1
|
Lv Y, Chen C, Han M, Tian C, Song F, Feng S, Xu M, Zhao Z, Zhou H, Su W, Zhong J. CXCL2: a key player in the tumor microenvironment and inflammatory diseases. Cancer Cell Int 2025; 25:133. [PMID: 40197328 PMCID: PMC11978139 DOI: 10.1186/s12935-025-03765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
CXCL2 (C-X-C Motif Chemokine Ligand 2), a constituent of the C-X-C chemokine subfamily, serves as a powerful chemotactic factor for neutrophils, facilitating leukocyte recruitment and movement while initiating an inflammatory response. Recent investigations have demonstrated the pivotal involvement of CXCL2 in carcinogenesis. Within the tumor microenvironment, CXCL2 modulates cellular activity primarily via its interaction with the CXCR2 receptor. The activation of signaling pathways, including ERK/MAPK, NF-κB/MAPK, PI3K/AKT, and JAK/STAT3, highlights CXCL2's inclination to promote tumorigenesis. Furthermore, the role of CXCL2 encompasses inflammatory conditions like lung inflammation, atherosclerosis, and obesity. This article examines the structural characteristics, biological roles, and molecular foundation of CXCL2 in carcinogenesis and inflammatory disorders.
Collapse
Affiliation(s)
- Yuanhao Lv
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Caizheng Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Chenfei Tian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Fuyang Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Sijia Feng
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Miaoming Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Ziyin Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
- Henan Province Engineering Technology Research Center of Tumor diagnostic biomarkers and RNA interference drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
2
|
Sun M, Angelillo J, Hugues S. Lymphatic transport in anti-tumor immunity and metastasis. J Exp Med 2025; 222:e20231954. [PMID: 39969537 PMCID: PMC11837853 DOI: 10.1084/jem.20231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Although lymphatic vessels (LVs) are present in many tumors, their importance in cancer has long been underestimated. In contrast to the well-studied tumor-associated blood vessels, LVs were previously considered to function as passive conduits for tumor metastasis. However, emerging evidence over the last two decades has shed light on their critical role in locally shaping the tumor microenvironment (TME). Here we review the involvement of LVs in tumor progression, metastasis, and modulation of anti-tumor immune response.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Angelillo
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
3
|
Shang C, Zhang Y, Wang Y, Zhao W, Sun X, Dong X, Qiao H. Role of ITGB2 protein structure and molecular mechanism in precancerous lesions of gastric cancer: Influencing the occurrence and development of cancer through the CXCL1-CXCR2 axis. Int J Biol Macromol 2025; 296:139772. [PMID: 39800019 DOI: 10.1016/j.ijbiomac.2025.139772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Gastric cancer is a prevalent gastrointestinal tumor. In the classical cascade of gastric cancer development, the gradual progression from non-atrophic gastritis, atrophic gastritis, intestinal metaplasia, to intraepithelial neoplasia eventually leads to early gastric cancer. We investigated the proteomic characteristics of chronic gastritis (CG), low-grade intraepithelial neoplasia (low-grade LGIN), and early gastric cancer (EGC). Additionally, we utilized transcriptomic databases to explore the expression patterns of ITGB2 across different stages of gastric tissue and its correlation with the prognosis of gastric cancer. The expression of ITGB2 was confirmed in cytological experiments, revealing that ITGB2 can influence the onset and progression of gastric cancer via the CXCL1-CXCR2 axis. This finding suggests that ITGB2 represents a novel biomarker for gastric cancer, making it a potential target for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Chunyang Shang
- Department of Gastrosplenic surgery, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yin Zhang
- Department of General Surgery, Aerospace Center Hospital, Beijing, China; Beijing Aviation General Hospital, Beijing 100012, China
| | - Yangshuai Wang
- Department of Gastrosplenic surgery, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Wenbin Zhao
- Department of Gastrosplenic surgery, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Xuepu Sun
- Department of Gastrosplenic surgery, Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Xuesong Dong
- Department of Gastrosplenic surgery, Harbin Medical University, Harbin 150000, Heilongjiang Province, China.
| | - Haiquan Qiao
- Department of Gastrosplenic surgery, Harbin Medical University, Harbin 150000, Heilongjiang Province, China.
