1
|
Sharma A, Chowdhury S, Mukherjee S, Chowdhury R. LncRNA HULC augments high glucose-associated pancreatic cancer progression and drug resistance by enhancing YAP activity and autophagy. Biol Cell 2024; 116:e2400034. [PMID: 38949568 DOI: 10.1111/boc.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND INFORMATION One of the confounding factors in pancreatic cancer (PC) pathogenesis is hyperglycemia. The molecular mechanism by which high glucose (HG) influences PC severity is poorly understood. Our investigation delved into the impact of lncRNA highly upregulated in liver cancer (HULC) and its interaction with yes-associated protein (YAP) in regulating the fate of pancreatic ductal adenocarcinoma cells (PDAC) under HG-induced conditions. PDAC cells were cultured under normal or HG conditions. We thereafter measured the effect of HG on the viability of PDAC cells, their migration potential and drug resistance properties. The lncRNAs putatively dysregulated in PC and diabetes were shortlisted by bioinformatics analysis followed by wet lab validation of function. RESULTS HG led to enhanced proliferation and drug refractoriness in PDAC cells. HULC was identified as one of the major deregulated lncRNAs following bioinformatics analysis. HULC was found to regulate the expression of the potent transcriptional regulator - YAP through selective histone modifications at the YAP promoter. siRNA-mediated ablation of HULC resulted in a concurrent decrease in YAP transcriptional activity. Importantly, HULC and YAP were found to co-operatively regulate the cellular homeostatic process autophagy, thus inculcating drug resistance and proliferative potential in PDAC cells. Moreover, inhibition of autophagy or YAP led to a decrease in HULC levels, suggesting the existence of an inter-regulatory feedback loop. CONCLUSIONS We observed that HG triggers aggressive properties in PDAC cells. Mechanistically, up-regulation of lncRNA HULC resulted in activation of YAP and differential regulation of autophagy coupled to increased proliferation of PDAC cells. SIGNIFICANCE Inhibition of HULC and YAP may represent a novel therapeutic strategy for PDAC. Furthermore, this study portrays the intricate molecular interplay between HULC, YAP and autophagy in PDAC pathogenesis.
Collapse
MESH Headings
- Humans
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Autophagy/drug effects
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Disease Progression
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Glucose/metabolism
- Glucose/pharmacology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| |
Collapse
|
2
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
3
|
Golbashirzadeh M, Heidari HR, Aghamolayi AA, Fattahi Y, Talebi M, Khosroushahi AY. In vitro siRNA-mediated GPX4 and AKT1 silencing in oxaliplatin resistance cancer cells induces ferroptosis and apoptosis. Med Oncol 2023; 40:279. [PMID: 37632628 DOI: 10.1007/s12032-023-02130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 08/28/2023]
Abstract
Oxaliplatin is a member of platinum-based chemotherapy drugs frequently used in colorectal cancer (CRC). However, resistance to oxaliplatin causes tumor progression and metastasis. Akt1 and Gpx4 are essential regulator genes of apoptosis and ferroptosis pathways. Inhibition of these genes might eradicate oxaliplatin resistance in resistant CRC cells. We compared two cell death strategies to reverse drug resistance in Caco-2 and HT-29 oxaliplatin-resistant cell lines. We used the AKT1-specific siRNA to induce apoptosis. Also, GPX4-specific siRNA and FIN56 were utilized to generate ferroptosis. The effect of these treatments was assessed by reactive oxygen species (ROS) formation, cell viability, and protein expression level assays. Besides, the expression of GPX4, CoQ10, and NRF2 was assessed in both cell lines after treatments. Correctly measuring the expression of these responsible genes and proteins confirms the occurrence of different types of cell death. In addition, the ability of Akt1/ GPX4 siRNA in resensitizing HT-29 and Caco-2 oxaliplatin resistance cells was evaluated. Our finding showed that the upregulation of GPX4/siRNA caused a reduction in GPX4 and CoQ10 expressions in both cell lines. However, the expression level of NRF2 showed the same level in our cell lines, so we observed a downregulation of NRF2 in resistant CRC cell lines. Cell viability assay indicated that induction of ferroptosis by GPX4/siRNA or FIN56 and apoptosis by Akt1/siRNA in resistant cell lines could reverse the oxaliplatin resistance. We concluded that downregulation of Akt1 or Gpx4 could increase the efficacy of oxaliplatin to overcome the resistance compared to FIN56.
