1
|
Lee S, Yoo I, Cheon Y, Choi E, Kim S, Ka H. Function of immune cells and effector molecules of the innate immune system in the establishment and maintenance of pregnancy in mammals - A review. Anim Biosci 2024; 37:1821-1833. [PMID: 39210819 PMCID: PMC11541040 DOI: 10.5713/ab.24.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
In mammalian species, pregnancy is a complex process that involves the maternal recognition of pregnancy, implantation, decidualization, placentation, and parturition. The innate immune system is composed of cellular components, such as natural killer cells, neutrophils, monocytes, and macrophages, and effector molecules, such as cytokines, interferons, antimicrobial peptides, and complement components. The innate immune system plays a critical role as the first line of defense against infection or inflammation to maintain homeostasis and activate the adaptive immunity. During pregnancy, innate immune cells and effector molecules act on the regulation of innate immunity for host defense and processes such as embryo development, implantation, and placentation at the maternal-conceptus interface. In this review, we describe the components of the innate immune system and their functions at the maternal-conceptus interface to establish and maintain pregnancy in animal species that form hemochorial- or epitheliochorial-type placentas, including humans, rodents, ruminants, and pigs.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Eunhyeok Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Seonghyun Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| |
Collapse
|
2
|
Golubska M, Paukszto Ł, Kurzyńska A, Mierzejewski K, Gerwel Z, Bogacka I. PPAR beta/delta regulates the immune response mechanisms in the porcine endometrium during LPS-induced inflammation - An in vitro study. Theriogenology 2024; 226:130-140. [PMID: 38878465 DOI: 10.1016/j.theriogenology.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Inflammation in the reproductive tract has become a serious threat to animal fertility. Recently, the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the context of reproduction and the inflammatory response has been highlighted, but the role of PPARβ/δ has not been fully elucidated. The aim of the present study was to investigate the in vitro effect of PPARβ/δ ligands (agonist: L-165,041 and antagonist: GSK 3787) on the transcriptome profile of porcine endometrium during LPS-induced inflammation in the mid-luteal and follicular phases of the oestrous cycle (days 10-12 and 18-20, respectively) using the RNA-Seq method. During the mid-luteal phase of the oestrous cycle, the current study identified 145 and 143 differentially expressed genes (DEGs) after treatment with an agonist or antagonist, respectively. During the follicular phase of the oestrous cycle, 55 and 207 DEGs were detected after treatment with an agonist or antagonist, respectively. The detected DEGs are engaged in the regulation of various processes, such as the complement and coagulation cascade, NF-κB signalling pathway, or the pathway of 15-eicosatetraenoic acid derivatives synthesis. The results of the current study indicate that PPARβ/δ ligands are involved in the control of the endometrial inflammatory response.
Collapse
Affiliation(s)
- Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zuzanna Gerwel
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
3
|
Govender S, David M, Naicker T. Is the Complement System Dysregulated in Preeclampsia Comorbid with HIV Infection? Int J Mol Sci 2024; 25:6232. [PMID: 38892429 PMCID: PMC11172754 DOI: 10.3390/ijms25116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
South Africa is the epicentre of the global HIV pandemic, with 13.9% of its population infected. Preeclampsia (PE), a hypertensive disorder of pregnancy, is often comorbid with HIV infection, leading to multi-organ dysfunction and convulsions. The exact pathophysiology of preeclampsia is triggered by an altered maternal immune response or defective development of maternal tolerance to the semi-allogenic foetus via the complement system. The complement system plays a vital role in the innate immune system, generating inflammation, mediating the clearance of microbes and injured tissue materials, and a mediator of adaptive immunity. Moreover, the complement system has a dual effect, of protecting the host against HIV infection and enhancing HIV infectivity. An upregulation of regulatory proteins has been implicated as an adaptive phenomenon in response to elevated complement-mediated cell lysis in HIV infection, further aggravated by preeclamptic complement activation. In light of the high prevalence of HIV infection and preeclampsia in South Africa, this review discusses the association of complement proteins and their role in the synergy of HIV infection and preeclampsia in South Africa. It aims to identify women at elevated risk, leading to early diagnosis and better management with targeted drug therapy, thereby improving the understanding of immunological dysregulation.
