1
|
Fray D, McGovern CA, Casamatta DA, Biddanda BA, Hamsher SE. Metabarcoding reveals unique microbial mat communities and evidence of biogeographic influence in low-oxygen, high-sulfur sinkholes and springs. Ecol Evol 2024; 14:e11162. [PMID: 38529029 PMCID: PMC10961586 DOI: 10.1002/ece3.11162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
High-sulfur, low-oxygen environments formed by underwater sinkholes and springs create unique habitats populated by microbial mat communities. To explore the diversity and biogeography of these mats, samples were collected from three sites in Alpena, Michigan, one site in Monroe, Michigan, and one site in Palm Coast, Florida. Our study investigated previously undescribed eukaryotic diversity in these habitats and further explored their bacterial communities. Mat samples and water parameters were collected from sulfur spring sites during the spring, summer, and fall of 2022. Cyanobacteria and diatoms were cultured from mat subsamples to create a culture-based DNA reference library. Remaining mat samples were used for metabarcoding of the 16S and rbcL regions to explore bacterial and diatom diversity, respectively. Analyses of water chemistry, alpha diversity, and beta diversity articulated a range of high-sulfur, low-oxygen habitats, each with distinct microbial communities. Conductivity, pH, dissolved oxygen, temperature, sulfate, and chloride had significant influences on community composition but did not describe the differences between communities well. Chloride concentration had the strongest correlation with microbial community structure. Mantel tests revealed that biogeography contributed to differences between communities as well. Our results provide novel information on microbial mat composition and present evidence that both local conditions and biogeography influence these unique communities.
Collapse
Affiliation(s)
- Davis Fray
- Annis Water Resources InstituteGrand Valley State UniversityMuskegonMichiganUSA
| | | | - Dale A. Casamatta
- Department of BiologyUniversity of North FloridaJacksonvilleFloridaUSA
| | - Bopaiah A. Biddanda
- Annis Water Resources InstituteGrand Valley State UniversityMuskegonMichiganUSA
| | - Sarah E. Hamsher
- Annis Water Resources InstituteGrand Valley State UniversityMuskegonMichiganUSA
- Department of BiologyGrand Valley State UniversityAllendaleMichiganUSA
| |
Collapse
|
2
|
Lines R, Juggernauth M, Peverley G, Keating J, Simpson T, Mousavi-Derazmahalleh M, Bunce M, Berry TE, Taysom A, Bernardino AF, Whittle P. A large scale temporal and spatial environmental DNA biodiversity survey of marine vertebrates in Brazil following the Fundão tailings dam failure. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106239. [PMID: 37926039 DOI: 10.1016/j.marenvres.2023.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Seawater contains a wealth of genetic information, representing the biodiversity of numerous species residing within a particular marine habitat. Environmental DNA (eDNA) metabarcoding offers a cost effective, non-destructive method for large scale monitoring of environments, as diverse taxonomic groups are detected using metabarcoding assays. A large-scale eDNA monitoring program of marine vertebrates was conducted across three sampling seasons (Spring 2018, Autumn 2019; Spring 2019) in coastal waters of Brazil. The program was designed to investigate eDNA as a testing method for long term monitoring of marine vertebrates following the Fundão tailings dam failure in November 2015. While no baseline samples were available prior to the dam failure there is still value in profiling the taxa that use the impacted area and the trajectory of recovery. A total of 40 sites were sampled around the mouths of eight river systems, covering approximately 500 km of coastline. Metabarcoding assays targeting the mitochondrial genes 16S rRNA and COI were used to detect fish, marine mammals and elasmobranchs. We detected temporal differences between seasons and spatial differences between rivers/estuaries sampled. Overall, the largest eDNA survey in Brazil to date revealed 69 families from Class Actinopterygii (fish), 15 species from Class Chondrichthyes (sharks and rays), 4 species of marine and estuarine mammals and 23 species of conservation significance including 2 species of endangered dolphin. Our large-scale study reinforces the value eDNA metabarcoding can bring when monitoring the biodiversity of coastal environments and demonstrates the importance of collection of time-stamped environmental samples to better understand the impacts of anthropogenic activities.
Collapse
Affiliation(s)
- Rose Lines
- eDNA frontiers, Curtin University, Perth, Western Australia, Australia; Trace and Environmental DNA laboratory, Curtin University, Perth, Western Australia, Australia.
| | | | - Georgia Peverley
- eDNA frontiers, Curtin University, Perth, Western Australia, Australia
| | | | - Tiffany Simpson
- eDNA frontiers, Curtin University, Perth, Western Australia, Australia; Trace and Environmental DNA laboratory, Curtin University, Perth, Western Australia, Australia
| | - Mahsa Mousavi-Derazmahalleh
- eDNA frontiers, Curtin University, Perth, Western Australia, Australia; Trace and Environmental DNA laboratory, Curtin University, Perth, Western Australia, Australia
| | - Michael Bunce
- Trace and Environmental DNA laboratory, Curtin University, Perth, Western Australia, Australia
| | - Tina E Berry
- eDNA frontiers, Curtin University, Perth, Western Australia, Australia
| | | | - Angelo F Bernardino
- Grupo de Ecologia Bentônica, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | | |
Collapse
|
3
|
Adcock ZC, Adcock ME, Forstner MRJ. Development and validation of an environmental DNA assay to detect federally threatened groundwater salamanders in central Texas. PLoS One 2023; 18:e0288282. [PMID: 37428788 DOI: 10.1371/journal.pone.0288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The molecular detection of DNA fragments that are shed into the environment (eDNA) has become an increasingly applied tool used to inventory biological communities and to perform targeted species surveys. This method is particularly useful in habitats where it is difficult or not practical to visually detect or trap the target organisms. Central Texas Eurycea salamanders inhabit both surface and subterranean aquatic environments. Subterranean surveys are challenging or infeasible, and the detection of salamander eDNA in water samples is an appealing survey technique for these situations. Here, we develop and validate an eDNA assay using quantitative PCR for E. chisholmensis, E. naufragia, and E. tonkawae. These three species are federally threatened and constitute the Septentriomolge clade that occurs in the northern segment of the Edwards Aquifer. First, we validated the specificity of the assay in silico and with DNA extracted from tissue samples of both target Septentriomolge and non-target amphibians that overlap in distribution. Then, we evaluated the sensitivity of the assay in two controls, one with salamander-positive water and one at field sites known to be occupied by Septentriomolge. For the salamander-positive control, the estimated probability of eDNA occurrence (ψ) was 0.981 (SE = 0.019), and the estimated probability of detecting eDNA in a qPCR replicate (p) was 0.981 (SE = 0.011). For the field control, the estimated probability of eDNA occurring at a site (ψ) was 0.938 (95% CRI: 0.714-0.998). The estimated probability of collecting eDNA in a water sample (θ) was positively correlated with salamander relative density and ranged from 0.371 (95% CRI: 0.201-0.561) to 0.999 (95% CRI: 0.850- > 0.999) among sampled sites. Therefore, sites with low salamander density require more water samples for eDNA evaluation, and we determined that our site with the lowest estimated θ would require seven water samples for the cumulative collection probability to exceed 0.95. The estimated probability of detecting eDNA in a qPCR replicate (p) was 0.882 (95% CRI: 0.807-0.936), and our assay required two qPCR replicates for the cumulative detection probability to exceed 0.95. In complementary visual encounter surveys, the estimated probability of salamanders occurring at a known-occupied site was 0.905 (SE = 0.096), and the estimated probability of detecting salamanders in a visual encounter survey was 0.925 (SE = 0.052). We additionally discuss future research needed to refine this method and understand its limitations before practical application and incorporation into formal survey protocols for these taxa.