Collapse
Affiliation(s)
- Morteza Golbashirzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran
| | - Hamid Reza Heidari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran.
| | - Ali Asghar Aghamolayi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran
| | - Yasin Fattahi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Daneshgah Street, P.O.Box 51548-53431, Tabriz, Iran.
| |
Collapse
|
4
|
Ning B, Liu Y, Huang T, Wei Y. Autophagy and its role in osteosarcoma. Cancer Med 2023; 12:5676-5687. [PMID: 36789748 PMCID: PMC10028045 DOI: 10.1002/cam4.5407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 02/16/2023] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy and preferably occurs in children and adolescents. Despite significant advances in surgery and chemotherapy for OS over the past few years, overall survival rates of OS have reached a bottleneck. Thus, extensive researches aimed at developing new therapeutic targets for OS are urgently needed. Autophagy, a conserved process which allows cells to recycle altered or unused organelles and cellular components, has been proven to play a critical role in multiple biological processes in OS. In this article, we summarized the association between autophagy and proliferation, metastasis, chemotherapy, radiotherapy, and immunotherapy of OS, revealing that autophagy-related genes and pathways could serve as potential targets for OS therapy.
Collapse
Affiliation(s)
- Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Mani N, Daiya A, Chowdhury R, Mukherjee S, Chowdhury S. Epigenetic adaptations in drug-tolerant tumor cells. Adv Cancer Res 2023; 158:293-335. [PMID: 36990535 DOI: 10.1016/bs.acr.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional chemotherapy against cancer is often severely hampered by acquired resistance to the drug. Epigenetic alterations and other mechanisms like drug efflux, drug metabolism, and engagement of survival pathways are crucial in evading drug pressure. Herein, growing evidence suggests that a subpopulation of tumor cells can often tolerate drug onslaught by entering a "persister" state with minimal proliferation. The molecular features of these persister cells are gradually unraveling. Notably, the "persisters" act as a cache of cells that can eventually re-populate the tumor post-withdrawal drug pressure and contribute to acquiring stable drug-resistant features. This underlines the clinical significance of the tolerant cells. Accumulating evidence highlights the importance of modulation of the epigenome as a critical adaptive strategy for evading drug pressure. Chromatin remodeling, altered DNA methylation, and de-regulation of non-coding RNA expression and function contribute significantly to this persister state. No wonder targeting adaptive epigenetic modifications is increasingly recognized as an appropriate therapeutic strategy to sensitize them and restore drug sensitivity. Furthermore, manipulating the tumor microenvironment and "drug holiday" is also explored to maneuver the epigenome. However, heterogeneity in adaptive strategies and lack of targeted therapies have significantly hindered the translation of epigenetic therapy to the clinics. In this review, we comprehensively analyze the epigenetic alterations adapted by the drug-tolerant cells, the therapeutic strategies employed to date, and their limitations and future prospects.
Collapse
|
6
|
Tippett VL, Tattersall L, Ab Latif NB, Shah KM, Lawson MA, Gartland A. The strategy and clinical relevance of in vitro models of MAP resistance in osteosarcoma: a systematic review. Oncogene 2023; 42:259-277. [PMID: 36434179 PMCID: PMC9859755 DOI: 10.1038/s41388-022-02529-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
Over the last 40 years osteosarcoma (OS) survival has stagnated with patients commonly resistant to neoadjuvant MAP chemotherapy involving high dose methotrexate, adriamycin (doxorubicin) and platinum (cisplatin). Due to the rarity of OS, the generation of relevant cell models as tools for drug discovery is paramount to tackling this issue. Four literature databases were systematically searched using pre-determined search terms to identify MAP resistant OS cell lines and patients. Drug exposure strategies used to develop cell models of resistance and the impact of these on the differential expression of resistance associated genes, proteins and non-coding RNAs are reported. A comparison to clinical studies in relation to chemotherapy response, relapse and metastasis was then made. The search retrieved 1891 papers of which 52 were relevant. Commonly, cell lines were derived from Caucasian patients with epithelial or fibroblastic subtypes. The strategy for model development varied with most opting for continuous over pulsed chemotherapy exposure. A diverse resistance level was observed between models (2.2-338 fold) with 63% of models exceeding clinically reported resistance levels which may affect the expression of chemoresistance factors. In vitro p-glycoprotein overexpression is a key resistance mechanism; however, from the available literature to date this does not translate to innate resistance in patients. The selection of models with a lower fold resistance may better reflect the clinical situation. A comparison of standardised strategies in models and variants should be performed to determine their impact on resistance markers. Clinical studies are required to determine the impact of resistance markers identified in vitro in poor responders to MAP treatment, specifically with respect to innate and acquired resistance. A shift from seeking disputed and undruggable mechanisms to clinically relevant resistance mechanisms may identify key resistance markers that can be targeted for patient benefit after a 40-year wait.