Collapse
Affiliation(s)
| | | | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.G.); (M.D.)
| |
Collapse
|
4
|
Khurana N, Watkins K, Ghatak D, Staples J, Hubbard O, Yellepeddi V, Watt K, Ghandehari H. Reducing hydrophobic drug adsorption in an in-vitro extracorporeal membrane oxygenation model. Eur J Pharm Biopharm 2024; 198:114261. [PMID: 38490349 PMCID: PMC11186434 DOI: 10.1016/j.ejpb.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving cardiopulmonary bypass technology for critically ill patients with heart and lung failure. Patients treated with ECMO receive a range of drugs that are used to treat underlying diseases and critical illnesses. However, the dosing guidelines for these drugs used in ECMO patients are unclear. Mortality rate for patients on ECMO exceeds 40% partly due to inaccurate dosing information, caused in part by the adsorption of drugs in the ECMO circuit and its components. These drugs range in hydrophobicity, electrostatic interactions, and pharmacokinetics. Propofol is commonly administered to ECMO patients and is known to have high adsorption rates to the circuit components due to its hydrophobicity. To reduce adsorption onto the circuit components, we used micellar block copolymers (Poloxamer 188TM and Poloxamer 407TM) and liposomes tethered with poly(ethylene glycol) to encapsulate propofol, provide a hydrophilic shell and prevent its adsorption. Size, polydispersity index (PDI), and zeta potential of the delivery systems were characterized by dynamic light scattering, and encapsulation efficiency was characterized using High Performance Liquid Chromatography (HPLC). All delivery systems used demonstrated colloidal stability at physiological conditions for seven days, cytocompatibility with a human leukemia monocytic cell line, i.e., THP-1 cells, and did not activate the complement pathway in human plasma. We demonstrated a significant reduction in adsorption of propofol in an in-vitro ECMO model upon encapsulation in micelles and liposomes. These results show promise in reducing the adsorption of hydrophobic drugs to the ECMO circuits by encapsulation in nanoscale structures tethered with hydrophilic polymers on the surface.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kamiya Watkins
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Debika Ghatak
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Jane Staples
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Oliver Hubbard
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Venkata Yellepeddi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kevin Watt
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Lipsa D, Magrì D, Della Camera G, La Spina R, Cella C, Garmendia-Aguirre I, Mehn D, Ruiz-Moreno A, Fumagalli F, Calzolai L, Gioria S. Differences in Physico-Chemical Properties and Immunological Response in Nanosimilar Complex Drugs: The Case of Liposomal Doxorubicin. Int J Mol Sci 2023; 24:13612. [PMID: 37686418 PMCID: PMC10487543 DOI: 10.3390/ijms241713612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Irantzu Garmendia-Aguirre
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| |
Collapse
|
6
|
Nakamura K, Kusama K, Hori M, Imakawa K. The effect of bta-miR-26b in intrauterine extracellular vesicles on maternal immune system during the implantation period. Biochem Biophys Res Commun 2021; 573:100-106. [PMID: 34403805 DOI: 10.1016/j.bbrc.2021.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Extracellular vesicles (EVs) in utero play a role in cellular interactions between endometrium-conceptuses (embryo plus extraembryonic membranes) during peri-implantation periods. However, how intrauterine EVs function on endometrium have not been well characterized. In our previous study, bta-miR-98 found in intrauterine EVs from uterine flushing fluids (UFs) on pregnant day 20 (a half day after initial conceptus attachment, P20) could regulate the maternal immune system and collaborate with other miRNAs and/or components of EVs for conceptus implantation. We, therefore, hypothesized that in addition to bta-miR-98, other miRNAs present in bovine intrauterine EVs may regulate the maternal immune system in the endometrial epithelium. A global analysis of differentially expressed proteins between EVs from P17 and P20 UFs revealed that components of intrauterine P20 EVs had the effect on the down-regulation of "neutrophil activation involved in immune response" and "neutrophil mediated immunity". In silico analyses predicted bta-miR-26b as one of potential miRNA to regulate maternal immune system. In our cell culture experiments, bta-miR-26b negatively regulated several immune system-related genes PSMC6, CD40, and IER3 in bovine endometrial epithelial cells. Our findings revealed that intrauterine EV-derived bta-miR-26b contributes to the down-regulation of the maternal immune system, allowing conceptus implantation to the uterine endometrium. Furthermore, our results suggest that intrauterine EVs extracted from P20 UFs could regulate neutrophils, the first line of immunological defense, to modulate endometrial immune and inflammatory responses for implanting conceptuses.
