1
|
Meng L, Tang Q, Zhou W, Wei D, Zhao J, Shen J, Yang M, He S, Huang S, Qin Y, Song J, Luo L, Tang Q. Contributions of T Cell Signaling for Wound Healing. J Burn Care Res 2024; 45:1513-1519. [PMID: 39110034 DOI: 10.1093/jbcr/irae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
It has long been known that T cells participate in wound healing; however, the landscape of the signaling derived from T cells in the process of wound healing is still enigmatic. With the advantages of scRNA-seq, in combination with immunofluorescent imaging, we identified activated T cells, cytotoxic T cells (CTLs), exhausting T cells, and Tregs existing in the inflammation phase of wound healing. Further analysis revealed each T cell population possess distinguished signals contributed to wound healing, some are critical for improving the wound healing quality. Besides, this study discovered and validated the existence of exhausting T cells among the T cells accumulated in the skin during wound healing, and the molecular mechanism(s) and contribution of exhausting T cells to wound healing deserve extensive studies in the future.
Collapse
Affiliation(s)
- Lingzhang Meng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, 533000, China
- Institute of Cardiovascular Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Qiang Tang
- Key Laboratory of Medical Research Basic Guarantee for Immune-related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Burn Plastic & Trauma Surgery Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Wei Zhou
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Dalong Wei
- Key Laboratory of Medical Research Basic Guarantee for Immune-related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Burn Plastic & Trauma Surgery Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jiajia Shen
- Department of Laboratory Medicine, Nanning Maternity and Child Health Hospital & Nanning Women and Children's Hospital, Nanning, 530011, China
| | - Mingyue Yang
- Department of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Siyuan He
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shaoang Huang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yujuan Qin
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jian Song
- Institute of Cardiovascular Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Qianli Tang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| |
Collapse
|
2
|
Park DJ, Choi W, Sayeed S, Dorschner RA, Rainaldi J, Ho K, Kezios J, Nolan JP, Mali P, Costantini T, Eliceiri BP. Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping. Mol Ther 2024; 32:3059-3079. [PMID: 38379282 PMCID: PMC11403212 DOI: 10.1016/j.ymthe.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Sakeef Sayeed
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kayla Ho
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Jenny Kezios
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Todd Costantini
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
4
|
Pakan A, Josh F, Soekamto T, Hendarto J. The Combination of Stromal Vascular Fraction Cells and Platelet-Rich Plasma Mediates the Inflammatory Process in Deep Dermal Burn Injury. ANNALS OF BURNS AND FIRE DISASTERS 2023; 36:320-330. [PMID: 38680233 PMCID: PMC11041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 05/01/2024]
Abstract
The combination of platelet-rich plasma (PRP) and stromal vascular fraction cells (SVFs) was beneficial in accelerating wound healing. This study aims to assess the effect of this combination in balancing the inflammatory process to accelerate burn healing. Thirty eligible Wistar rats were used in this study to establish a deep dermal degree burn wound model. They were randomly divided into four groups: locally injected with the combination of SVFs and PRP (n=9), vaseline (n=9), placebo (n=9), and healthy Wistar rats group (n=3), as treatment group, positive control group, negative control group and healthy control group, respectively. The burn wound tissue was excised from three separated sacrificed rats (8, 24 and 48 hours) to examine polymorphonuclear (PMN) and lymphocyte counts through the standard hematoxylin-eosin procedure and for cyclooxygenase2 (COX-2) expression through the immunohistochemical procedure. The highest PMN, lymphocyte cell count, and COX 2 expression were found at 8 hours in the local injection with the PRP combination SVF group (28,555±11,237, 8,111±3,218, and 4,666±2,309, respectively, p <0.05 except for COX 2). The regression analysis results showed that local injection of a combination of PRP and SVF could reduce PMN cells by 1.068 times, lymphocytes by 1.786 times, and COX 2 by 1.853 times greater than topical application with vaseline. The combined injection of PRP and SVF effectively heals deep burns by acutely increasing the PMN cell and lymphocyte count, and COX 2 expression. Conversely, the treatment decreased the PMN cell and lymphocyte count but not the COX 2 expression in the sub-acute phase of wound healing.