| |
Collapse
|
4
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
5
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Zhang Y. The CXCR2 chemokine receptor: A new target for gastric cancer therapy. Cytokine 2024; 181:156675. [PMID: 38896956 DOI: 10.1016/j.cyto.2024.156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Collapse
Affiliation(s)
- Wenyan Kang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| |
Collapse
|
6
|
Umekita S, Kiyozawa D, Kohashi K, Kawatoko S, Sasaki T, Ihara E, Oki E, Nakamura M, Ogawa Y, Oda Y. Clinicopathological significance of microsatellite instability and immune escape mechanism in patients with gastric solid-type poorly differentiated adenocarcinoma. Gastric Cancer 2024; 27:484-494. [PMID: 38441781 DOI: 10.1007/s10120-024-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND In gastric solid-type poorly differentiated adenocarcinoma (PDA), the role of microsatellite instability and immune escape mechanism remains unclear. The current study aimed to elucidate the clinical significance of mismatch repair (MMR) status, genome profile, C-X-C motif chemokine receptor 2 (CXCR2) expression, and myeloid-derived suppressor cell (MDSC) infiltration in solid-type PDA. METHODS In total, 102 primary solid-type PDA cases were retrieved, and classified into 46 deficient-MMR (dMMR) and 56 proficient-MMR (pMMR) cases based on immunohistochemistry (IHC) and polymerase chain reaction-based molecular testing results. The mRNA expression profiles (NanoString nCounter Assay) of stage-matched dMMR (n = 6) and pMMR (n = 6) cases were examined. The CXCR2 expression and MDSC infiltration (CD11b- and CD33-positive cells) were investigated via IHC in all solid-type PDA cases. RESULTS mRNA analysis revealed several differentially expressed genes and differences in biological behavior between the dMMR (n = 46) and pMMR (n = 56) groups. In the multivariate analysis, the dMMR status was significantly associated with a longer disease-free survival (hazard ratio = 5.152, p = 0.002) and overall survival (OS) (hazard ratio = 5.050, p = 0.005). CXCR2-high expression was significantly correlated with a shorter OS in the dMMR group (p = 0.018). A high infiltration of CD11b- and CD33-positive cells was significantly correlated with a shorter OS in the pMMR group (p = 0.022, 0.016, respectively). CONCLUSIONS dMMR status can be a useful prognostic predictor, and CXCR2 and MDSCs can be novel therapeutic targets in patients with solid-type PDA.
Collapse
Affiliation(s)
- Shinya Umekita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shinichiro Kawatoko
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taisuke Sasaki
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Peng TJ, Wu YC, Tang SJ, Sun GH, Sun KH. TGFβ1 induces CXCL1 to promote stemness features in lung cancer. Exp Biol Med (Maywood) 2023; 248:2249-2261. [PMID: 38158808 PMCID: PMC10903253 DOI: 10.1177/15353702231220662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Chemokines critically orchestrate the tumorigenesis, metastasis, and stemness features of cancer cells that lead to poor outcomes. High plasma levels of transforming growth factor-β1 (TGFβ1) correlate with poor prognostic features in advanced lung cancer patients, thus suggesting the importance of TGFβ1 in the lung tumor microenvironment. However, the role of chemokines in TGFβ1-induced tumor stemness features remains unclear. Here, we clarify the previously undocumented role of CXCL1 in TGFβ1-induced lung cancer stemness features. CXCL1 and its receptor CXCR2 were significantly upregulated in TGFβ1-induced lung cancer stem cells (CSCs). CXCL1 silencing (shCXCL1) suppressed stemness gene expression, tumorsphere formation, colony formation, drug resistance, and in vivo tumorigenicity in TGFβ1-induced lung tumorspheres. Immunohistochemistry staining showed that patients with stage II/III lung cancer had higher expression levels of CXCL1. The levels of CXCL1 were positively associated with lymph node metastasis and correlated with the expression of the CSC transcription factor Oct-4. Furthermore, online database analysis revealed that CXCL1 expression was negatively correlated with lung cancer survival in patients. Patients with high TGFβ1/CXCL1/CD44 co-expression had a worse survival rate. We suggest that CXCL1 serves as a crucial factor in TGFβ1-induced stemness features of lung cancer.