Collapse
Affiliation(s)
- Zachary C Adcock
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- Cambrian Environmental, Austin, Texas, United States of America
| | - Michelle E Adcock
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Michael R J Forstner
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| |
Collapse
|
4
|
Gold Z, Koch MQ, Schooler NK, Emery KA, Dugan JE, Miller RJ, Page HM, Schroeder DM, Hubbard DM, Madden JR, Whitaker SG, Barber PH. A comparison of biomonitoring methodologies for surf zone fish communities. PLoS One 2023; 18:e0260903. [PMID: 37314989 DOI: 10.1371/journal.pone.0260903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Surf zones are highly dynamic marine ecosystems that are subject to increasing anthropogenic and climatic pressures, posing multiple challenges for biomonitoring. Traditional methods such as seines and hook and line surveys are often labor intensive, taxonomically biased, and can be physically hazardous. Emerging techniques, such as baited remote underwater video (BRUV) and environmental DNA (eDNA) are promising nondestructive tools for assessing marine biodiversity in surf zones of sandy beaches. Here we compare the relative performance of beach seines, BRUV, and eDNA in characterizing community composition of bony (teleost) and cartilaginous (elasmobranch) fishes of surf zones at 18 open coast sandy beaches in southern California. Seine and BRUV surveys captured overlapping, but distinct fish communities with 50% (18/36) of detected species shared. BRUV surveys more frequently detected larger species (e.g. sharks and rays) while seines more frequently detected one of the most abundant species, barred surfperch (Amphistichus argenteus). In contrast, eDNA metabarcoding captured 88.9% (32/36) of all fishes observed in seine and BRUV surveys plus 57 additional species, including 15 that frequent surf zone habitats. On average, eDNA detected over 5 times more species than BRUVs and 8 times more species than seine surveys at a given site. eDNA approaches also showed significantly higher sensitivity than seine and BRUV methods and more consistently detected 31 of the 32 (96.9%) jointly observed species across beaches. The four species detected by BRUV/seines, but not eDNA were only resolved at higher taxonomic ranks (e.g. Embiotocidae surfperches and Sygnathidae pipefishes). In frequent co-detection of species between methods limited comparisons of richness and abundance estimates, highlighting the challenge of comparing biomonitoring approaches. Despite potential for improvement, results overall demonstrate that eDNA can provide a cost-effective tool for long-term surf zone monitoring that complements data from seine and BRUV surveys, allowing more comprehensive surveys of vertebrate diversity in surf zone habitats.
Collapse
Affiliation(s)
- Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - McKenzie Q Koch
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Nicholas K Schooler
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Kyle A Emery
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Henry M Page
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Donna M Schroeder
- Bureau of Ocean Energy Management, Camarillo, CA, United States of America
| | - David M Hubbard
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Jessica R Madden
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Stephen G Whitaker
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Channel Islands National Park, Ventura, CA, United States of America
| | - Paul H Barber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Merten Cruz M, Sauvage T, Chariton A, de Freitas TRO. The challenge of implementing environmental DNA metabarcoding to detect elasmobranchs in a resource-limited marine protected area. JOURNAL OF FISH BIOLOGY 2023. [PMID: 37060349 DOI: 10.1111/jfb.15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Elasmobranchs are threatened and eDNA metabarcoding is a powerful tool that can help efforts to better understand and conserve them. Nevertheless, the inter-calibration between optimal methodological practices and its implementation in resource-limited situations is still an issue. Based on promising results from recent studies, the authors applied a cost-effective protocol with parameters that could be easily replicated by any conservationist. Nonetheless, the results with fewer elasmobranchs detected than expected reveal that endorsed primers and sampling strategies still require further optimization, especially for applications in resource-limited conservation programmes.
Collapse
Affiliation(s)
- Marcelo Merten Cruz
- Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas Sauvage
- Programa de Pós-graduação em Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anthony Chariton
- School of Life Sciences, Macquarie University, Sydney, Australia
| | - Thales Renato Ochotorena de Freitas
- Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Garrett NR, Watkins J, Francis CM, Simmons NB, Ivanova N, Naaum A, Briscoe A, Drinkwater R, Clare EL. Out of thin air: surveying tropical bat roosts through air sampling of eDNA. PeerJ 2023; 11:e14772. [PMID: 37128209 PMCID: PMC10148639 DOI: 10.7717/peerj.14772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023] Open
Abstract
Understanding roosting behaviour is essential to bat conservation and biomonitoring, often providing the most accurate methods of assessing bat population size and health. However, roosts can be challenging to survey, e.g., physically impossible to access or presenting risks for researchers. Disturbance during monitoring can also disrupt natural bat behaviour and present material risks to the population such as disrupting hibernation cycles. One solution to this is the use of non-invasive monitoring approaches. Environmental (e)DNA has proven especially effective at detecting rare and elusive species particularly in hard-to-reach locations. It has recently been demonstrated that eDNA from vertebrates is carried in air. When collected in semi-confined spaces, this airborne eDNA can provide remarkably accurate profiles of biodiversity, even in complex tropical communities. In this study, we deploy novel airborne eDNA collection for the first time in a natural setting and use this approach to survey difficult to access potential roosts in the neotropics. Using airborne eDNA, we confirmed the presence of bats in nine out of 12 roosts. The identified species matched previous records of roost use obtained from photographic and live capture methods, thus demonstrating the utility of this approach. We also detected the presence of the white-winged vampire bat (Diaemus youngi) which had never been confirmed in the area but was long suspected based on range maps. In addition to the bats, we detected several non-bat vertebrates, including the big-eared climbing rat (Ototylomys phyllotis), which has previously been observed in and around bat roosts in our study area. We also detected eDNA from other local species known to be in the vicinity. Using airborne eDNA to detect new roosts and monitor known populations, particularly when species turnover is rapid, could maximize efficiency for surveyors while minimizing disturbance to the animals. This study presents the first applied use of airborne eDNA collection for ecological analysis moving beyond proof of concept to demonstrate a clear utility for this technology in the wild.