Collapse
Affiliation(s)
- Keigo Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuya Kusama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Masatoshi Hori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
7
|
Awamleh Z, Han VKM. Identification of miR-210-5p in human placentae from pregnancies complicated by preeclampsia and intrauterine growth restriction, and its potential role in the pregnancy complications. Pregnancy Hypertens 2020; 19:159-168. [PMID: 32014817 DOI: 10.1016/j.preghy.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/03/2019] [Accepted: 01/12/2020] [Indexed: 12/26/2022]
Abstract
Preeclampsia (PE) and intrauterine growth restriction (IUGR) are pregnancy complications resulting from abnormal placental development. As epigenetic regulators, microRNAs can regulate placental development and contribute to the disease pathophysiology by influencing the expression of genes involved in placental development or disease. Our previous study revealed an increase in miR-210-5p expression in placentae from patients with early-onset pregnancy complications and identified candidate gene targets for miR-210-5p. The purpose of this study was to: (i) validate candidate gene targets predicted for miR-210-5p from microRNA-RNA expression data, and (ii) overexpress miR-210-5p in a trophoblast cell line (HTR-8/SVneo) to assess impact on trophoblast cell functions. Integration of the miRNA and RNA sequencing expression data revealed 8 candidate gene targets for miR-210-5p in patients with PE only or PE + IUGR. Luciferase reporter assays identified two gene targets for miR-210-5p, CSF1 and ITGAM. Real-time PCR confirmed the decreased expression of CSF1 and ITGAM in patients with PE + IUGR. Immunohistochemistry of placentae from late second trimester identified CSF1 and ITGAM in intermediate trophoblast cells in the decidua. Expression levels of CSF1 and ITGAM were reduced in HTR-8/SVneo cells following increased miR-210-5p expression. Concomitantly, HTR-8/SVneo cells demonstrate an average 45% reduction in cell migration. These findings suggest that miR-210-5p may contribute to dysfunction of intermediate trophoblasts and potentially contribute to the disease process of these pregnancy complications.
Collapse
Affiliation(s)
- Zain Awamleh
- Children's Health Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Victor K M Han
- Children's Health Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada; Department of Pediatrics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
8
|
Effects of miR-98 in intrauterine extracellular vesicles on maternal immune regulation during the peri-implantation period in cattle. Sci Rep 2019; 9:20330. [PMID: 31889113 PMCID: PMC6937239 DOI: 10.1038/s41598-019-56879-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Evidence accumulated suggests that extracellular vesicles (EVs) present in uterine lumen play a role in conceptus-endometrial cell interactions during peri-implantation periods. However, how intrauterine EVs function on endometrium have not been well characterized. To study how intrauterine EVs affect endometrial milieu in cattle, bovine endometrial epithelial cells (EECs) were treated with EVs isolated from uterine flushing fluids (UFs) on day 17 or 20 pregnancy (P17, P20, respectively; conceptus implantation to endometrium begins on days 19–19.5). RNA extracted from EECs were then subjected to RNA sequence analysis. The analysis revealed that transcripts related to immune system were down-regulated in EECs treated with EVs on P20 compared with those on P17. To investigate whether microRNAs (miRNAs) in EVs regulate maternal immune system in the endometrium during the peri-implantation, microRNA sequence and in silico analyses were performed, identifying bta-miR-98 in EVs as a potential miRNA to regulate maternal immune system. Furthermore, the treatment of EECs with bta-miR-98 negatively regulated several immune system-related genes, CTSC, IL6, CASP4 and IKBKE, in EECs. These results suggest that EVs containing bta-miR-98 is a regulator of maternal immune system, possibly allowing the conceptus attachment to the endometrial epithelium during the peri-implantation period.