Collapse
Affiliation(s)
- Ta-Jung Peng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304
| | - Yi-Ching Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung 202301
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114202
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304
- Department of Education and Research, Taipei City Hospital, Taipei 103212
| |
Collapse
|
8
|
Zha L, Guo X, Liang X, Chen Y, Gan D, Li W, Wang Z, Zhang H. Transcriptomic analysis reveals the promotion of lymph node metastasis by Helicobacter pylori infection via upregulating chemokine (C-X-C motif) receptor 2 expression in gastric carcinoma. Genes Dis 2023; 10:2614-2621. [PMID: 37554183 PMCID: PMC10404868 DOI: 10.1016/j.gendis.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 10/23/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric carcinoma (GC) progression is mainly caused by local aggression and lymph node metastasis. However, some patients with early T-stage disease have lymph node metastasis, whereas some patients with late T-stage disease do not have lymph node metastasis, which indicates that invasion and metastasis are not always sequential in some GC patients. In the present study, the data of 101 GC cases were acquired from TCGA and divided into T-late-N-negative and T-early-N-positive groups according to pathological stages. A total of 338 genes were identified as differential genes between the T-late-N-negative and T-early-N-positive groups. GSEA showed that epithelial cell signaling in the Helicobacter pylori (HP) infection pathway was enriched in the T-early-N-positive group. MB staining indicated that the HP infection rate was 63% (39/62) in N-positive patients compared to 42% (16/38) in N-negative patients. To investigate the potential mechanism, we focused on the gene chemokine (C-X-C motif) receptor 2 (CXCR2), which was not only clustered in the gene set of epithelial cells signaling in the HP infection pathway but also significantly upregulated in T-early-N-positive GC by the analysis of the different genes based on the TCGA dataset. A meta-analysis showed that CXCR2 expression was positively correlated with N-stage but not with T-stage in GC. This study indicated that invasion and metastasis could be independent processes driven by different molecular mechanisms in some GC patients. HP infection was a potential factor that promoted lymph node metastasis by upregulating CXCR2 expression.
Collapse
Affiliation(s)
- Lang Zha
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuedong Chen
- Department of Gastrointestinal Surgery, The Tongliang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Deyong Gan
- Department of Gastrointestinal Surgery, The Tongliang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
10
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
An HW, Seok SH, Kwon JW, Choudhury AD, Oh JS, Voon DC, Kim DY, Park JW. The loss of epithelial Smad4 drives immune evasion via CXCL1 while displaying vulnerability to combinatorial immunotherapy in gastric cancer. Cell Rep 2022; 41:111878. [PMID: 36577366 DOI: 10.1016/j.celrep.2022.111878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
SMAD4 is frequently mutated and inactivated in human gastric cancer (GC). Although the epithelial cell-autonomous functions of Smad4 have been extensively studied, its contribution to tumor immunity is largely undetermined. Here, we report that the loss of Smad4 expression in GC cells endows them with the ability to evade tumor immunity. Unlike their Smad4-proficient counterparts, Smad4-deficient stomach organoids can evade host immunity to form tumors in immunocompetent mice. Smad4-deficient GC cells show expanded CD133+ cancer stem-like cells while suppressing dendritic cell (DC) differentiation and cytotoxic T cells with granulocytic myeloid-derived suppressor cell (G-MDSC) accumulation through a secretome containing CXCL1. Moreover, Smad4 deficiency increases programmed cell death ligand-1 (PD-L1) and decreases 4-1BBL expressions, indicating a change in immunogenicity. Combinatorial immune checkpoint blockade (ICB) of anti-PD-L1 and anti-CTLA-4 or agonistic anti-4-1BB antibodies effectively treats ICB monotherapy-resistant Smad4-deficient allografts, exposing a specific vulnerability. Collectively, these data provide a rational basis for ICB strategies in treating advanced GC with Smad4 deficiency.
Collapse
Affiliation(s)
- Hyeok-Won An
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do 24341, South Korea
| | - Sang Hyeok Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do 24341, South Korea
| | - Jong-Wan Kwon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do 24341, South Korea
| | - Anahita Dev Choudhury
- Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Jeong-Seop Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dominic C Voon
- Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do 24341, South Korea.
