diabetes (pooled OR 1.04 [1.02 to 1.07]). All other pregnancy complications (i.e., gestational hypertension, total pre-eclampsia, eclampsia, placental abruption, and post-partum hemorrhage) tended to be associated with male fetal sex, except for preterm pre-eclampsia, which was more associated with female fetal sex. Overall quality of the included studies was good. Between-study heterogeneity was high due to differences in study population and outcome definition. Conclusion This meta-analysis suggests that the occurrence of pregnancy complications differ according to fetal sex with a higher cardiovascular and metabolic load for the mother in the presence of a male fetus. Funding None.
Collapse
Affiliation(s)
- Zoe A Broere-Brown
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, the Netherlands.,Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maria C Adank
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, the Netherlands.,Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Laura Benschop
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, the Netherlands.,Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Myrte Tielemans
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Romy Gonçalves
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, the Netherlands.,Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Josje D Schoufour
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Hogeschool van Amsterdam (HvA), Amsterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Sarah Schalekamp-Timmermans
- Department of Obstetrics and Gynecology, Erasmus Medical Center, Rotterdam, the Netherlands. .,Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Preeclampsia is Associated with Sex-Specific Transcriptional and Proteomic Changes in Fetal Erythroid Cells. Int J Mol Sci 2019; 20:ijms20082038. [PMID: 31027199 PMCID: PMC6514549 DOI: 10.3390/ijms20082038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) has been associated with placental dysfunction, resulting in fetal hypoxia, accelerated erythropoiesis, and increased erythroblast count in the umbilical cord blood (UCB). Although the detailed effects remain unknown, placental dysfunction can also cause inflammation, nutritional, and oxidative stress in the fetus that can affect erythropoiesis. Here, we compared the expression of surface adhesion molecules and the erythroid differentiation capacity of UCB hematopoietic stem/progenitor cells (HSPCs), UCB erythroid profiles along with the transcriptome and proteome of these cells between male and female fetuses from PE and normotensive pregnancies. While no significant differences were observed in UCB HSPC migration/homing and in vitro erythroid colony differentiation, the UCB HSPC transcriptome and the proteomic profile of the in vitro differentiated erythroid cells differed between PE vs. normotensive samples. Accordingly, despite the absence of significant differences in the UCB erythroid populations in male or female fetuses from PE or normotensive pregnancies, transcriptional changes were observed during erythropoiesis, particularly affecting male fetuses. Pathway analysis suggested deregulation in the mammalian target of rapamycin complex 1/AMP-activated protein kinase (mTORC1/AMPK) signaling pathways controlling cell cycle, differentiation, and protein synthesis. These results associate PE with transcriptional and proteomic changes in fetal HSPCs and erythroid cells that may underlie the higher erythroblast count in the UCB in PE.
Collapse
|