Collapse
Affiliation(s)
- Victoria L Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Norain B Ab Latif
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Universiti Kuala Lumpur Royal College of Medicine Perak, No. 3 Jalan Greentown, 30450, Ipoh, Perak, Malaysia
| | - Karan M Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
7
|
Lai HT, Naumova N, Marchais A, Gaspar N, Geoerger B, Brenner C. Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Front Cell Dev Biol 2022; 10:948097. [PMID: 36072341 PMCID: PMC9441498 DOI: 10.3389/fcell.2022.948097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is a pediatric malignant bone tumor that predominantly affects adolescent and young adults. It has high risk for relapse and over the last four decades no improvement of prognosis was achieved. It is therefore crucial to identify new drug candidates for OS treatment to combat drug resistance, limit relapse, and stop metastatic spread. Two acquired hallmarks of cancer cells, mitochondria-related regulated cell death (RCD) and metabolism are intimately connected. Both have been shown to be dysregulated in OS, making them attractive targets for novel treatment. Promising OS treatment strategies focus on promoting RCD by targeting key molecular actors in metabolic reprogramming. The exact interplay in OS, however, has not been systematically analyzed. We therefore review these aspects by synthesizing current knowledge in apoptosis, ferroptosis, necroptosis, pyroptosis, and autophagy in OS. Additionally, we outline an overview of mitochondrial function and metabolic profiles in different preclinical OS models. Finally, we discuss the mechanism of action of two novel molecule combinations currently investigated in active clinical trials: metformin and the combination of ADI-PEG20, Docetaxel and Gemcitabine.
Collapse
Affiliation(s)
- Hong Toan Lai
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Nataliia Naumova
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Gaspar
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
- *Correspondence: Catherine Brenner,
| |
Collapse
|
8
|
Sharma H, Niveditha D, Chowdhury R, Mukherjee S, Chowdhury S. A genome-wide expression profile of noncoding RNAs in human osteosarcoma cells as they acquire resistance to cisplatin. Discov Oncol 2021; 12:43. [PMID: 35201486 PMCID: PMC8777531 DOI: 10.1007/s12672-021-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Recurrence after cisplatin therapy is one of the major hindrances in the management of cancer. This necessitates a deeper understanding of the molecular signatures marking the acquisition of resistance. We therefore modeled the response of osteosarcoma (OS) cells to the first-line chemotherapeutic drug cisplatin. A small population of nondividing cells survived acute cisplatin shock (persisters; OS-P). These cells regained proliferative potential over time re-instating the population again (extended persisters; OS-EP). RESULT In this study, we present the expression profile of noncoding RNAs in untreated OS cells (chemo-naive), OS-P, OS-EP and drug-resistant (OS-R) cells derived from the latter. RNA sequencing was carried out, and thereafter, differential expression (log2-fold ± 1.5; p value ≤ 0.05) of microRNAs (miRNAs) was analyzed in each set. The core set of miRNAs that were uniquely or differentially expressed in each group was identified. Interestingly, we observed that most of each group had their own distinctive set of miRNAs. The miRNAs showing an inverse correlation in expression pattern with mRNAs were further selected, and the key pathways regulated by them were delineated for each group. We observed that pathways such as TNF signaling, autophagy and mitophagy were implicated in multiple groups. CONCLUSION To the best of our knowledge, this is the first study that provides critical information on the variation in the expression pattern of ncRNAs in osteosarcoma cells and the pathways that they might tightly regulate as cells acquire resistance.
Collapse
Affiliation(s)
- Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| | - Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| |
Collapse
|
9
|
Liu D, Wang H, Zhou Z, Mao X, Ye Z, Zhang Z, Tu S, Zhang Y, Cai X, Lan X, Zhang Z, Han B, Zuo G. Integrated bioinformatic analysis and experiment confirmation of the antagonistic effect and molecular mechanism of ginsenoside Rh2 in metastatic osteosarcoma. J Pharm Biomed Anal 2021; 201:114088. [PMID: 33957363 DOI: 10.1016/j.jpba.2021.114088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022]
Abstract
This study aimed to compare the gene expression variation of clinical primary osteosarcoma (OS) and metastatic OS, identify expression profiles and signal pathways related to disease classification, and systematically evaluate the potential anticancer effect and molecular mechanism of ginsenoside Rh2 on OS. A raw dataset (GSE14359), which excluded GSM359137 and GSM359138, was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) and principal component analysis (PCA) were obtained with limma. Pathways enrichment analysis was understood by GSEA app. Rh2-associated targets were harvested and mapped through PharmMapper and Cytoscape 3.4.0. The toxicity of Rh2 was determined using crystal staining and MTT assay on 143B and MG63 cell lines. The relative protein expression was confirmed through Western blot analysis. The mitochondrial membrane potential (△Ψm) was evaluated by JC-1 fluorescence staining. The cell mobility was measured via wound healing and transwell assays. A total of 752 genes were upregulated, while 161 genes were downregulated. GSEA and PCA displayed significant function enrichment and classification. Through PharmMapper and Cytoscape 3.4.0, Rh2 was found to target the mitogen activated protein kinase (MAPK) and PI3K signaling pathways, which are the key pathways in the metastasis of OS. Furthermore, Rh2 induced a concentration-dependent decrease in cell viability and early apoptosis associated with ΔΨm decline, while a non-lethal dose of Rh2 weakened the metastatic capability. Moreover, systematic evaluation showed that promoting the MAPK signaling pathway and inhibiting PI3K/Akt/mTOR were correlated with the anticancer effects of Rh2 on metastatic OS. In conclusion, transcriptome-derived approaches may be beneficial in diagnosing early metastases, and Rh2, a multi-targeting agent, shows promising application potential in suppressing metastatic OS in an MAPK- and PI3K/Akt/mTOR-dependent manner.