Collapse
Affiliation(s)
| | - F. Josh
- Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | | | | |
Collapse
|
5
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
6
|
Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, Min W, Zeng L, Qiao H, Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev 2023; 195:114764. [PMID: 36841332 DOI: 10.1016/j.addr.2023.114764] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, PR China
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Labuz DR, Lewis G, Fleming ID, Thompson CM, Zhai Y, Firpo MA, Leung DT. Targeted multi-omic analysis of human skin tissue identifies alterations of conventional and unconventional T cells associated with burn injury. eLife 2023; 12:82626. [PMID: 36790939 PMCID: PMC9931389 DOI: 10.7554/elife.82626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Burn injuries are a leading cause of unintentional injury, associated with a dysfunctional immune response and an increased risk of infections. Despite this, little is known about the role of T cells in human burn injury. In this study, we compared the activation and function of conventional T cells and unconventional T cell subsets in skin tissue from acute burn (within 7 days from initial injury), late phase burn (beyond 7 days from initial injury), and non-burn patients. We compared T cell functionality by a combination of flow cytometry and a multi-omic single-cell approach with targeted transcriptomics and protein expression. We found a significantly lower proportion of CD8+ T cells in burn skin compared to non-burn skin, with CD4+ T cells making up the bulk of the T cell population. Both conventional and unconventional burn tissue T cells show significantly higher IFN-γ and TNF-α levels after stimulation than non-burn skin T cells. In sorted T cells, clustering showed that burn tissue had significantly higher expression of homing receptors CCR7, S1PR1, and SELL compared to non-burn skin. In unconventional T cells, including mucosal-associated invariant T (MAIT) and γδ T cells, we see significantly higher expression of cytotoxic molecules GZMB, PRF1, and GZMK. Multi-omics analysis of conventional T cells suggests a shift from tissue-resident T cells in non-burn tissue to a circulating T cell phenotype in burn tissue. In conclusion, by examining skin tissue from burn patients, our results suggest that T cells in burn tissue have a pro-inflammatory rather than a homeostatic tissue-resident phenotype, and that unconventional T cells have a higher cytotoxic capacity. Our findings have the potential to inform the development of novel treatment strategies for burns.
Collapse
Affiliation(s)
- Daniel R Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Giavonni Lewis
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Irma D Fleming
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Callie M Thompson
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Yan Zhai
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Daniel T Leung
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
8
|
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, Baradaran B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol 2023; 14:1113882. [PMID: 37020537 PMCID: PMC10067596 DOI: 10.3389/fimmu.2023.1113882] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The successful outcomes of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic cancers have increased the previously unprecedented excitement to use this innovative approach in treating various forms of human cancers. Although researchers have put a lot of work into maximizing the effectiveness of these cells in the context of solid tumors, few studies have discussed challenges and potential strategies to overcome them. Restricted trafficking and infiltration into the tumor site, hypoxic and immunosuppressive tumor microenvironment (TME), antigen escape and heterogeneity, CAR T-cell exhaustion, and severe life-threatening toxicities are a few of the major obstacles facing CAR T-cells. CAR designs will need to go beyond the traditional architectures in order to get over these limitations and broaden their applicability to a larger range of malignancies. To enhance the safety, effectiveness, and applicability of this treatment modality, researchers are addressing the present challenges with a wide variety of engineering strategies as well as integrating several therapeutic tactics. In this study, we reviewed the antigens that CAR T-cells have been clinically trained to recognize, as well as counterstrategies to overcome the limitations of CAR T-cell therapy, such as recent advances in CAR T-cell engineering and the use of several therapies in combination to optimize their clinical efficacy in solid tumors.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Leili Aghebati-Maleki, ; Behzad Baradaran,
| |
Collapse
|
9
|