Collapse
Affiliation(s)
- Nina R. Garrett
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jonathan Watkins
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Charles M. Francis
- Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | | | - Amanda Naaum
- Nature Metrics North America Ltd., Guelph, Ontario, Canada
| | - Andrew Briscoe
- Nature Metrics Ltd., Surrey Research Park, Guildford, United Kingdom
| | - Rosie Drinkwater
- Palaeogenomics group, Department of Veterinary Sciences, Ludwig-Maximillian University Munich, Munich, Germany
| | | |
Collapse
|
7
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Jeffery NW, Lehnert SJ, Kess T, Layton KKS, Wringe BF, Stanley RR. Application of Omics Tools in Designing and Monitoring Marine Protected Areas For a Sustainable Blue Economy. Front Genet 2022; 13:886494. [PMID: 35812740 PMCID: PMC9257101 DOI: 10.3389/fgene.2022.886494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
A key component of the global blue economy strategy is the sustainable extraction of marine resources and conservation of marine environments through networks of marine protected areas (MPAs). Connectivity and representativity are essential factors that underlie successful implementation of MPA networks, which can safeguard biological diversity and ecosystem function, and ultimately support the blue economy strategy by balancing ocean use with conservation. New “big data” omics approaches, including genomics and transcriptomics, are becoming essential tools for the development and maintenance of MPA networks. Current molecular omics techniques, including population-scale genome sequencing, have direct applications for assessing population connectivity and for evaluating how genetic variation is represented within and among MPAs. Effective baseline characterization and long-term, scalable, and comprehensive monitoring are essential for successful MPA management, and omics approaches hold great promise to characterize the full range of marine life, spanning the microbiome to megafauna across a range of environmental conditions (shallow sea to the deep ocean). Omics tools, such as eDNA metabarcoding can provide a cost-effective basis for biodiversity monitoring in large and remote conservation areas. Here we provide an overview of current omics applications for conservation planning and monitoring, with a focus on metabarcoding, metagenomics, and population genomics. Emerging approaches, including whole-genome sequencing, characterization of genomic architecture, epigenomics, and genomic vulnerability to climate change are also reviewed. We demonstrate that the operationalization of omics tools can enhance the design, monitoring, and management of MPAs and thus will play an important role in a modern and comprehensive blue economy strategy.
Collapse
Affiliation(s)
- Nicholas W. Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
- *Correspondence: Nicholas W. Jeffery,
| | - Sarah J. Lehnert
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, NL, Canada
| | - Tony Kess
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, NL, Canada
| | - Kara K. S. Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Brendan F. Wringe
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
| | - Ryan R.E. Stanley
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
| |
Collapse
|
9
|
McCartin LJ, Vohsen SA, Ambrose SW, Layden M, McFadden CS, Cordes EE, McDermott JM, Herrera S. Temperature Controls eDNA Persistence across Physicochemical Conditions in Seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8629-8639. [PMID: 35658125 PMCID: PMC9231374 DOI: 10.1021/acs.est.2c01672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 05/20/2023]
Abstract
Environmental DNA (eDNA) quantification and sequencing are emerging techniques for assessing biodiversity in marine ecosystems. Environmental DNA can be transported by ocean currents and may remain at detectable concentrations far from its source depending on how long it persist. Thus, predicting the persistence time of eDNA is crucial to defining the spatial context of the information derived from it. To investigate the physicochemical controls of eDNA persistence, we performed degradation experiments at temperature, pH, and oxygen conditions relevant to the open ocean and the deep sea. The eDNA degradation process was best explained by a model with two phases with different decay rate constants. During the initial phase, eDNA degraded rapidly, and the rate was independent of physicochemical factors. During the second phase, eDNA degraded slowly, and the rate was strongly controlled by temperature, weakly controlled by pH, and not controlled by dissolved oxygen concentration. We demonstrate that marine eDNA can persist at quantifiable concentrations for over 2 weeks at low temperatures (≤10 °C) but for a week or less at ≥20 °C. The relationship between temperature and eDNA persistence is independent of the source species. We propose a general temperature-dependent model to predict the maximum persistence time of eDNA detectable through single-species eDNA quantification methods.
Collapse
Affiliation(s)
- Luke J. McCartin
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Samuel A. Vohsen
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Susan W. Ambrose
- Department
of Earth and Environmental Sciences, Lehigh
University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Michael Layden
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Catherine S. McFadden
- Department
of Biology, Harvey Mudd College, Claremont, California 91711, United States
| | - Erik E. Cordes
- Department
of Biology, Temple University, Philadelphia, Pennsylvania 19122-6008, United States
| | - Jill M. McDermott
- Department
of Earth and Environmental Sciences, Lehigh
University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Santiago Herrera
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| |
Collapse
|
10
|
Lamb PD, Fonseca VG, Maxwell DL, Nnanatu C. Systematic review and meta-analysis: water type and temperature affect environmental DNA decay. Mol Ecol Resour 2022; 22:2494-2505. [PMID: 35510730 PMCID: PMC9541873 DOI: 10.1111/1755-0998.13627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/28/2022] [Accepted: 04/17/2022] [Indexed: 12/02/2022]
Abstract
Environmental DNA (eDNA) has been used in a variety of ecological studies and management applications. The rate at which eDNA decays has been widely studied but at present it is difficult to disentangle study‐specific effects from factors that universally affect eDNA degradation. To address this, a systematic review and meta‐analysis was conducted on aquatic eDNA studies. Analysis revealed eDNA decayed faster at higher temperatures and in marine environments (as opposed to freshwater). DNA type (mitochondrial or nuclear) and fragment length did not affect eDNA decay rate, although a preference for <200 bp sequences in the available literature means this relationship was not assessed with longer sequences (e.g. >800 bp). At present, factors such as ultraviolet light, pH, and microbial load lacked sufficient studies to feature in the meta‐analysis. Moving forward, we advocate researching these factors to further refine our understanding of eDNA decay in aquatic environments.
Collapse
Affiliation(s)
- Philip D Lamb
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom
| | - Vera G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - David L Maxwell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom
| | - Chibuzor Nnanatu
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom.,Department of Geography and Environmental Science, University of Southampton, Highfield Campus, Southampton, Hampshire, SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Lim KC, Then AY. Environmental DNA approach complements social media reports to detect an endangered freshwater stingray species in the wild. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Cowart DA, Murphy KR, Cheng CHC. Environmental DNA from Marine Waters and Substrates: Protocols for Sampling and eDNA Extraction. Methods Mol Biol 2022; 2498:225-251. [PMID: 35727547 DOI: 10.1007/978-1-0716-2313-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis has emerged in recent years as a powerful tool for the detection, monitoring, and characterization of aquatic metazoan communities, including vulnerable species. The rapid rate of adopting the eDNA approach across diverse habitats and taxonomic groups attests to its value for a wide array of investigative goals, from understanding natural or changing biodiversity to informing on conservation efforts at local and global scales. Regardless of research objectives, eDNA workflows commonly include the following essential steps: environmental sample acquisition, processing and preservation of samples, and eDNA extraction, followed by eDNA sequencing library preparation, high-capacity sequencing and sequence data analysis, or other methods of genetic detection. In this chapter, we supply instructional details for the early steps in the workflow to facilitate researchers considering adopting eDNA analysis to address questions in marine environments. Specifically, we detail sampling, preservation, extraction, and quantification protocols for eDNA originating from marine water, shallow substrates, and deeper sediments. eDNA is prone to degradation and loss, and to contamination through improper handling; these factors crucially influence the outcome and validity of an eDNA study. Thus, we also provide guidance on avoiding these pitfalls. Following extraction, purified eDNA is often sequenced on massively parallel sequencing platforms for comprehensive faunal diversity assessment using a metabarcoding or metagenomic approach, or for the detection and quantification of specific taxa by qPCR methods. These components of the workflow are project-specific and thus not included in this chapter. Instead, we briefly touch on the preparation of eDNA libraries and discuss comparisons between sequencing approaches to aid considerations in project design.