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhangxu Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohan Mao
- Department of Clinical Laboratory, Yubei District People's Hospital, Chongqing, 401120, China
| | - Ziqian Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhilun Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shixin Tu
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yanlai Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Cai
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Lan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical, University, Luzhou, 646000, China
| | - Baoru Han
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Saini H, Sharma H, Mukherjee S, Chowdhury S, Chowdhury R. Verteporfin disrupts multiple steps of autophagy and regulates p53 to sensitize osteosarcoma cells. Cancer Cell Int 2021; 21:52. [PMID: 33446200 PMCID: PMC7807844 DOI: 10.1186/s12935-020-01720-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant tumor of the bone mostly observed in children and adolescents. The current treatment approach includes neoadjuvant and adjuvant chemotherapy; however, drug resistance often hinders therapy in OS patients. Also, the post-relapse survival of OS patients is as low as 20%. We therefore planned to understand the molecular cause for its poor prognosis and design an appropriate therapeutic strategy to combat the disease. Methods We analyzed OS patient dataset from Gene Expression Omnibus (GEO) and identified the differentially expressed genes and the top deregulated pathways in OS. Subsequently, drugs targeting the major de-regulated pathways were selected and the following assays were conducted- MTT assay to assess cytotoxicity of drugs in OS cells; immunoblotting and immunostaining to analyze key protein expression and localization after drug treatment; LysoTracker staining to monitor lysosomes; Acridine Orange to label acidic vesicles; and DCFDA to measure Reactive Oxygen Species (ROS). Results The differential gene expression analysis from OS patient dataset implicated the striking involvement of cellular processes linked to autophagy and protein processing in the development of OS. We therefore selected the FDA approved drugs, chloroquine (CQ) and verteporfin (VP) known for autophagy inhibitory and proteotoxic functions to explore against OS. Importantly, VP, but not CQ, showed an extensive dose-dependent cytotoxicity. It resulted in autophagy disruption at multiple steps extending from perturbation of early autophagic processes, inhibition of autophagic flux to induction of lysosomal instability. Interestingly, VP treated protein lysates showed a ROS-dependent high molecular weight (HMW) band when probed for P62 and P53 protein. Further, VP triggered accumulation of ubiquitinated proteins as well. Since VP had a pronounced disruptive effect on cellular protein homeostasis, we explored the possibility of simultaneous inhibition of the ubiquitin-proteasomal system (UPS) by MG-132 (MG). Addition of a proteasomal inhibitor significantly aggravated VP induced cytotoxicity. MG co-treatment also led to selective targeting of P53 to the lysosomes. Conclusion Herein, we propose VP and MG induce regulation of autophagy and protein homeostasis which can be exploited as an effective therapeutic strategy against osteosarcoma.
Collapse
Affiliation(s)
- Heena Saini
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Harshita Sharma
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
11
|
Yang L, Zhang C, Chen J, Zhang S, Pan G, Xin Y, Lin L, You Z. Shenmai injection suppresses multidrug resistance in MCF-7/ADR cells through the MAPK/NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2020; 58:276-285. [PMID: 32251615 PMCID: PMC7170370 DOI: 10.1080/13880209.2020.1742167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Context: Shenmai Injection (SMI) is usually used to treat atherosclerotic coronary heart disease and viral myocarditis in China. However, the effect of SMI on multidrug resistance has not been reported.Objective: To investigate the reversal effect of SMI in adriamycin (ADR) resistant breast cancer cell line (MCF-7/ADR) and explore the related molecular mechanisms.Materials and methods: The effect of SMI (0.25, 0.5, 1 mg/mL) to reverse chemoresistance in MCF-7/ADR cells was elucidated by MTT, HPLC-FLD, DAPI staining, flow cytometric analysis, western blotting. At the same time, in vivo test was conducted to probe into the effect of SMI on reversing ADR resistance, and verapamil (10 μM) was used as a positive control.Results: The results showed that the toxicity of ADR to MCF-7/ADR cells was strengthened significantly after treated with SMI (0.25, 0.5, 1 mg/mL), the IC50 of ADR was decreased 54.4-fold. The intracellular concentrations of ADR were increased 2.2-fold (p < 0.05) and ADR accumulation was enhanced in the nuclei (p < 0.05). SMI could strongly enhance the ADR-induced apoptosis and increase intracellular rhodamine 123 accumulation in MCF-7/ADR cells. Additionally, a combination of ADR and SMI (5 mg/kg) could dramatically reduce the weight and volume of tumour (p < 0.05). Furthermore, the results revealed that SMI might reverse MDR via inhibiting ADR-induced activation of the mitogen-activated protein kinase/nuclear factor (NF)-κB pathway to down-regulated the expression of P-glycoprotein (P-gp).Discussion and conclusions: SMI could potentially be used to treat ADR-resistance. This suggests possibilities for future clinical research.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/metabolism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Down-Regulation/drug effects