| |
Collapse
|
12
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci 2022; 114:16-24. [PMID: 36197901 PMCID: PMC9807521 DOI: 10.1111/cas.15609] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/07/2023] Open
Abstract
The prognosis for patients with cancers known for a highly activated stromal reaction, including diffuse-type (scirrhous) gastric cancer, consensus molecular subtype 4 (CMS4) colorectal cancer, and pancreatic ductal adenocarcinoma, is extremely poor. To explore the resistance of conventional therapy for those refractory cancers, detailed classification and investigation of the different subsets of cancer-associated fibroblasts (CAFs) involved are needed. Recent studies with a single-cell transcriptomics strategy (single-cell RNA-seq) have demonstrated that CAF subpopulations contain different origins and marker proteins with the capacity to either promote or suppress cancer progression. Through multiple signaling pathways, CAFs can promote tumor growth, metastasis, and angiogenesis with extracellular matrix (ECM) remodeling; they can also interact with tumor-infiltrating immune cells and modulate the antitumor immunological state in the tumor microenvironment (TME). Here, we review the recent literature on the various subpopulations of CAFs to improve our understanding of the cell-cell interactions in the TME and highlight future avenues for CAF-targeted therapy.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Hiroaki Kasashima
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yasuhiro Fukui
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Gen Tsujio
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Masakazu Yashiro
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Maeda
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
13
|
Luo X, Tai J, Zhao Y, Zhao P, Sun D, Wang L. Associations of C‑X‑C motif chemokine ligands 1/2/8/13/14 with clinicopathological features and survival profile in patients with colorectal cancer. Oncol Lett 2022; 24:348. [PMID: 36072008 PMCID: PMC9434714 DOI: 10.3892/ol.2022.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xiaofan Luo
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130032, P.R. China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130032, P.R. China
| | - Yuhang Zhao
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130032, P.R. China
| | - Pingwei Zhao
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130032, P.R. China
| | - Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130032, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130032, P.R. China
| |
Collapse
|
14
|
Bioinformatics Analysis of Prognosis-Related Genes and Expression of CXCL8 in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3149887. [PMID: 35845924 PMCID: PMC9279071 DOI: 10.1155/2022/3149887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC), one of the main causes of death, remains a leading cause of mortality in gastrointestinal cancer and tends to affect the younger generation. However, the pathological process of colorectal cancer is unclear. Exploring potential pathogenesis and therapeutic targets of CRC is significant as its high prevalence and high mortality. Nowadays, the rapid development of bioinformatics provides us an opportunity to explore potential molecular markers of CRC. Materials and Methods First, three CRC gene chips with paracancerous controls were downloaded from the Gene Expression Omnibus (GEO) database. Second, after combining and batch correcting the three chips using the R language and Perl language, the differentially expressed genes (DEGs) were selected to investigate how they affect the CRC occurrence and development by GO and KEGG enrichment analysis. Third, based on the STRING website and the Cytoscape software, the protein-protein interaction (PPI) network was constructed and the core genes were screened out. Finally, through polymerase chain reaction (PCR) and immunohistochemistry (IHC), the expression and function of the core gene CXCL8 in CRC were explored. Results GSE10950, GSE44076, and GSE75970, including 126 intestinal cancer samples and 126 paracancer samples, were screened as the datasets. 192 DEGs were screened, including 43 upregulated genes and 149 downregulated genes. Through the DEGs screened out, GO enrichment analysis, KEGG enrichment analysis, and the construction of PPI interaction network were carried out. Finally, according to the nodes and edges in the PPI network, the DEGs were sorted and the core genes were selected. Through basic experiments, the first ranked CXCL8 was further studied, and the results suggest that the expression of CXCL8 is related to the proliferation, migration, invasion, and even distant metastasis of CRC. Conclusion The present study showed that DEGs of CRC are associated with multiple tumor-related biological processes and signaling pathways. The core gene CXCL8 has the potential to be a new therapeutic target for CRC.
Collapse
|
15
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Tsujio G, Maruo K, Yamamoto Y, Sera T, Sugimoto A, Kasashima H, Miki Y, Yoshii M, Tamura T, Toyokawa T, Tanaka H, Muguruma K, Ohira M, Yashiro M. Significance of tumor heterogeneity of p-Smad2 and c-Met in HER2-positive gastric carcinoma with lymph node metastasis. BMC Cancer 2022; 22:598. [PMID: 35650563 PMCID: PMC9161565 DOI: 10.1186/s12885-022-09681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tumor heterogeneity has frequently been observed in gastric cancer (GC), but the correlation between patients’ clinico-pathologic features and the tumoral heterogeneity of GC-associated molecules is unclear. We investigated the correlation between lymph node metastasis and the intra-tumoral heterogeneity of driver molecules in GC. Materials and methods We retrospectively analyzed the cases of 504 patients who underwent a gastrectomy at the Department of Gastroenterological Surgery, Osaka Metropolitan University and 389 cases drawn from The Cancer Genome Atlas (TCGA) data. We performed a clustering analysis based on eight cancer-associated molecules including HER2, c-Met, and p-Smad2 using the protein expression revealed by our immunohistochemical study of the patients’ and TCGA cases. We determined the correlations between HER2 expression and the other molecules based on the degree of lymph node metastasis. Results Immunohistochemical staining data showed that a 43 of the 504 patients with GC (8.5%) were HER2-positive. In the HER2-positive cases, the expressions of c-Met and p-Smad2 were increased in accord with the lymph-node metastatic level. The overall survival of the HER2-positive GC patients with both p-Smad2 and c-Met expression was significantly (p = 0.030) poorer than that of the patients with p-Smad2-negative and/or c-Met-negative expression. The results of the TCGA data analysis revealed that 58 of the 389 GC cases (14.9%) were ERBB2-positive. MET expression was more frequent in the N1 metastasis group than the N0 group. In the high lymph-node metastasis (N2 and N3) group, SMAD2 expression was more frequent, as was ERBB2 and MET expression. Conclusion p-Smad2 and c-Met signaling might play important roles in lymph node metastasis in HER2-positive GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09681-3.