Collapse
Affiliation(s)
- Dominique A Cowart
- Company for Open Ocean Observations and Logging (COOOL), Saint Leu, La Réunion, France
| | - Katherine R Murphy
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana - Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Fish Diversity Monitored by Environmental DNA in the Yangtze River Mainstream. FISHES 2021. [DOI: 10.3390/fishes7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surveys and assessments based on environmental DNA are not only efficient and time-saving, but also cause less harm to monitoring targets. Environmental DNA has become a common tool for the assessment and monitoring of aquatic organisms. In this study, we investigated fish resources in the Yangtze River mainstream using environmental DNA, and the variations in fish during two seasons (spring and autumn) were compared. The results showed that 13 species were identified in spring, and nine species of fish were identified in autumn. The fish with higher eDNA detection were Sinibotia superciliaris, Tachysurus fulvidraco, Cyprinus carpio, Ctenopharyngodon Idella, Monopterus albus, Acanthogobius hasta, Saurogobio dabryi, Oncorhynchus mykiss, Mugil cephalus, Odontamblyopus rubicundus. Seasonal variation between spring and autumn was not significant, and the environmental factors had different effects on fish assemblages during the two seasons. Our study used the eDNA technique to monitor the composition of fish in the spring and autumn in the Yangtze River mainstream, providing a new technology for the long-term management and protection of fishery resources in the region. Of course, problems such as pollution and insufficient databases are the current shortcomings of environmental DNA, which will be the focus of our future research and study.
Collapse
|
14
|
Banerjee P, Dey G, Antognazza CM, Sharma RK, Maity JP, Chan MWY, Huang YH, Lin PY, Chao HC, Lu CM, Chen CY. Reinforcement of Environmental DNA Based Methods ( Sensu Stricto) in Biodiversity Monitoring and Conservation: A Review. BIOLOGY 2021; 10:biology10121223. [PMID: 34943137 PMCID: PMC8698464 DOI: 10.3390/biology10121223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Worldwide biodiversity loss points to a necessity of upgrading to a fast and effective monitoring method that can provide quick conservation action. Newly developed environmental DNA (eDNA) based method found to be more cost-effective, non-invasive, quick, and accurate than traditional monitoring (spot identification, camera trapping). Although the eDNA based methods are proliferating rapidly, as a newly developed branch, it needs more standardization and practitioner adaptation. The present study aims to evaluate the eDNA based methods, and their potential achievements in biodiversity monitoring, and conservation for quick practitioners’ adaption. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community-level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique shows a great promise with its high accuracy and authenticity, and will be applicable alone or alongside other methods in the near future. Abstract Recently developed non-invasive environmental DNA-based (eDNA) techniques have enlightened modern conservation biology, propelling the monitoring/management of natural populations to a more effective and efficient approach, compared to traditional surveys. However, due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines can potentially jeopardize research progression, methodological standardization, and practitioner adoption in several ways. Present investigation reflects the developmental progress of eDNA (sensu stricto) including highlighting the successful case studies in conservation management. The eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve species detection) with a high accuracy and authentication, which gradually upgrading modern conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technology (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy and authentication can be applicable alone or coupled with traditional surveys in conservation biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and function) is essential on a global scale for future management decisions.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Gobinda Dey
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Caterina M. Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy;
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Michael W. Y. Chan
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Chung-Ming Lu
- Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, Jiayi 62102, Taiwan;
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Correspondence: or ; Tel.: +886-5-2720411 (ext. 66220); Fax: +886-5-2720807
| |
Collapse
|
15
|
Optimization of environmental DNA extraction and amplification methods for metabarcoding of deep-sea fish. MethodsX 2021; 8:101238. [PMID: 34434761 PMCID: PMC8374181 DOI: 10.1016/j.mex.2021.101238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Analyses of environmental DNA (eDNA) from macroorganisms in aquatic environments have greatly advanced in recent years. In particular, eDNA metabarcoding of fish using universal PCR primers has been reported in various waters. Although pumped deep-sea water was used for eDNA metabarcoding of deep-sea fish, conventional methods only resulted in small amounts of extracted eDNA and subsequent few or no PCR amplicons. To optimize eDNA metabarcoding of deep-sea fish from pumped deep-sea water, we modified conventional procedures of eDNA extraction and PCR amplification. Here, we propose a modified eDNA extraction method, in which a filter used for eDNA sampling was shredded and incubated in microtubes for efficient lysis of eDNA sources. Total eDNA yield extracted using the modified protocol was approximately six-fold higher than that extracted by the conventional protocol. The PCR enzyme Platinum SuperFi II DNA Polymerase successfully amplified a target region of fish universal primers (MiFish) from trace amounts of eDNA extracted from pumped deep-sea water and suppressed nonspecific amplifications more effectively than the enzyme used in conventional methods. Approximately 93% of the sequence reads acquired by next generation sequencing of these amplicons were derived from fish. The improved procedure presented here provided effective eDNA metabarcoding of deep-sea fish.A modified eDNA extraction protocol, in which a filter was shredded and incubated in microtubes, increased eDNA yields extracted from pumped deep-sea water over the conventional method. The PCR enzyme Platinum SuperFi II DNA polymerase improved the amplification efficiency of trace amounts of MiFish objectives in eDNA extracted from pumped deep-sea water with suppressing nonspecific amplifications. The use of Platinum SuperFi II DNA polymerase for eDNA metabarcoding using MiFish primers resulted in the acquisition of abundant sequence reads of deep-sea fish through next generation sequencing.
Collapse
|
16
|
Lamy T, Pitz KJ, Chavez FP, Yorke CE, Miller RJ. Environmental DNA reveals the fine-grained and hierarchical spatial structure of kelp forest fish communities. Sci Rep 2021; 11:14439. [PMID: 34262101 PMCID: PMC8280230 DOI: 10.1038/s41598-021-93859-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000-2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems.
Collapse
Affiliation(s)
- Thomas Lamy
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA.
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France.
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | | | - Christie E Yorke
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
17
|
Ardura A, Martinez JL, Zaiko A, Garcia-Vazquez E. Poorer diversity but tougher species in old ballast water: Biosecurity challenges explored from visual and molecular techniques. MARINE POLLUTION BULLETIN 2021; 168:112465. [PMID: 33991987 DOI: 10.1016/j.marpolbul.2021.112465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Millions of tons of water cross the oceans inside ships' ballast tanks every day. Planktonic species hitch-hike with water and some may pose risks to ecosystems and economies if get released and establish outside their native range. We monitored ballast water in different trans-equatorial travels, visually and using molecular techniques, and found significant increases of potential nuisance taxa over travel duration, despite evident diversity depletion. Thus, less diverse but more resistant and potentially more harmful communities persist in ballast water over long voyages. If we consider the enormous volume transported every day, the persistence of resistant species in ballast water would be threating the global marine biodiversity. This should be taken into account when modeling and assessing the bioinvasion risks associated with the ballast water and transfer considered in the future research.