Wang P, Zhang Z, Lin R, Lin J, Liu J, Zhou X, Jiang L, Wang Y, Deng X, Lai H, Xiao H. Machine learning links different gene patterns of viral infection to immunosuppression and immune-related biomarkers in severe burns. Front Immunol 2022; 13:1054407. [PMID: 36518755 PMCID: PMC9742460 DOI: 10.3389/fimmu.2022.1054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Viral infection, typically disregarded, has a significant role in burns. However, there is still a lack of biomarkers and immunotherapy targets related to viral infections in burns. Methods Virus-related genes (VRGs) that were extracted from Gene Oncology (GO) database were included as hallmarks. Through unsupervised consensus clustering, we divided patients into two VRGs molecular patterns (VRGMPs). Weighted gene co-expression network analysis (WGCNA) was performed to study the relationship between burns and VRGs. Random forest (RF), least absolute shrinkage and selection operator (LASSO) regression, and logistic regression were used to select key genes, which were utilized to construct prognostic signatures by multivariate logistic regression. The risk score of the nomogram defined high- and low-risk groups. We compared immune cells, immune checkpoint-related genes, and prognosis between the two groups. Finally, we used network analysis and molecular docking to predict drugs targeting CD69 and SATB1. Expression of CD69 and SATB1 was validated by qPCR and microarray with the blood sample from the burn patient. Results We established two VRGMPs, which differed in monocytes, neutrophils, dendritic cells, and T cells. In WGCNA, genes were divided into 14 modules, and the black module was correlated with VRGMPs. A total of 65 genes were selected by WGCNA, STRING, and differential expression analysis. The results of GO enrichment analysis were enriched in Th1 and Th2 cell differentiation, B cell receptor signaling pathway, alpha-beta T cell activation, and alpha-beta T cell differentiation. Then the 2-gene signature was constructed by RF, LASSO, and LOGISTIC regression. The signature was an independent prognostic factor and performed well in ROC, calibration, and decision curves. Further, the expression of immune cells and checkpoint genes differed between high- and low-risk groups. CD69 and SATB1 were differentially expressed in burns. Discussion This is the first VRG-based signature (including 2 key genes validated by qPCR) for predicting survival, and it could provide vital guidance to achieve optimized immunotherapy for immunosuppression in burns.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Zexin Zhang
- Department of Burns and Plastic and Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Jiali Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jiaming Liu
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaoqian Zhou
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Liyuan Jiang
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Yu Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Xudong Deng
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Haijing Lai
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China
| | - Hou’an Xiao
- Department of Burns and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, Xi’an, China,*Correspondence: Hou’an Xiao,
| |
Collapse
|
10
|
Mulder PPG, Koenen HJPM, Vlig M, Joosten I, de Vries RBM, Boekema BKHL. Burn-Induced Local and Systemic Immune Response: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2022; 142:3093-3109.e15. [PMID: 35623415 DOI: 10.1016/j.jid.2022.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 10/31/2022]
Abstract
As burn injuries are often followed by a derailed immune response and excessive inflammation, a thorough understanding of the occurring reactions is key to prevent secondary complications. This systematic review, that includes 247 animal studies, shows the post-burn response of 14 different immune cell types involved in immediate and long-term effects, in both wound tissue and circulation. Peripheral blood neutrophil and monocyte numbers increased directly after burns, whereas thrombocyte numbers increased near the end of the first week. Lymphocyte numbers, however, were decreased for at least two weeks. In burn wound tissue, neutrophil and macrophage numbers accumulated during the first three weeks. Burns also altered cellular functions as we found increased migratory potential of leukocytes, impaired antibacterial activity of neutrophils and enhanced inflammatory mediator production by macrophages. Neutrophil surges were positively associated with burn size and were highest in rats. Altogether, this comprehensive overview of the temporal immune cell dynamics shows that unlike normal wound healing, burn injury induces a long-lasting inflammatory response. It provides a fundamental research basis to improve experimental set-ups, burn care and outcome.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Association of Dutch Burn Centres (ADBC), Preclinical Research, Beverwijk, the Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres (ADBC), Preclinical Research, Beverwijk, the Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bouke K H L Boekema
- Association of Dutch Burn Centres (ADBC), Preclinical Research, Beverwijk, the Netherlands
| |
Collapse
|
11
|
Qin J, Chen F, Wu P, Sun G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front Bioeng Biotechnol 2022; 10:841583. [PMID: 35299645 PMCID: PMC8921732 DOI: 10.3389/fbioe.2022.841583] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Wound healing is an evolved dynamic biological process. Though many research and clinical approaches have been explored to restore damaged or diseased skin, the current treatment for deep cutaneous injuries is far from being perfect, and the ideal regenerative therapy remains a significant challenge. Of all treatments, bioengineered scaffolds play a key role and represent great progress in wound repair and skin regeneration. In this review, we focus on the latest advancement in biomaterial scaffolds for wound healing. We discuss the emerging philosophy of designing biomaterial scaffolds, followed by precursor development. We pay particular attention to the therapeutic interventions of bioengineered scaffolds for cutaneous wound healing, and their dual effects while conjugating with bioactive molecules, stem cells, and even immunomodulation. As we review the advancement and the challenges of the current strategies, we also discuss the prospects of scaffold development for wound healing.