- Doxorubicin/metabolism
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Combinations
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Humans
- MAP Kinase Signaling System/drug effects
- MCF-7 Cells
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/metabolism
- Rhodamine 123/metabolism
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lin Yang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Chengda Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Jiaoting Chen
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Sheng Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Guixuan Pan
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yanfei Xin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
- Yanfei Xin
| | - Lin Lin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Lin Lin Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou310013, China
| | - Zhenqiang You
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- CONTACT Zhenqiang You
| |
Collapse
|
12
|
Li W, Qin X, Wang B, Xu G, Zhang J, Jiang X, Chen C, Qiu F, Zou Z. MiTF is Associated with Chemoresistance to Cisplatin in A549 Lung Cancer Cells via Modulating Lysosomal Biogenesis and Autophagy. Cancer Manag Res 2020; 12:6563-6573. [PMID: 32801894 PMCID: PMC7398682 DOI: 10.2147/cmar.s255939] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) is often fatal; advanced NSCLC has a 5-year survival rate less than 20%. Platinum-based chemotherapy, in particular, cis-diamminedichloroplatinum (II) (cisplatin or DDP), is employed for the treatment of NSCLC; however, the drug resistance occurs frequently. Autophagy is defined as the process of intracellular degradation of cytoplasmic materials in the lysosome; however, the correlation between autophagy and drug resistance remains controversial. Herein, we investigated the correlation between autophagy and cisplatin resistance and also explored the underlying mechanisms. Methods and Results We demonstrated that DDP-resistant NSCLC A549 (A549/DDP) cells had higher autophagy activity in comparison with its parental A549 cells; DDP treatment induced a time- and dose-dependent decrease of autophagy. Intriguingly, inhibition of autophagy with pharmacological drugs or knockdown of ATG5 or Beclin-1 aggravated cell death induced by DDP treatment, indicating that autophagy played protective roles during DDP treatment. Further mechanistic investigation revealed that DDP treatment could decrease the mRNA expression level of key autophagy-related genes, such as ATG5, Beclin-1, and ATG7, suggesting DDP repressed autophagy at the transcriptional level. The MiTF/TFE family (including TFEB, TFE3, TFEC, and MiTF) were involved in nutrient sensing and organelle biogenesis, and specifically, the lysosomal biogenesis. We found that only MiTF was dramatically decreased upon DDP treatment, and also a profound decrease of lysosomal markers, LAMP-1 or LAMP-2, suggesting that MiTF was involved in the modulation of lysosomal biogenesis and, consequently, the autophagy. Moreover, the knockdown of MiTF resulted in more severe cell death in A549/DDP cells, indicting the substantial correlation between MiTF and cisplatin chemoresistance. Conclusion Our study provides novel insights into the association between MiTF and DDP chemoresistance in NSCLC cells, and suggests targeting MiTF and/or autophagy might be a potential strategy for the reversal of DDP chemoresistance for NSCLC treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
13
|
Lu Y, Liu B, Liu Y, Yu X, Cheng G. Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity. Oncol Lett 2020; 20:993-1000. [PMID: 32724338 PMCID: PMC7377092 DOI: 10.3892/ol.2020.11684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation (IR) is an important cancer treatment approach. However, radioresistance eventually occurs, resulting in poor outcomes in patients with cancer. Radioresistance is associated with multiple signaling pathways, particularly pro-survival signaling pathways. The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is an important signaling pathway that initiates several cellular processes and is regulated by various stimuli, including IR. Although numerous studies have demonstrated the pro-survival effects of active ERK, activation of ERK has also been associated with cell death, indicating that radiosensitization may occur by ERK stimulation. In this context, the present review describes the associations between ERK signaling, cancer and IR, and discusses the association between ERK and its pro-survival function in cancer cells, including stimuli, molecular mechanisms, clinical use of inhibitors and underlying limitations. Additionally, the present review introduces the view that active ERK may induce cell death, and describes the potential factors associated with this process. This review describes the various outcomes induced by active ERK to prompt future studies to aim to enhance radiosensitivity in the treatment of cancer.