Collapse
Affiliation(s)
- Alba Ardura
- Department of Functional Biology, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Jose L Martinez
- Scientific-technical Services, University of Oviedo, Oviedo, Asturias, Spain
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street East, 7010 Nelson, New Zealand; Marine Research Institute, Klaipeda University, H. Manto 84, LT-92294 Klaipeda, Lithuania
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| |
Collapse
|
18
|
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants. Sci Rep 2021; 11:6820. [PMID: 33767219 PMCID: PMC7994446 DOI: 10.1038/s41598-021-85488-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extracted from faeces from generalist predators, have recently been described as "biodiversity capsules" and suggested as a complementary tool for improving current biodiversity assessments. In this study, using faecal samples from two generalist omnivore species, the Eurasian badger and the red fox, we evaluated the applicability of eDNA metabarcoding in determining dietary composition, compared to macroscopic diet identification techniques. Subsequently, we used the dietary information obtained to assess its contribution to biodiversity assessments. Compared to classic macroscopic techniques, we found that eDNA metabarcoding detected more taxa, at higher taxonomic resolution, and proved to be an important technique to verify the species identification of the predator from field collected faeces. Furthermore, we showed how dietary analyses complemented field observations in describing biodiversity by identifying consumed flora and fauna that went unnoticed during field observations. While diet analysis approaches could not substitute field observations entirely, we suggest that their integration with other methods might overcome intrinsic limitations of single techniques in future biodiversity surveys.
Collapse
|
19
|
Saito T, Doi H. A Model and Simulation of the Influence of Temperature and Amplicon Length on Environmental DNA Degradation Rates: A Meta-Analysis Approach. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental DNA (eDNA) analysis can detect aquatic organisms, including rare and endangered species, in a variety of habitats. Degradation can influence eDNA persistence, impacting eDNA-based species distribution and occurrence results. Previous studies have investigated degradation rates and associated contributing factors. It is important to integrate data from across these studies to better understand and synthesize eDNA degradation in various environments. We complied the eDNA degradation rates and related factors, especially water temperature and amplicon lengths of the measured DNA from 28 studies, and subjected the data to a meta-analysis. In agreement with previous studies, our results suggest that water temperature and amplicon length are significantly related to the eDNA degradation rate. From the 95% quantile model simulation, we predicted the maximum eDNA degradation rate in various combinations of water temperature and amplicon length. Predicting eDNA degradation could be important for evaluating species distribution and inducing innovation (e.g., sampling, extraction, and analysis) of eDNA methods, especially for rare and endangered species with small population size.
Collapse
|
20
|
Jo T, Minamoto T. Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta-analyses. Mol Ecol Resour 2021; 21:1490-1503. [PMID: 33580561 DOI: 10.1111/1755-0998.13354] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
Understanding the processes of environmental DNA (eDNA) persistence and degradation is essential to determine the spatiotemporal scale of eDNA signals and accurately estimate species distribution. The effects of environmental factors on eDNA persistence have previously been examined; however, the influence of the physiochemical and molecular states of eDNA on its persistence is not completely understood. Here, we performed meta-analyses including 26 previously published papers on the estimation of first-order eDNA decay rate constants, and assessed the effects of filter pore size, DNA fragment size, target gene, and environmental conditions on eDNA decay rates. Almost all supported models included the interactions between the filter pore size and water temperature, between the target gene and water temperature, and between the target gene and water source, implying the influence of complex interactions between the eDNA state and environmental conditions on eDNA persistence. These findings were generally consistent with the results of a reanalysis of a previous tank experiment which measured the time-series changes in marine fish eDNA concentrations in multiple size fractions after fish removal. Our results suggest that the mechanism of eDNA persistence and degradation cannot be fully understood without knowing not only environmental factors but also cellular and molecular states of eDNA in water. Further verification of the relationship between eDNA state and persistence is required by obtaining more information on eDNA persistence in various experimental and environmental conditions, which will enhance our knowledge on eDNA persistence and support our findings.
Collapse
Affiliation(s)
- Toshiaki Jo
- Graduate School of Human Development and Environment, Kobe University Kobe City, Hyogo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University Kobe City, Hyogo, Japan
| |
Collapse
|
21
|
Wang S, Yan Z, Hänfling B, Zheng X, Wang P, Fan J, Li J. Methodology of fish eDNA and its applications in ecology and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142622. [PMID: 33059148 DOI: 10.1016/j.scitotenv.2020.142622] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Fish environmental DNA (eDNA) studies have made substantial progress during the past decade, and significant advances in monitoring fishes have been gained by taking advantage of this technology. Although a number of reviews concerning eDNA are available and some recent fish eDNA reviews focused on fisheries or standard method have been published, a systematic review of methodology of fish eDNA and its applications in ecology and environment has not yet been published. To our knowledge, this is the first review of fish eDNA for solving ecological and environmental issues. First, the most comprehensive literature analysis of fish eDNA was presented and analyzed. Then, we systematically discuss the relevant experiments and analyses of fish eDNA, and infers that standard workflow is on the way to consensus. We additionally provide reference sequence databases and the primers used to amplify the reference sequences or detecting fish eDNA. The abiotic and biotic conditions affecting fish eDNA persistence are also summarized in a schematic diagram. Subsequently, we focus on the major achievements of fish eDNA in ecology and environment. We additionally highlight the exciting new tools, including in situ autonomous monitoring devices, CRISPR nucleic acid detection technology, and meta-omics technology for fish eDNA detection in future. Ultimately, methodology of fish eDNA will provide a wholly new paradigm for conservation actions of fishes, ecological and environmental management at a global scale.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bernd Hänfling
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
22
|
Ladin ZS, Ferrell B, Dums JT, Moore RM, Levia DF, Shriver WG, D'Amico V, Trammell TLE, Setubal JC, Wommack KE. Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems. Sci Rep 2021; 11:1629. [PMID: 33452291 PMCID: PMC7811025 DOI: 10.1038/s41598-020-80602-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zachary S Ladin
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA.