Collapse
Affiliation(s)
- Jianghui Qin
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Fang Chen
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
12
|
Lactate dehydrogenase activity staining demonstrates time-dependent immune cell infiltration in human ex-vivo burn-injured skin. Sci Rep 2021; 11:21249. [PMID: 34711882 PMCID: PMC8553775 DOI: 10.1038/s41598-021-00644-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Burn injuries constitute one of the most serious accidental injuries. Increased metabolic rate is a hallmark feature of burn injury. Visualising lactate dehydrogenase (LDH) activity has been previously used to identify metabolic activity differences, hence cell viability and burn depth in burn skin. LDH activity was visualised in injured and uninjured skin from 38 sub-acute burn patients. LDH activity aided the identification of spatially correlating immunocompetent cells in a sub-group of six patients. Desorption Electrospray Ionisation Mass Spectrometry Imaging (DESI MSI) was used to describe relative lactate and pyruvate abundance in burned and uninjured tissue. LDH activity was significantly increased in the middle and deep regions of burnt skin compared with superficial areas in burnt skin and uninjured tissue and positively correlated with post-burn time. Regions of increased LDH activity showed high pyruvate and low lactate abundance when examined with DESI-MSI. Areas of increased LDH activity exhibited cellular infiltration, including CD3 + and CD4 + T-lymphocytes and CD68 + macrophages. Our data demonstrate a steady increase in functional LDH activity in sub-acute burn wounds linked to cellular infiltration. The cell types associated are related to tissue restructuring and inflammation. This region in burn wounds is likely the focus of dysregulated inflammation and hypermetabolism.
Collapse
|
13
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
14
|
Wu P, Liang Y, Sun G. Engineering immune-responsive biomaterials for skin regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:61-71. [PMID: 35837252 PMCID: PMC9255827 DOI: 10.3877/cma.j.issn.2096-112x.2021.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
The progress of biomaterials and tissue engineering has led to significant advances in wound healing, but the clinical therapy to regenerate perfect skin remains a great challenge. The implantation of biomaterial scaffolds to heal wounds inevitably leads to a host immune response. Many recent studies revealed that the immune system plays a significant role in both the healing process and the outcome. Immunomodulation or immuno-engineering has thus become a promising approach to develop pro-regenerative scaffolds for perfect skin regeneration. In this paper, we will review recent advancements in immunomodulating biomaterials in the field of skin repair and regeneration, and discuss strategies to modulate the immune response by tailoring the chemical, physical and biological properties of the biomaterials. Understanding the important role of immune responses and manipulating the inherent properties of biomaterials to regulate the immune reaction are approaches to overcome the current bottleneck of skin repair and regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Yangyang Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China,Corresponding author: Guoming Sun,
| |
Collapse
|
15
|
Molecular Changes Underlying Hypertrophic Scarring Following Burns Involve Specific Deregulations at All Wound Healing Stages (Inflammation, Proliferation and Maturation). Int J Mol Sci 2021; 22:ijms22020897. [PMID: 33477421 PMCID: PMC7831008 DOI: 10.3390/ijms22020897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive connective tissue accumulation, a hallmark of hypertrophic scaring, results in progressive deterioration of the structure and function of organs. It can also be seen during tumor growth and other fibroproliferative disorders. These processes result from a wide spectrum of cross-talks between mesenchymal, epithelial and inflammatory/immune cells that have not yet been fully understood. In the present review, we aimed to describe the molecular features of fibroblasts and their interactions with immune and epithelial cells and extracellular matrix. We also compared different types of fibroblasts and their roles in skin repair and regeneration following burn injury. In summary, here we briefly review molecular changes underlying hypertrophic scarring following burns throughout all basic wound healing stages, i.e. during inflammation, proliferation and maturation.