Collapse
Affiliation(s)
- Gen Tsujio
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koji Maruo
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tomohiro Sera
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
17
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
18
|
Lee CW, Chiang YC, Yu PA, Peng KT, Chi MC, Lee MH, Fang ML, Lee KH, Hsu LF, Liu JF. A Role of CXCL1 Drives Osteosarcoma Lung Metastasis via VCAM-1 Production. Front Oncol 2021; 11:735277. [PMID: 34760697 PMCID: PMC8573405 DOI: 10.3389/fonc.2021.735277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma, a common aggressive and malignant cancer, appears in the musculoskeletal system among young adults. The major cause of mortality in osteosarcoma was the recurrence of lung metastases. However, the molecular mechanisms of metastasis involved in osteosarcomas remain unclear. Recently, CXCL1 and CXCR2 have been crucial indicators for lung metastasis in osteosarcoma by paracrine releases, suggesting the involvement of directing neutrophils into tumor microenvironment. In this study, overexpression of CXCL1 has a positive correlation with the migratory and invasive activities in osteosarcoma cell lines. Furthermore, the signaling pathway, CXCR2/FAK/PI3K/Akt, is activated through CXCL1 by promoting vascular cell adhesion molecule 1 (VCAM-1) via upregulation of nuclear factor-kappa B (NF-κB) expression and nuclear translocation. The in vivo animal model further demonstrated that CXCL1 serves as a critical promoter in osteosarcoma metastasis to the lung. The correlated expression of CXCL1 and VCAM-1 was observed in the immunohistochemistry staining from human osteosarcoma specimens. Our findings demonstrate the cascade mechanism regulating the network in lung metastasis osteosarcoma, therefore indicating that the CXCL1/CXCR2 pathway is a worthwhile candidate to further develop treatment schemas.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Yao-Chang Chiang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Pei-An Yu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Sports Medicine Center, Chang Gung Memorial Hospital at Chia Yi, Chiayi, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hsueh Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan.,Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Kuan-Han Lee
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
20
|
Yang B, Peng F, Zhang Y, Wang X, Wang S, Zheng Y, Zhang J, Zeng Y, Wang N, Peng C, Wang Z. Aiduqing formula suppresses breast cancer metastasis via inhibiting CXCL1-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153628. [PMID: 34247114 DOI: 10.1016/j.phymed.2021.153628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Metastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs. PURPOSE This study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer. STUDY DESIGN/METHODS Multiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo. RESULTS ADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts. CONCLUSION Our study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yihao Zeng
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China.
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Gu L, Yao Y, Chen Z. An inter-correlation among chemokine (C-X-C motif) ligand (CXCL) 1, CXCL2 and CXCL8, and their diversified potential as biomarkers for tumor features and survival profiles in non-small cell lung cancer patients. Transl Cancer Res 2021; 10:748-758. [PMID: 35116406 PMCID: PMC8798849 DOI: 10.21037/tcr-20-2539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Background The aim was to explore the interaction among chemokine (C-X-C motif) ligand (CXCL) 1/2/8 expressions, and their associations with clinicopathologic features and survival profiles in non-small cell lung cancer (NSCLC) patients. Methods The tumor tissue specimens from 232 primary NSCLC patients with TNM stage I-IIIA underwent resection were obtained and the expressions of CXCL1, CXCL2 and CXCL8 were measured by immunohistochemical assay. Disease-free survival (DFS) and overall survival (OS) were calculated according to survival data. Results There were 117(50.4%) CXCL1 low expression patients versus (vs.) 115 (49.6%) CXCL1 high expression patients, 107(46.1%) CXCL2 low expression patients vs. 125 (53.9%) CXCL2 high expression patients, 93 (40.1%) CXCL8 low expression patients vs. 139 (59.9%) CXCL8 high expression patients. Meanwhile, CXCL1 expression was positively correlated with CXCL2 expression and CXCL8 expression; CXCL2 expression was also positively correlated with CXCL8 expression. For tumor features, CXCL1, CXCL2 and CXCL8 were positively correlated with lymph node (LYN) metastasis and TNM stage, but not correlated with differentiation, tumor size or carcinoembryonic antigen (CEA) level. For prognosis, CXCL1 high expression was associated with worse DFS and OS, so did CXCL2 high expression, while there was no correlation of CXCL8 with DFS or OS; Multivariate Cox’s regression disclosed that high expression of CXCL1, but not CXCL2 or CXCL8, was an independent factor predicting shorter DFS and OS. Conclusions An inter-correlation is observed among CXCL1, CXCL2 and CXCL8 expressions, and they show diversified potential as biomarkers for tumor features and survival profiles in NSCLC patients.