Collapse
Affiliation(s)
- Yinliang Lu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
14
|
Niveditha D, Mukherjee S, Majumder S, Chowdhury R, Chowdhury S. A global transcriptomic pipeline decoding core network of genes involved in stages leading to acquisition of drug-resistance to cisplatin in osteosarcoma cells. Bioinformatics 2020; 35:1701-1711. [PMID: 30307528 DOI: 10.1093/bioinformatics/bty868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION Traditional cancer therapy is focused on eradicating fast proliferating population of tumor cells. However, existing evidences suggest survival of sub-population of cancer cells that can resist chemotherapy by entering a 'persister' state of minimal growth. These cells eventually survive to produce cells resistant to drugs. The identifying of appropriate targets that can eliminate the drug-tolerant 'persisters' remains a challenge. Hence, a deeper understanding of the distinctive genetic signatures that lead to resistance is of utmost importance to design an appropriate therapy. RESULTS In this study, deep-sequencing of mRNA was performed in osteosarcoma (OS) cells, exposed to the widely used drug, cisplatin which is an integral part of current treatment regime for OS. Transcriptomic analysis was performed in (i) untreated OS; (ii) persister sub-population of cells post-drug shock; (iii) cells which evade growth bottleneck and (iv) drug-resistant cells obtained after several rounds of drug shock and revival. The transcriptomic signatures and pathways regulated in each group were compared; the transcriptomic pipeline to the acquisition of resistance was analyzed and the core network of genes altered during the process was delineated. Additionally, our transcriptomic data were compared with OS patient data obtained from Gene Ontology Omnibus. We observed a sub-set of genes to be commonly expressed in both data sets with a high correlation (0.81) in expression pattern. To the best of our knowledge, this study is uniquely designed to understand the series of genetic changes leading to the emergence of drug-resistant cells, and implications from this study have a potential therapeutic impact. AVAILABILITY AND IMPLEMENTATION All raw data can be accessed from GEO database (https://www.ncbi.nlm.nih.gov/geo/) under the GEO accession number GSE86053. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
15
|
Gunebakan E, Yalcin E, Cikler Dulger E, Yigitbasi A, Ates N, Caglayan A, Beker MC, Sahin K, Korkaya H, Kilic E. Short-Term Diet Restriction but Not Alternate Day Fasting Prevents Cisplatin-Induced Nephrotoxicity in Mice. Biomedicines 2020; 8:biomedicines8020023. [PMID: 32028692 PMCID: PMC7168297 DOI: 10.3390/biomedicines8020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
Cisplatin (CP) is one of the most preferred platinum-containing antineoplastic drugs. However, even in nontoxic plasma concentrations, it may cause kidney injury. To be able to increase its effective pharmacological dose, its side effects need to be regarded. Diet restriction (DR) has been demonstrated to improve cellular survival in a number of disorders. In this context, we investigated the role of DR in CP-induced nephrotoxicity (CPN). Besides alternate DR, animals were exposed to DR for 3 days prior or after CP treatment. Here, we observed that both 3 days of DR reverses the nephrotoxic effect of CP, which was associated with improved physiological outcomes, such as serum creatine, blood-urea nitrogen and urea. These treatments significantly increased phosphorylation of survival kinases PI3K/Akt and ERK-1/2 and decreased the level of stress kinase JNK were noted. In addition, the activation level of signal transduction mediator p38 MAPK phosphorylation was higher particularly in both three-day DR groups. Next, animals were fed with carbohydrate-, protein- or fat-enriched diets in the presence of CP. Results indicated that not only fasting but also dietary content itself may play a determinant role in the severity of CPN. Our data suggest that DR is a promising approach to reduce CPN by regulating metabolism and cell signaling pathways.
Collapse
Affiliation(s)
- Evrin Gunebakan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (E.G.); (E.Y.); (A.C.); (M.C.B.)
| | - Esra Yalcin
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (E.G.); (E.Y.); (A.C.); (M.C.B.)
| | - Esra Cikler Dulger
- Department of Histology and Embryology, Hamidiye Medical School, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ahmet Yigitbasi
- Department of Internal Medicine, School of Medicine, Trakya University, Edirne 22030, Turkey;
| | - Nilay Ates
- Department of Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey;
| | - Aysun Caglayan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (E.G.); (E.Y.); (A.C.); (M.C.B.)
| | - Mustafa C. Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (E.G.); (E.Y.); (A.C.); (M.C.B.)
| | - Kazim Sahin
- Animal Nutrition Department, School of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (E.G.); (E.Y.); (A.C.); (M.C.B.)