Collapse
|
16
|
Cahill LA, Guo F, Nguyen J, Zhang F, Seshadri A, Keegan J, Hauser CJ, Otterbein LE, Robson S, Shaefi S, Yaffe MB, Lederer JA. Circulating Factors in Trauma Plasma Activate Specific Human Immune Cell Subsets. Injury 2020; 51:819-829. [PMID: 32171537 PMCID: PMC7441590 DOI: 10.1016/j.injury.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Trauma causes tissue injury that results in the release of damage associated molecular patterns (DAMPs) and other mediators at the site of injury and systemically. Such mediators disrupt immune system homeostasis and may activate multicellular immune responses with downstream complications such as the development of infections and sepsis. To characterize these alterations, we used time-of-flight mass cytometry to determine how trauma plasma affects normal peripheral blood mononuclear cell (PBMC) activation to gain insights into the kinetics and nature of trauma-induced circulating factors on human immune cell populations. A better understanding of the components that activate cells in trauma may aid in the discovery of therapeutic targets. METHODS PBMCs from healthy volunteers were cultured with 5% plasma (healthy, trauma-1day, or trauma-3day) or known DAMPs for 24 h. Samples were stained with a broad immunophenotyping CyTOF antibody panel. Multiplex (Luminex) cytokine assays were used to measure differences in multiple cytokine levels in healthy and trauma plasma samples. RESULTS Plasma from day 1, but not day 3 trauma patients induced the acute expansion of CD11c+ NK cells and CD73+/CCR7+ CD8 T cell subpopulations. Additionally, trauma plasma did not induce CD4+ T cell expansion but did cause a phenotypic shift towards CD38+/CCR7+ expressing CD4+ T cells. Multiplex analysis of cytokines by Luminex showed increased levels of IL-1RA, IL-6 and IL-15 in trauma-1day plasma. Similar to trauma day 1 plasma, PBMC stimulation with known DAMPs showed activation and expansion of CD11c+ NK cells. CONCLUSIONS We hypothesized that circulating factors in trauma plasma would induce phenotypic activation of normal human immune cell subsets. Using an unbiased approach, we identified specific changes in immune cell subsets that respond to trauma plasma. Additionally, CD11c+ NK cells expanded in response to DAMPs and LPS, suggesting they may also be responding to similar components in trauma plasma. Collectively, our data demonstrate that the normal PBMC response to trauma plasma involves marked changes in specific subsets of NK and CD8+ T cell populations. Future studies will target the function of these trauma plasma reactive immune cell subsets. These findings have important implications for the field of acute traumatic injuries.
Collapse
Affiliation(s)
- Laura A Cahill
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fei Guo
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Jennifer Nguyen
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fan Zhang
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Anupamaa Seshadri
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Joshua Keegan
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Carl J Hauser
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Simon Robson
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Shahzad Shaefi
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Michael B Yaffe
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - James A Lederer
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| |
Collapse
|
17
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|
18
|
Vojvodic A, Tirant M, Nardo VD, Lotti T, Wollina U. Immunocompromised Districts of Skin: A Case Series and a Literature Review. Open Access Maced J Med Sci 2019; 7:2969-2975. [PMID: 31850101 PMCID: PMC6910813 DOI: 10.3889/oamjms.2019.680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The concept of immunocompromised districts of skin has been developed by Ruocco and helps to explain certain aspects of the macromorphology of skin diseases. This concept unites the isomorphic response of Koebner and the isotopic response of Wolf. CASE REPORTS We present different cutaneous conditions which can lead to immunocompromised districts of skin such as scars, radiodermatitis, lymphedema, disturbed innervation or mechanical friction etc. Typical and rarer skin disorders associated with them are discussed and illustrated by their observations. CONCLUSION At this moment, we wish to inform dermatologists and non-dermatologists about Ruocco's concept and its implications.