Collapse
|
9
|
Regulation of the complement system and immunological tolerance in pregnancy. Semin Immunol 2019; 45:101337. [PMID: 31757607 DOI: 10.1016/j.smim.2019.101337] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a serious vascular complication of the human pregnancy, whose etiology is still poorly understood. In preeclampsia, exacerbated apoptosis and fragmentation of the placental tissue occurs due to developmental qualities of the placental trophoblast cells and/or mechanical and oxidative distress to the syncytiotrophoblast, which lines the placental villi. Dysregulation of the complement system is recognized as one of the mechanisms of the disease pathology. Complement has the ability to promote inflammation and facilitate phagocytosis of placenta-derived particles and apoptotic cells by macrophages. In preeclampsia, an overload of placental cell damage or dysregulated complement system may lead to insufficient clearance of apoptotic particles and placenta-derived debris. Excess placental damage may lead to sequestration of microparticles, such as placental vesicles, to capillaries in the glomeruli of the kidney and other vulnerable tissues. This phenomenon could contribute to the manifestations of typical diagnostic symptoms of preeclampsia: proteinuria and new-onset hypertension. In this review we propose that the complement system may serve as a regulator of the complex tolerance and clearance processes that are fundamental in healthy pregnancy. It is therefore recommended that further research be conducted to elucidate the interactions between components of the complement system and immune responses in the context of complicated and healthy pregnancy.
Collapse
|
10
|
Zhao L, Sun LF, Zheng XL, Liu JF, Zheng R, Wang Y, Yang R, Zhang L, Yu L, Zhang H. [In vitro fertilization-embryo transfer affects focal adhension kinase signaling pathway in early placenta]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:151-158. [PMID: 30773560 DOI: 10.19723/j.issn.1671-167x.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study the effects of in vitro fertilization-embryo transfer (IVF-ET) technique on gene expression of focal adhension kinase (FAK) signaling pathway in early placental trophoblast cells, and to explore the effects of IVF-ET technology on the development and function of early placenta. METHODS We collected 7-8 weeks of gestation placenta tissue as a study group by ultrasound guided reduction of fetal from double embryo transfer under IVF-ET technology. In the control group, placenta tissues were obtained from the spontaneous abortion of natural pregnancy twin 7-8 weeks. Microarray hybridization analysis was performed on the placenta tissue of the two groups using the Affymetrix HG-U133 Plus 2.0 gene chip. Eight differentially expressed genes were identified by real-time quantitative polymerase chain reaction (qRT-PCR), and unsupervised clustering analysis and functional bioinformatics analysis were performed for the differentially expressed genes. RESULTS Twenty-eight cases of IVF-ET reduced fetal villi and 8 cases of spontaneous abortion villi were collected. A total of 8 placental villi were detected by the gene chip. Compared with the natural pregnancy control group, 32 differentially expressed genes in the placental FAK signaling pathway were expressed in IVF-ET. The differential expression was greater than or equal to 2 times, of which 12 genes were up-regulated and 20 were down-regulated. The qRT-PCR showed that the expression of the 8 genes in FAK signaling pathways of IVF-ET was significantly different from that in the placenta of natural pregnancy, which was consistent with the result of the gene chip detection. The FAK signal pathway gene localization showed that the FAK gene was mainly located in the upstream of the signal pathway in the placenta of IVF-ET. The placental trophoblast cells maintained the FAK signaling pathway function through gene expression compensation. CONCLUSION There are gene expression differences in the FAK signaling pathway between the IVF-ET derived early placenta and the natural pregnancy placenta. The differentially expressed genes are involved in many key functions of the FAK signaling pathway and affect the early development and function of the IVF-ET placenta, while the placental trophoblast cells change gene expression for interference to compensate for IVF-ET technology itself, maintain normal function of the FAK signaling pathway, and satisfy the need for placental and fetal development.
Collapse
Affiliation(s)
- L Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - L F Sun
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - X L Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - J F Liu
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - R Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Y Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - R Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - L Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - L Yu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - H Zhang
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
11
|
Lotfan M, Ali SA, Yadav ML, Choudhary S, Jena MK, Kumar S, Mohanty AK. Genome-wide gene expression analysis of 45 days pregnant fetal cotyledons vis-a-vis non-pregnant caruncles in buffalo ( Bubalus bubalis ). Gene 2018; 654:127-137. [DOI: 10.1016/j.gene.2018.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023]
|