- Correspondence: or ; Tel.: +90-216-681-5344; Fax: +90-212-531-7555
| |
Collapse
|
16
|
Fageria L, Bambroo V, Mathew A, Mukherjee S, Chowdhury R, Pande S. Functional Autophagic Flux Regulates AgNP Uptake And The Internalized Nanoparticles Determine Tumor Cell Fate By Temporally Regulating Flux. Int J Nanomedicine 2019; 14:9063-9076. [PMID: 31819419 PMCID: PMC6875509 DOI: 10.2147/ijn.s222211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) are known to induce the conserved, cellular, homeostatic process- autophagy in tumor cells. Previous studies primarily focus on the pro-survival role of autophagy post AgNP exposure in tumor cells, but seldom on its role in AgNP uptake, or on the functional significance of autophagy temporal dynamics. Our study sheds more light on the extensive crosstalk that exists between AgNP and autophagy, which can be critical to the improvement of AgNP-induced therapeutic effects. Methods β-cyclodextrin (β-CD) coated AgNPs of two different sizes were synthesized by nucleation method and characterized by transmission electron microscopy. Fluorescence microscopy and flow cytometry were used to probe intracellular uptake of AgNPs. Endocytic mechanism of AgNPs was classically analyzed through use of various endocytosis inhibitors. Autophagy was evaluated by immunoblot and fluorescence microscopy. Additionally, immunoblot was performed to monitor Janus Kinase (JNK) signalling, ubiquitination of proteins, expression of endo-lysosomal and apoptotic markers in correlation to AgNP-induced autophagy. Results The intra-cellular route of entry for the small NPs (~9 nm; ss-AgNPs) was different than the large NPs (~19 nm; ls-AgNPs) studied. However, irrespective of their unique route of entry an inhibition of autophagic flux by chloroquine (CQ) reduced uptake of both the AgNPs. In contrary, rapamycin (Rapa), an autophagy inducer enhanced it. Importantly, JNK activation was required for autophagy induction and AgNP uptake. Furthermore, effect of AgNPs on autophagy showed temporal dependency. An enhanced autophagic flux was noted at early time points; however, prolonged exposure resulted in inhibition of flux marked by increase in Rab7, LC3B-II and p62 proteins. Inhibition of flux was associated with lysosomal dysfunction, decreased LAMP1 expression and an increased accumulation of ubiquitinated (Ub) proteins. This resulted in heightened reactive oxygen species (ROS) and consequent cytotoxicity. Conclusion In this study, we observed that a functional autophagic flux aids AgNP uptake, but AgNPs in turn, overtime, inhibits flux and endo-lysosomal function. We provide critical, novel insights into crosstalk between AgNP and autophagy which can be vital to future AgNP-based therapy development.
Collapse
Affiliation(s)
- Leena Fageria
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Vishakha Bambroo
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Angel Mathew
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| | - Surojit Pande
- Department of Chemistry, Pilani Campus, BITS, Pilani, Rajasthan 333031, India
| |
Collapse
|
17
|
Niveditha D, Sharma H, Majumder S, Mukherjee S, Chowdhury R, Chowdhury S. Transcriptomic analysis associated with reversal of cisplatin sensitivity in drug resistant osteosarcoma cells after a drug holiday. BMC Cancer 2019; 19:1045. [PMID: 31690262 PMCID: PMC6833242 DOI: 10.1186/s12885-019-6300-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Resistance to chemotherapy is one of the major hurdles in current cancer therapy. With the increasing occurrence of drug resistance, a paradigm shift in treatment strategy is required. Recently “medication vacation” has emerged as a unique, yet uncomplicated strategy in which withdrawal of drug pressure for certain duration allowed tumor cells to regain sensitivity to the drug. However, little is known about the molecular alterations associated with such an outcome. Methods In this study, human osteosarcoma (OS) cells resistant to the extensively used drug cisplatin, were withdrawn from drug pressure, and thereafter cytotoxic response of the cells to the drug was evaluated. We further performed next-generation RNA sequencing and compared transcriptome between parental (OS), resistant (OS-R) and the drug withdrawn (OS-DW) cells. Differentially expressed transcripts were identified, and biological association network (BAN), gene ontology (GO) and pathway enrichment analysis of the differentially regulated transcripts were performed to identify key events associated with withdrawal of drug pressure. Results Following drug withdrawal, the sensitivity of the cells to the drug was found to be regained. Analysis of the expression profile showed that key genes like, IRAK3, IL6ST, RELA, AKT1, FKBP1A and ADIPOQ went significantly down in OS-DW cells when compared to OS-R. Also, genes involved in Wnt signaling, PI3K-Akt, Notch signaling, and ABC transporters were drastically down-regulated in OS-DW cells compared to OS-R. Although, a very small subset of genes maintained similar expression pattern between OS, OS-R and OS-DW, nonetheless majority of the transcriptomic pattern of OS-DW was distinctively different and unique in comparison to either the drug sensitive OS or drug resistant OS-R cells. Conclusion Our data suggests that though drug withdrawal causes reversal of sensitivity, the transcriptomic pattern does not necessarily show significant match with resistant or parental control cells. We strongly believe that exploration of the molecular basis of drug holiday might facilitate additional potential alternative treatment options for aggressive and resistant cancers.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
18
|
Liao YX, Yu HY, Lv JY, Cai YR, Liu F, He ZM, He SS. Targeting autophagy is a promising therapeutic strategy to overcome chemoresistance and reduce metastasis in osteosarcoma. Int J Oncol 2019; 55:1213-1222. [PMID: 31638211 PMCID: PMC6831203 DOI: 10.3892/ijo.2019.4902] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, mainly affecting children and adolescents. Currently, surgical resection combined with adjuvant chemotherapy has been standardized for OS treatment. Despite great advances in chemotherapy for OS, its clinical prognosis remains far from satisfactory; this is due to chemoresistance, which has become a major obstacle to improving OS treatment. Autophagy, a catabolic process through which cells eliminate and recycle their own damaged proteins and organelles to provide energy, can be activated by chemotherapeutic drugs. Accumulating evidence has indicated that autophagy plays the dual role in the regulation of OS chemoresistance by either promoting drug resistance or increasing drug sensitivity. The aim of the present review was to demonstrate thatautophagy has both a cytoprotective and an autophagic cell death function in OS chemoresistance. In addition, methods to detect autophagy, autophagy inducers and inhibitors, as well as autophagy‑mediated metastasis, immunotherapy and clinical prognosis are also discussed.