Collapse
Affiliation(s)
- Linping Gu
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yaxian Yao
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Chen
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Li J, Wu DM, Han R, Yu Y, Deng SH, Liu T, Zhang T, Xu Y. Low-Dose Radiation Promotes Invasion and Migration of A549 Cells by Activating the CXCL1/NF-κB Signaling Pathway. Onco Targets Ther 2020; 13:3619-3629. [PMID: 32431513 PMCID: PMC7197943 DOI: 10.2147/ott.s243914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Radiation has well-known and well-characterized direct toxic effects on cells and tissues. However, low-dose ionizing irradiation (LDIR) can also enhance the invasion and migration of tumor cells, and the mechanisms underlying these effects remain unclear. The present study aimed to investigate changes induced in the migration and invasion of A549 cells after LDIR and to explore the potential molecular mechanism. Materials and Methods A549 cells were irradiated with X-rays at different doses (0, 2, 4, and 6 Gy) and cultured for 24 or 48 h. Apoptosis and proliferation were evaluated by lactate dehydrogenase release, CCK8, colony formation, and flow cytometry assays. Wound-healing and transwell assays were performed to detect migration and invasion ability. CXCL1 or p65 were knocked down using lentivirus-mediated siRNA in A549 cell lines. Knockdown efficiency of CXCL1 and p65 was assessed by RT-qPCR. Western blotting and immunofluorescence were used to determine the changes in protein levels. Results In cells irradiated with a dose of 6 Gy, after 48 h, apoptosis was clearly induced while proliferation was inhibited. Irradiation with 4 Gy resulted in the upregulation of CXCL1 expression and activation of the NF-κB signaling pathway. Moreover, upon 4 Gy irradiation, migration, invasion, and epithelial–mesenchymal transition (EMT) were significantly enhanced in A549 cells. Importantly, CXCL1 or p65 knockdown inhibited radiation-induced migration, invasion, and EMT. Conclusion Low-dose radiation upregulates CXCL1 expression and activates the NF-κB signaling to regulate EMT in A549 cells, thereby promoting invasion and migration. These results provide new insights into the prevention of tumor invasion and metastasis induced by radiotherapy.
Collapse
Affiliation(s)
- Jing Li
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Dong-Ming Wu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Rong Han
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ye Yu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Shi-Hua Deng
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Teng Liu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ting Zhang
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ying Xu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
24
|
Chao CC, Lee CW, Chang TM, Chen PC, Liu JF. CXCL1/CXCR2 Paracrine Axis Contributes to Lung Metastasis in Osteosarcoma. Cancers (Basel) 2020; 12:cancers12020459. [PMID: 32079335 PMCID: PMC7072404 DOI: 10.3390/cancers12020459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, the most common of all bone malignancies, has a high likelihood of lung metastasis. Up until now, the molecular mechanisms involved in osteosarcomas with lung metastases are not clearly understood. Recent observations have shown that the chemokine CXCL1 and its receptor CXCR2 assist with the homing of neutrophils into the tumor microenvironment. Here, we show that the CXCL1/CXCR2 paracrine axis is crucial for lung metastasis in osteosarcoma. In an in vivo lung metastasis model of osteosarcoma, lung blood vessels expressed CXCL1 and osteosarcoma cells expressed the CXCR2 receptor. CXCR2 expression was higher in osteosarcoma cell lines than in normal osteoblast cells. Immunohistochemistry staining of clinical osteosarcoma specimens revealed positive correlations between CXCR2 expression and pathology stage and also vascular cell adhesion molecule 1 (VCAM-1) expression. High levels of CXCL1 secreted by human pulmonary artery endothelial cells (HPAECs) promoted osteosarcoma cell mobility, which was mediated by the upregulation of VCAM-1 expression. When HPAECs-conditioned media was incubated in osteosarcoma cells, we observed that the CXCR2 receptor and FAK/PI3K/Akt/NF-κB signaling cascade were required for VCAM-1 expression. Our findings illustrate a molecular mechanism of lung metastasis in osteosarcoma and indicate that CXCL1/CXCR2 is worth targeting in treatment schemas.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan;