Collapse
Affiliation(s)
- Aleksandra Vojvodic
- Department of Dermatology and Venereology, Military Medical Academy of Belgrade, Belgrade, Serbia
| | - Michael Tirant
- Department of Dermatology, University of Rome “G. Marconi”, Rome, Italy
- Hanoi Medical University, Hanoi, Vietnam
| | - Veronica di Nardo
- Department of Dermatology, University of Rome “G. Marconi”, Rome, Italy
| | - Torello Lotti
- Department of Dermatology, University of Rome “G. Marconi”, Rome, Italy
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany
| |
Collapse
|
19
|
Petrović J, Silva JR, Bannerman CA, Segal JP, Marshall AS, Haird CM, Gilron I, Ghasemlou N. γδ T Cells Modulate Myeloid Cell Recruitment but Not Pain During Peripheral Inflammation. Front Immunol 2019; 10:473. [PMID: 30936874 PMCID: PMC6431614 DOI: 10.3389/fimmu.2019.00473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Circulating immune cells, which are recruited to the site of injury/disease, secrete various inflammatory mediators that are critical to nociception and pain. The role of tissue-resident immune cells, however, remains poorly characterized. One of the first cells to be activated in peripheral tissues following injury are γδT cells, which serve important roles in infection, disease, and wound healing. Using a mouse line lacking these cells, we sought to identify their contribution to inflammatory pain. Three distinct models of peripheral inflammatory pain were used: intraplantar injection of formalin (spontaneous inflammatory pain), incisional wound (acute inflammatory pain), and intraplantar injection of complete Freund's adjuvant (chronic inflammatory pain). Our results show that absence of γδT cells does not alter baseline sensitivity, nor does it result in changes to mechanical or thermal hypersensitivity after tissue injury. Myeloid cell recruitment did show differential changes between models of acute and chronic inflammatory pain. These results were consistent in both male and female mice, suggesting that there are no sex differences in these outcomes. This comprehensive characterization suggests that γδT cells do not contribute to basal sensitivity or the development and maintenance of inflammatory pain.
Collapse
Affiliation(s)
- Jelena Petrović
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jaqueline Raymondi Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada
| | - Courtney A. Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Julia P. Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Abigail S. Marshall
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Cortney M. Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
20
|
Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 2019; 120:26-37. [PMID: 30413825 PMCID: PMC6325111 DOI: 10.1038/s41416-018-0325-1] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy (ACT) refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukaemias and lymphomas. CARs are synthetic receptors that are able to confer antigen-binding and activating functions on T cells with the aim of therapeutically targeting cancer cells. Several factors are essential for CAR T cell therapy to be effective, such as recruitment, activation, expansion and persistence of bioengineered T cells at the tumour site. Despite the advances made in CAR T cell therapy, however, most tumour entities still escape immune detection and elimination. A number of strategies counteracting these problems will need to be addressed in order to render T cell therapy effective in more situations than currently possible. Non-haematological tumours are also the subject of active investigation, but ACT has so far shown only marginal success rates in these cases. New approaches are needed to enhance the ability of ACT to target solid tumours without increasing toxicity, by improving recognition, infiltration, and persistence within tumours, as well as an enhanced resistance to the suppressive tumour microenvironment.