| | - Barbra Ferrell
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Jacob T Dums
- Biotechnology Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ryan M Moore
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Delphis F Levia
- Department of Entomology and Wildlife Ecology, University of Delaware, 250 Townsend Hall, Newark, DE, 19716, USA
| | - W Gregory Shriver
- Departments of Geography and Spatial Sciences and Plant and Soil Sciences, University of Delaware, 216C Pearson Hall, Newark, DE, 19716, USA
| | - Vincent D'Amico
- US Forest Service, Northern Research Station, Newark, DE, USA
| | - Tara L E Trammell
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| | - João Carlos Setubal
- Instituto de Química, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| |
Collapse
|
23
|
Jensen MR, Sigsgaard EE, Liu S, Manica A, Bach SS, Hansen MM, Møller PR, Thomsen PF. Genome-scale target capture of mitochondrial and nuclear environmental DNA from water samples. Mol Ecol Resour 2020; 21:690-702. [PMID: 33179423 PMCID: PMC7983877 DOI: 10.1111/1755-0998.13293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Environmental DNA (eDNA) provides a promising supplement to traditional sampling methods for population genetic inferences, but current studies have almost entirely focused on short mitochondrial markers. Here, we develop one mitochondrial and one nuclear set of target capture probes for the whale shark (Rhincodon typus) and test them on seawater samples collected in Qatar to investigate the potential of target capture for eDNA‐based population studies. The mitochondrial target capture successfully retrieved ~235× (90× − 352× per base position) coverage of the whale shark mitogenome. Using a minor allele frequency of 5%, we find 29 variable sites throughout the mitogenome, indicative of at least five contributing individuals. We also retrieved numerous mitochondrial reads from an abundant nontarget species, mackerel tuna (Euthynnus affinis), showing a clear relationship between sequence similarity to the capture probes and the number of captured reads. The nuclear target capture probes retrieved only a few reads and polymorphic variants from the whale shark, but we successfully obtained millions of reads and thousands of polymorphic variants with different allele frequencies from E. affinis. We demonstrate that target capture of complete mitochondrial genomes and thousands of nuclear loci is possible from aquatic eDNA samples. Our results highlight that careful probe design, taking into account the range of divergence between target and nontarget sequences as well as presence of nontarget species at the sampling site, is crucial to consider. eDNA sampling coupled with target capture approaches provide an efficient means with which to retrieve population genomic data from aggregating and spawning aquatic species.
Collapse
Affiliation(s)
| | | | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | | |
Collapse
|
24
|
Yu J, Young RG, Deeth LE, Hanner RH. Molecular Detection Mapping and Analysis Platform for R (MDMAPR) facilitating the standardization, analysis, visualization, and sharing of qPCR data and metadata. PeerJ 2020; 8:e9974. [PMID: 33150057 PMCID: PMC7587055 DOI: 10.7717/peerj.9974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has been used as a standard molecular detection tool in many scientific fields. Unfortunately, there is no standard method for managing published qPCR data, and those currently used generally focus on only managing raw fluorescence data. However, associated with qPCR experiments are extensive sample and assay metadata, often under-examined and under-reported. Here, we present the Molecular Detection Mapping and Analysis Platform for R (MDMAPR), an open-source and fully scalable informatics tool for researchers to merge raw qPCR fluorescence data with associated metadata into a standard format, while geospatially visualizing the distribution of the data and relative intensity of the qPCR results. The advance of this approach is in the ability to use MDMAPR to store varied qPCR data. This includes pathogen and environmental qPCR species detection studies ideally suited to geographical visualization. However, it also goes beyond these and can be utilized with other qPCR data including gene expression studies, quantification studies used in identifying health dangers associated with food and water bacteria, and the identification of unknown samples. In addition, MDMAPR’s novel centralized management and geospatial visualization of qPCR data can further enable cross-discipline large-scale qPCR data standardization and accessibility to support research spanning multiple fields of science and qPCR applications.
Collapse
Affiliation(s)
- Jiaojia Yu
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert G Young
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lorna E Deeth
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Robert H Hanner
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
Martel CM, Sutter M, Dorazio RM, Kinziger AP. Using environmental DNA and occupancy modelling to estimate rangewide metapopulation dynamics. Mol Ecol 2020; 30:3340-3354. [PMID: 33063415 DOI: 10.1111/mec.15693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
We demonstrate the power of combining two emergent tools for resolving rangewide metapopulation dynamics. First, we employed environmental DNA (eDNA) surveys to efficiently generate multiseason rangewide site occupancy histories. Second, we developed a novel dynamic, spatial multiscale occupancy model to estimate metapopulation dynamics. The model incorporates spatial relationships, explicitly accounts for non-detection bias and allows direct evaluation of the drivers of extinction and colonization. We applied these tools to examine metapopulation dynamics of endangered tidewater goby, a species endemic to California estuarine habitats. We analysed rangewide eDNA data from 190 geographically isolated sites (813 total water samples) surveyed from 2 years (2016 and 2017). Rangewide estimates of the proportion of sites that were occupied varied little between 2016 (0.52) and 2017 (0.51). However, there was evidence of extinction and colonization dynamics. The probability of extinction of an occupied site (0.106) and probability of colonization of an unoccupied site (0.085) were nearly equal. Stability in site occupancy proportions combined with nearly equal rates of extinction and colonization suggests a dynamic equilibrium between the 2 years surveyed. Assessment of covariate effects revealed that colonization probability increased as the number of occupied neighbouring sites increased and as distance between occupied sites decreased. We show that eDNA surveys can rapidly provide a snapshot of a species distribution over a broad geographic range and, when these surveys are paired with occupancy modelling, can uncover metapopulation dynamics and their drivers.
Collapse
Affiliation(s)
- Chad M Martel
- Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA
| | - Michael Sutter
- Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA
| | | | - Andrew P Kinziger
- Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA
| |
Collapse
|
26
|
Ahn H. Variation of Japanese eel eDNA in sequentially changing conditions and in different sample volumes. JOURNAL OF FISH BIOLOGY 2020; 97:1238-1241. [PMID: 32654144 DOI: 10.1111/jfb.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Environmental DNA (eDNA) surveys have been conducted to evaluate the distribution and abundance of Japanese eels. However, various environmental and biological factors may influence eDNA concentrations. An experiment was conducted using three water sample replicates (50, 100 and 200 ml) of the same group of eels in a tank that were exposed to sequential nonfeeding/feeding and low/high temperature conditions. Slightly higher concentrations occurred at higher temperature (22-23°C) with nonfeeding, and the highest concentrations occurred when feeding started even though it was in the lower temperature (16-17°C) condition, but sample volume had no effect.
Collapse
Affiliation(s)
- Hyojin Ahn
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
27
|
Mathieu C, Hermans SM, Lear G, Buckley TR, Lee KC, Buckley HL. A Systematic Review of Sources of Variability and Uncertainty in eDNA Data for Environmental Monitoring. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
An environmental DNA tool for monitoring the status of the Critically Endangered Smalltooth Sawfish, Pristis pectinata, in the western Atlantic. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Qualitative and quantitative detection using eDNA technology: A case study of Fenneropenaeus chinensis in the Bohai Sea. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Wood SA, Biessy L, Latchford JL, Zaiko A, von Ammon U, Audrezet F, Cristescu ME, Pochon X. Release and degradation of environmental DNA and RNA in a marine system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135314. [PMID: 31780169 DOI: 10.1016/j.scitotenv.2019.135314] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 05/21/2023]
Abstract
Over the last decade, there has been growing interest in the analysis of environmental DNA (eDNA) to infer the presence of organisms in aquatic environments. The efficacy of eDNA/eRNA based tools are highly depend on the turnover rate of the molecule (their release and degradation). Environmental DNA has been shown to persist for days, weeks or years in environmental samples. Environmental RNA (eRNA) is thought to degrade faster than eDNA, however to our knowledge, no experimental studies have explored this. Here we present an aquarium study to investigate eDNA and eRNA shedding rates and degradation for two sessile marine invertebrates. The copy numbers for eDNA and eRNA were assessed using droplet digital PCR targeting the mitochondrial Cytochrome c Oxidase subunit 1 (COI) gene. Environmental RNA persisted after organism removal for much longer than expected with detections for up to 13 h. In contrast, eDNA was detected is samples collected up to 94 h after organism removal. There was no evidence that the decay rates constants for eDNA and eRNA were different (p = 0.6, Kruskal-Wallis tests). Both eDNA and eRNA was detected in biofilms collected at the end of the experiment (day 21). This suggests binding with organic or inorganic compounds or stabilization of these molecules in the biofilm matrix. The finding of the prolonged persistence of eRNA may provide new opportunities for improved biodiversity surveys through reducing false positives caused by legacy DNA and could also facilitate new research on environmental transcriptomics.