| | - Po-Chun Chen
- Translational medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan;
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ju-Fang Liu
- Translational medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: or ; Tel.: +(886)-2-2833-2211 (ext. 9420)
| |
Collapse
|
25
|
Wei L, Liu Y, Ma Y, Ding C, Zhang H, Lu Z, Gu Z, Zhu C. C-X-C chemokine receptor 2 correlates with unfavorable prognosis and facilitates malignant cell activities via activating JAK2/STAT3 pathway in non-small cell lung cancer. Cell Cycle 2019; 18:3456-3471. [PMID: 31731888 DOI: 10.1080/15384101.2019.1689471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aimed to investigate the correlation of C-X-C chemokine receptor 2 (CXCR2) with clinicopathological characteristics and survival in non-small cell lung cancer (NSCLC) patients and further explore its effect on proliferation, apoptosis, invasion, stemness, chemosensitivity as well as JAK2/STAT3 pathway in NSCLC cells. The expression of CXCR2 in tumor tissues and adjacent tissues from 340 NSCLC patients received surgery was detected by immunohistochemistry. CXCR2 overexpression and knockdown were constructed through plasmid transfection and the effect of CXCR2 dysregulation on cell proliferation, apoptosis, invasion, stemness, chemosensitivity as well as its regulatory effect on JAK2/STAT signaling pathway was assessed in NCI-H1437 cells and NCI-H1299 cells. CXCR2 expression was higher in tumor tissues than that in paired adjacent tissues, and it was correlated with poor pathological differentiation, greater tumor size, lymph node metastasis, higher TNM stage and poor survival in NSCLC patients. In vitro, CXCR2 expression was increased in human NSCLC cell lines compared with human normal lung bronchus epithelial cells. CXCR2 promoted cell proliferation and invasion, while suppressed cell apoptosis in NCI-H1437/NCI-H1299 cells. Additionally, CXCR2 increased CD133+ cell rate and cell sphere-forming ability, while reduced chemosensitivity to cisplatin and gemcitabine in NCI-H1437/NCI-H1299 cells. Besides, CXCR2 activated the JAK2/STAT3 signaling pathway in NCI-H1437/NCI-H1299 cells. In conclusion, the clinical implication and the molecular function of CXCR2 discovered in our study reveal the potential of CXCR2 as a future target for disease monitoring and treatment of NSCLC.
Collapse
Affiliation(s)
- Lin Wei
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| | - Yugang Liu
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Ding
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| | - Huijun Zhang
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| | - Zhenghui Lu
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| | - Zhenning Gu
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| | - Changsheng Zhu
- Department of Thoracic Surgery, Xi'an Chest Hospital,Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Zhang Z, Chen Y, Jiang Y, Luo Y, Zhang H, Zhan Y. Prognostic and clinicopathological significance of CXCL1 in cancers: a systematic review and meta-analysis. Cancer Biol Ther 2019; 20:1380-1388. [PMID: 31387444 DOI: 10.1080/15384047.2019.1647056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The prognostic value of Chemokine (C-X-C motif) ligand 1 (CXCL1) in various types of cancer remains controversial. Here we aimed to evaluate the prognostic role of CXCL1 for cancer. Methods A comprehensively search of the PubMed, Embase, Web of Science, Wanfang and China National Knowledge Internet databases was conducted to retrieve eligible studies meeting the inclusion criteria. Overall survival (OS), progression-free survival (PFS) and various clinicopathological parameters were defined as endpoints. Stata SE12.0 software was used for quantitative meta-analysis. Results A total of 17 studies encompassing 2265 cancer patients were included. Our meta-analysis showed that patients with higher CXCL1 expression had significantly shorter OS, according to both multivariate (HR 1.51, 95% CI 1.19-1.83, P < .01) and univariate analysis (HR 2.08, 95% CI 1.62-2.54, P < .01). Furthermore, higher CXCL1 expression was significantly correlated with advanced TNM stage and lymph node metastasis (both P < .05). Conclusions High CXCL1 expression is a risk factor for cancer prognosis indicating a poor OS, and advanced TNM stage and lymph node metastasis, demonstrating that it may be a promising prognostic biomarker for different cancers.