Collapse
Affiliation(s)
- Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| |
Collapse
|
21
|
Sun G, Shen YI, Harmon JW. Engineering Pro-Regenerative Hydrogels for Scarless Wound Healing. Adv Healthc Mater 2018; 7:e1800016. [PMID: 29663707 DOI: 10.1002/adhm.201800016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/17/2018] [Indexed: 12/21/2022]
Abstract
Skin and skin appendages protect the body from harmful environment and prevent internal organs from dehydration. Superficial epidermal wounds usually heal without scarring, however, deep dermal wound healing commonly ends up with nonfunctioning scar formation with substantial loss of skin appendage. Wound healing is one of the most complex dynamic biological processes, during which a cascade of biomolecules combine with stem cell influx and matrix synthesis and synergistically contribute to wound healing at all levels. Although many approaches have been investigated to restore complete skin, the clinically effective therapy is still unavailable and the regeneration of perfect skin still remains a significant challenge. The complete mechanism behind scarless skin regeneration still requires further investigation. Fortunately, recent advancement in regenerative medicine empowers us more than ever to restore tissue in a regenerative manner. Many studies have elucidated and reviewed the contribution of stem cells and growth factors to scarless wound healing. This article focuses on recent advances in scarless wound healing, especially strategies to engineer pro-regenerative scaffolds to restore damaged skin in a regenerative manner.
Collapse
Affiliation(s)
- Guoming Sun
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - Yu-I Shen
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - John W. Harmon
- Department of Surgery and the Hendrix Burn Lab; Johns Hopkins University School of Medicine; Baltimore MD 21224 USA
| |
Collapse
|
22
|
Fan DX, Zhou WJ, Jin LP, Li MQ, Xu XH, Xu CJ. Trophoblast-Derived CXCL16 Decreased Granzyme B Production of Decidual γδ T Cells and Promoted Bcl-xL Expression of Trophoblasts. Reprod Sci 2018; 26:532-542. [PMID: 29909746 DOI: 10.1177/1933719118777638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decidual γδ T cells are known to regulate the function of trophoblasts at the maternal-fetal interface; however, little is known about the molecular mechanisms of cross talk between trophoblast cells and decidual γδ T cells. METHODS Expression of chemokine C-X-C motif ligand 6 (CXCL16) and its receptor CXCR6 was evaluated in first-trimester human villus and decidual tissues by immunohistochemistry. γδ T cells were isolated from first-trimester human deciduae and cocultured with JEG3 trophoblast cells. Cell proliferation and apoptosis-related molecules, together with cytotoxicity factor and cytokine production, were measured by flow cytometry analysis. RESULTS Expression of CXCL16 and CXCR6 was reduced at the maternal-fetal interface in patients who experienced unexplained recurrent spontaneous abortion as compared to healthy pregnancy women. With the administration of pregnancy-related hormones or coculture with JEG3 cells, CXCR6 expression was upregulated on decidual γδ T cells. CXCL16 derived from JEG3 cells caused a decrease in granzyme B production of decidual γδ T cells. In addition, decidual γδ T cells educated by JEG3-derived CXCL16 upregulated the expression of Bcl-xL in JEG3 cells. CONCLUSION This study suggested that the CXCL16/CXCR6 axis may contribute to maintaining normal pregnancy by reducing the secretion of cytotoxic factor granzyme B of decidual γδ T cells and promoting the expression of antiapoptotic marker Bcl-xL of trophoblasts.
Collapse
Affiliation(s)
- Deng-Xuan Fan
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Zhou
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li-Ping Jin
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ming-Qing Li
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiang-Hong Xu
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Cong-Jian Xu
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,3 Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,4 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
INFLUENCE OF LACTOPROTEINUM SOLUTION WITH SORBITOL ON DNA CONTENT OF CELLS OF ENDOCRINE GLANDS ON THE BACKGROUND OF SKIN BURN IN RATS. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-2-64-33-39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
INFLUENCE OF HAES-LX-5% INFUSION SOLUTION ON THE DNA CONTENT OF ENDOCRINE GLANDS CELLS AGAINST THE BACKGROUND OF THERMAL BURN OF SKIN IN RATS. WORLD OF MEDICINE AND BIOLOGY 2017. [DOI: 10.26724/2079-8334-2017-4-62-168-173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|