Collapse
Affiliation(s)
- Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.
| | - Laura Biessy
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Janie L Latchford
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - François Audrezet
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Eble JA, Daly-Engel TS, DiBattista JD, Koziol A, Gaither MR. Marine environmental DNA: Approaches, applications, and opportunities. ADVANCES IN MARINE BIOLOGY 2020; 86:141-169. [PMID: 32600544 DOI: 10.1016/bs.amb.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Environmental DNA (eDNA) is increasingly being used to document species distributions and habitat use in marine systems, with much of the recent effort focused on leveraging advances in next-generation DNA sequencing to assess and track biodiversity across taxonomic groups. Environmental DNA offers a number of important advantages over traditional survey techniques, including non-invasive sampling, sampling where traditional approaches are impractical or inefficient (e.g. deep oceans), reduced cost, and increased detection sensitivity. However, eDNA applications are currently limited because of an insufficient understanding of the influence of sample source, analytical approach, and marker type on eDNA detections. Because approaches vary considerably among eDNA studies, we present a summary of the current state of the field and emerging best practices. The impact of observed variation in rates of eDNA production, persistence, and transport are also discussed and future research needs are highlighted with the goal of expanding eDNA applications, including the development of statistical models to improve the predictability of eDNA detection and quantification.
Collapse
Affiliation(s)
- Jeff A Eble
- Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States.
| | - Toby S Daly-Engel
- Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Joseph D DiBattista
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia; School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Adam Koziol
- Evolutionary Genomics, GLOBE institute, University of Copenhagen, Copenhagen, Denmark
| | - Michelle R Gaither
- Genomics and Bioinformatics Cluster, Department of Biology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
32
|
|
33
|
Moushomi R, Wilgar G, Carvalho G, Creer S, Seymour M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci Rep 2019; 9:12500. [PMID: 31467341 PMCID: PMC6715800 DOI: 10.1038/s41598-019-48984-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/13/2019] [Indexed: 12/04/2022] Open
Abstract
Environmental DNA analysis has emerged as a key component of biodiversity and environmental monitoring. However, the state and fate of eDNA in natural environments is still poorly understood for many ecological systems. Here we assess the state and fate of eDNA derived from the water flea, Daphnia magna, using a full factorial mesocosm experiment. We measured the quantity and degradation of eDNA over a two month period across a range of filters differing in pore size (0, 0.2, 1 and 10 µm), which spans the range of eDNA source material including subcellular, cellular and tissue. We also used two primer sets targeting mitochondrial (COI) and nuclear (18S) genomic regions. Our findings demonstrated that eDNA was most prevalent in the effluent water, but also reliably detected on the 0.2 μm filter, suggesting subcellular material is the predominate state of eDNA. Temporal eDNA quantity dynamics followed an exponential decay function over the course of 6-17 days, demonstrating a predictable decline in eDNA concentration. Nuclear eDNA was more abundant than mitochondrial eDNA, which may be a result of greater primer affinity, or indicate greater availability of nuclear eDNA gene targets in the environment. In contrast to two previous size-sorting experiments, which utilizing fish eDNA, our findings suggest that the state of invertebrate eDNA is much smaller than previously suspected. Overall, our data suggest that the detection of eDNA greatly depends on our knowledge of the state and fate of eDNA, which differ among species, and likely across environmental conditions.
Collapse
Affiliation(s)
- Rashnat Moushomi
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gregory Wilgar
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Mathew Seymour
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
34
|
Lyons K, Bigman JS, Kacev D, Mull CG, Carlisle AB, Imhoff JL, Anderson JM, Weng KC, Galloway AS, Cave E, Gunn TR, Lowe CG, Brill RW, Bedore CN. Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology. CONSERVATION PHYSIOLOGY 2019; 7:coz011. [PMID: 31110763 PMCID: PMC6519003 DOI: 10.1093/conphys/coz011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/02/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
A strength of physiological ecology is its incorporation of aspects of both species' ecology and physiology; this holistic approach is needed to address current and future anthropogenic stressors affecting elasmobranch fishes that range from overexploitation to the effects of climate change. For example, physiology is one of several key determinants of an organism's ecological niche (along with evolutionary constraints and ecological interactions). The fundamental role of physiology in niche determination led to the development of the field of physiological ecology. This approach considers physiological mechanisms in the context of the environment to understand mechanistic variations that beget ecological trends. Physiological ecology, as an integrative discipline, has recently experienced a resurgence with respect to conservation applications, largely in conjunction with technological advances that extended physiological work from the lab into the natural world. This is of critical importance for species such as elasmobranchs (sharks, skates and rays), which are an especially understudied and threatened group of vertebrates. In 2017, at the American Elasmobranch Society meeting in Austin, Texas, the symposium entitled `Applications of Physiological Ecology in Elasmobranch Research' provided a platform for researchers to showcase work in which ecological questions were examined through a physiological lens. Here, we highlight the research presented at this symposium, which emphasized the strength of linking physiological tools with ecological questions. We also demonstrate the applicability of using physiological ecology research as a method to approach conservation issues, and advocate for a more available framework whereby results are more easily accessible for their implementation into management practices.
Collapse
Affiliation(s)
- K Lyons
- Georgia Aquarium, Atlanta, GA, USA
| | - J S Bigman
- Simon Fraser University, Burnaby, Canada
| | - D Kacev
- Southwest Fisheries Science Center, La Jolla, CA, USA
| | - C G Mull
- Simon Fraser University, Burnaby, Canada
| | | | - J L Imhoff
- Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA
| | - J M Anderson
- University of Hawai`i at Mānoa, Honolulu, HI, USA
| | - K C Weng
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - A S Galloway
- South Carolina Department of Natural Resources, SC, USA
| | - E Cave
- Florida Atlantic University, Boca Raton, FL, USA
| | - T R Gunn
- Georgia Southern University, Statesboro, GA USA
| | - C G Lowe
- California State University Long Beach, Long Beach, CA, USA
| | - R W Brill
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - C N Bedore
- Georgia Southern University, Statesboro, GA USA
| |
Collapse
|
35
|
|
36
|
Collins RA, Wangensteen OS, O'Gorman EJ, Mariani S, Sims DW, Genner MJ. Persistence of environmental DNA in marine systems. Commun Biol 2018; 1:185. [PMID: 30417122 PMCID: PMC6218555 DOI: 10.1038/s42003-018-0192-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/13/2018] [Indexed: 12/04/2022] Open
Abstract
As environmental DNA (eDNA) becomes an increasingly valuable resource for marine ecosystem monitoring, understanding variation in its persistence across contrasting environments is critical. Here, we quantify the breakdown of macrobial eDNA over a spatio-temporal axis of locally extreme conditions, varying from ocean-influenced offshore to urban-inshore, and between winter and summer. We report that eDNA degrades 1.6 times faster in the inshore environment than the offshore environment, but contrary to expectation we find no difference over season. Analysis of environmental covariables show a spatial gradient of salinity and a temporal gradient of pH, with salinity—or the biotic correlates thereof—most important. Based on our estimated inshore eDNA half-life and naturally occurring eDNA concentrations, we estimate that eDNA may be detected for around 48 h, offering potential to collect ecological community data of high local fidelity. We conclude by placing these results in the context of previously published eDNA decay rates. Rupert A. Collins et al. show that environmental DNA degrades faster in the inshore urban environment than the ocean-influenced offshore environment. This study suggests that environmental DNA can be reliably detected for two days, providing an optimal time window of high local fidelity.