Collapse
Affiliation(s)
- Zulei Zhang
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China.,Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yuting Chen
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China.,Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yaofei Jiang
- Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China.,Wuhan University , Wuhan , Hubei , People's Republic of China.,Department of Radiology, Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Yan Luo
- Department of Radiology, Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Hao Zhang
- Department of the Graduate School, Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yakun Zhan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| |
Collapse
|
27
|
Łukaszewicz-Zając M, Gryko M, Mroczko B. The role of selected chemokines and their specific receptors in pancreatic cancer. Int J Biol Markers 2018; 33:141-147. [PMID: 29799354 DOI: 10.1177/1724600817753094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic carcinoma is a highly malignant disease associated with an extremely poor prognosis, which is caused by late presentation, aggressive invasion and metastases, as well as the detection of pancreatic carcinoma in its advanced stages. Thus, better understanding of the tumour biology of this malignancy is sorely needed to improve the clinical outcome. A great challenge for the medical practice is finding a new biomarker of pancreatic carcinoma that will be helpful in diagnosis, in prognosis and in making clinical decisions, including the assessment of patients' response to therapy. It is suggested that selected chemokines and their specific receptors play an important role in tumour progression, such as tumour growth, angiogenesis, proliferation and development of metastasis. In the present review, general characteristics of chemokines and their specific receptors as well as the significance of these molecules in tumour development are described. The crucial issue of this review is to summarise the importance of various chemokines and their specific receptors in pancreatic carcinoma. Understanding the role of chemokines in the pathogenesis of pancreatic carcinoma is extremely important since these proteins may be used as a potential tool in the diagnosis and prognosis of pancreatic carcinoma patients.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- 1 Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok - Poland
| | - Mariusz Gryko
- 2 Second Department of General Surgery, Medical University of Bialystok, Bialystok - Poland
| | - Barbara Mroczko
- 3 Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok - Poland
| |
Collapse
|
28
|
Interaction between Tumor-Associated Dendritic Cells and Colon Cancer Cells Contributes to Tumor Progression via CXCL1. Int J Mol Sci 2018; 19:ijms19082427. [PMID: 30115896 PMCID: PMC6121631 DOI: 10.3390/ijms19082427] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023] Open
Abstract
Crosstalk of a tumor with its microenvironment is a critical factor contributing to cancer development. This study investigates the soluble factors released by tumor-associated dendritic cells (TADCs) responsible for increasing cancer stem cell (CSC) properties, cell mobility, and epithelial-to-mesenchymal transition (EMT). Dendritic cells (DCs) of colon cancer patients were collected for phenotype and CXCL1 expression by flow cytometry and Luminex assays. The transcriptome of CXCL1-treated cancer cells was established by next generation sequencing. Inflammatory chemokine CXCL1, present in large amounts in DCs isolated from colon cancer patients, and SW620-conditioned TADCs, enhance CSC characteristics in cancer, supported by enhanced anchorage-independent growth, CD133 expression and aldehyde dehydrogenase activity. Additionally, CXCL1 increases the metastatic ability of a cancer by enhancing cell migration, matrix metalloproteinase-7 expression and EMT. The enhanced CXCL1 expression in DCs is also noted in mice transplanted with colon cancer cells. Transcriptome analysis of CXCL1-treated SW620 cells indicates that CXCL1 increases potential oncogene expression in colon cancer, including PTHLH, TYRP1, FOXO1, TCF4 and ZNF880. Concurrently, CXCL1 displays a specific microRNA (miR) upregulated by the prototypical colon cancer onco-miR miR-105. Analysis of publicly available data reveals CXCL1-driven oncogenes and miR-105 have a negative prognostic impact on the outcome of colon cancer. This study indicates a new mechanism by which the colon cancer milieu exploits DC plasticity to support cancer progression.
Collapse
|
29
|
Systematic review and meta-analysis of the prognostic value of CXCR2 in solid tumor patients. Oncotarget 2017; 8:109740-109751. [PMID: 29312644 PMCID: PMC5752557 DOI: 10.18632/oncotarget.22285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/02/2017] [Indexed: 01/19/2023] Open
Abstract
CXC chemokine receptor-2 (CXCR2) expression is associated with the prognosis of multiple cancers. We performed a meta-analysis to determine the association between the CXCR2 expression in tumor tissue and patient prognosis. We compiled related literature from PubMed, Embase, and Web of Science (last updated July 31, 2017). A total of 4012 patients with solid tumors from 21 studies were included to evaluate the association between CXCR2 and overall survival, recurrence-free survival, or disease-free survival. High CXCR2 expression was significantly associated with poor overall survival (pooled HR = 1.82; 95% CI = 1.63-2.03; P < 0.001), recurrence-free survival (pooled HR = 1.40; 95% CI = 1.21-1.62; P < 0.001), and disease-free survival (pooled HR = 1.89; 95% CI = 1.05-3.40; P = 0.033), especially in patients with digestive system neoplasms. Thus high CXCR2 expression in tumor tissue appears predictive of a poor prognosis in patients with solid tumors. Further studies will be required to determine whether CXCR2 blockade has a favorable effect on the prognosis of patients with cancer.
Collapse
|