Collapse
Affiliation(s)
- Rupert A Collins
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Owen S Wangensteen
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK.,Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Eoin J O'Gorman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Stefano Mariani
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - David W Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.,Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
37
|
Deiner K, Lopez J, Bourne S, Holman L, Seymour M, Grey EK, Lacoursière A, Li Y, Renshaw MA, Pfrender ME, Rius M, Bernatchez L, Lodge DM. Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method. METABARCODING AND METAGENOMICS 2018. [DOI: 10.3897/mbmg.2.28963] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The analysis of environmental DNA (eDNA) using metabarcoding has increased in use as a method for tracking biodiversity of ecosystems. Little is known about eDNA in marine human-modified environments, such as commercial ports, which are key sites to monitor for anthropogenic impacts on coastal ecosystems. To optimise an eDNA metabarcoding protocol in these environments, seawater samples were collected in a commercial port and methodologies for concentrating and purifying eDNA were tested for their effect on eukaryotic DNA yield and subsequent richness of Operational Taxonomic Units (OTUs). Different filter materials [Cellulose Nitrate (CN) and Glass Fibre (GF)], with different pore sizes (0.5 µm, 0.7 µm and 1.2 µm) and three previously published liquid phase extraction methods were tested. The number of eukaryotic OTUs detected differed by a factor of three amongst the method combinations. The combination of CN filters with phenol-chloroform-isoamyl alcohol extractions recovered a higher amount of eukaryotic DNA and OTUs compared to GF filters and the chloroform-isoamyl alcohol extraction method. Pore size was not independent of filter material but did affect the yield of eukaryotic DNA. For the OTUs assigned to a highly successful non-indigenous species, Styelaclava, the two extraction methods with phenol significantly outperformed the extraction method without phenol; other experimental treatments did not contribute significantly to detection. These results highlight that careful consideration of methods is warranted because choice of filter material and extraction method create false negative detections of marine eukaryotic OTUs and underestimate taxonomic richness from environmental samples.
Collapse
|
38
|
Bruneel S, Gobeyn S, Verhelst P, Reubens J, Moens T, Goethals P. Implications of movement for species distribution models - Rethinking environmental data tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:893-905. [PMID: 29455139 DOI: 10.1016/j.scitotenv.2018.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Movement is considered an essential process in shaping the distributions of species. Nevertheless, most species distribution models (SDMs) still focus solely on environment-species relationships to predict the occurrence of species. Furthermore, the currently used indirect estimates of movement allow to assess habitat accessibility, but do not provide an accurate description of movement. Better proxies of movement are needed to assess the dispersal potential of individual species and to gain a more practical insight in the interconnectivity of communities. Telemetry techniques are rapidly evolving and highly capable to provide explicit descriptions of movement, but their usefulness for SDMs will mainly depend on the ability of these models to deal with hitherto unconsidered ecological processes. More specifically, the integration of movement is likely to affect the environmental data requirements as the connection between environmental and biological data is crucial to provide reliable results. Mobility implies the occupancy of a continuum of space, hence an adequate representation of both geographical and environmental space is paramount to study mobile species distributions. In this context, environmental models, remote sensing techniques and animal-borne environmental sensors are discussed as potential techniques to obtain suitable environmental data. In order to provide an in-depth review of the aforementioned methods, we have chosen to use the modelling of fish distributions as a case study. The high mobility of fish and the often highly variable nature of the aquatic environment generally complicate model development, making it an adequate subject for research. Furthermore, insight into the distribution of fish is of great interest for fish stock assessments and water management worldwide, underlining its practical relevance.
Collapse
Affiliation(s)
- Stijn Bruneel
- Department of Animal Science and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Marine Biology Research Group, Ghent University, Krijgslaan 281, Ghent 9000, Belgium.
| | - Sacha Gobeyn
- Department of Animal Science and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Pieterjan Verhelst
- Department of Animal Science and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Marine Biology Research Group, Ghent University, Krijgslaan 281, Ghent 9000, Belgium; Research Institute for Nature and Forest (INBO), Havenlaan 88, bus 73, 1000 Brussels, Belgium; Flanders Marine Institute (VLIZ), Wandelaarkaai 7, Ostend 8400, Belgium
| | - Jan Reubens
- Flanders Marine Institute (VLIZ), Wandelaarkaai 7, Ostend 8400, Belgium
| | - Tom Moens
- Marine Biology Research Group, Ghent University, Krijgslaan 281, Ghent 9000, Belgium
| | - Peter Goethals
- Department of Animal Science and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
39
|
Development of a multiplex quantitative PCR assay for detection and quantification of DNA from Fasciola hepatica and the intermediate snail host, Austropeplea tomentosa, in water samples. Vet Parasitol 2018; 259:17-24. [PMID: 30056979 DOI: 10.1016/j.vetpar.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/09/2018] [Accepted: 06/23/2018] [Indexed: 11/23/2022]
Abstract
Liver fluke (Fasciola hepatica) infection is an increasing threat to livestock production resulting in serious economic losses to the beef, dairy and sheep industries in Australia and globally. Triclabendazole (TCBZ) is the main drug used to control liver fluke infections in Australia and the widespread emergence of TCBZ resistance in cattle and sheep threatens liver fluke control. Alternative control measures to lower exposure of livestock to fluke infection would be useful to help preserve the usefulness of current chemical flukicides. Environmental DNA (eDNA) sampling methodology and associated molecular techniques are suited to rapidly assess the presence of pathogens on farms. In the present study, we developed a water sampling method in combination with a multiplex quantitative PCR assay to detect and quantify DNA of F. hepatica and Austropeplea tomentosa (A. tomentosa), a crucial intermediate snail host for liver fluke transmission in South-east Australia. The multiplex qPCR assay allows for the independent detection of F. hepatica and A. tomentosa DNA using specific primers and a probe targeting the ITS-2 region of the liver fluke or snail. The method allows the highly specific and sensitive (minimal DNA detection levels to 14-50 fg) detection of F. hepatica or A. tomentosa. The method allows the detection of both liver fluke and snail eDNA in water samples. The effective quantification of liver fluke and snail eDNA in water samples using this assay could potentially allow researchers to both identify and monitor F. hepatica transmission zones on farming properties in South-east Australia which will better inform control strategies, with potential application of the assay worldwide.
Collapse
|
40
|
|