Collapse
Affiliation(s)
- Yu-Xin Liao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hai-Yang Yu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ji-Yang Lv
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan-Rong Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fei Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhi-Min He
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shi-Sheng He
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
19
|
Camuzard O, Santucci-Darmanin S, Carle GF, Pierrefite-Carle V. Role of autophagy in osteosarcoma. J Bone Oncol 2019; 16:100235. [PMID: 31011524 PMCID: PMC6460301 DOI: 10.1016/j.jbo.2019.100235] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. It is a highly aggressive tumor with a tendency to spread to the lungs, which are the most common site of metastasis. Advanced osteosarcoma patients with metastasis share a poor prognosis. Despite the use of chemotherapy to treat OS, the 5-year overall survival rate for patients has remained unchanged at 65–70% for the past 20 years. In addition, the 5-year survival of patients with a metastatic disease is around 20%, highlighting the need for novel therapeutic targets. Autophagy is an intracellular degradation process which eliminates and recycles damaged proteins and organelles to improve cell lifespan. In the context of cancer, numerous studies have demonstrated that autophagy is used by tumor cells to repress initial steps of carcinogenesis and/or support the survival and growth of established tumors. In osteosarcoma, autophagy appears to be deregulated and could also act both as a pro or anti-tumoral process. In this manuscript, we aim to review these major findings regarding the role of autophagy in osteosarcoma.
Collapse
Affiliation(s)
- Olivier Camuzard
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Faculté de Médecine Nice, Université Nice Sophia Antipolis, Avenue de Valombrose, 06107 Nice Cédex 2, France.,Service de Chirurgie Réparatrice et de la Main, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Faculté de Médecine Nice, Université Nice Sophia Antipolis, Avenue de Valombrose, 06107 Nice Cédex 2, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Faculté de Médecine Nice, Université Nice Sophia Antipolis, Avenue de Valombrose, 06107 Nice Cédex 2, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Faculté de Médecine Nice, Université Nice Sophia Antipolis, Avenue de Valombrose, 06107 Nice Cédex 2, France
| |
Collapse
|
20
|
Autophagy Regulated by Gain of Function Mutant p53 Enhances Proteasomal Inhibitor-Mediated Cell Death through Induction of ROS and ERK in Lung Cancer Cells. JOURNAL OF ONCOLOGY 2019; 2019:6164807. [PMID: 30723502 PMCID: PMC6339715 DOI: 10.1155/2019/6164807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023]
Abstract
Mutations in p53, especially gain of function (GOF) mutations, are highly frequent in lung cancers and are known to facilitate tumor aggressiveness. Yet, the links between mutant GOF-p53 and lung cancers are not well established. In the present study, we set to examine how we can better sensitize resistant GOF-p53 lung cancer cells through modulation of cellular protein degradation machineries, proteasome and autophagy. H1299 p53 null lung cancer cells were stably transfected with R273H mutant GOF-p53 or wild-type (wt) p53 or empty vectors. The presence of R273H-P53 conferred the cancer cells with drug resistance not only against the widely used chemotherapeutic agents like cisplatin (CDDP) or 5-flurouracil (5-FU) but also against potent alternative modes of therapy like proteasomal inhibition. Therefore, there is an urgent need for new strategies that can overcome GOF-p53 induced drug resistance and prolong patient survival following failure of standard therapies. We observed that the proteasomal inhibitor, peptide aldehyde N-acetyl-leu-leu-norleucinal (commonly termed as ALLN), caused an activation of cellular homeostatic machinery, autophagy in R273H-P53 cells. Interestingly, inhibition of autophagy by chloroquine (CQ) alone or in combination with ALLN failed to induce enhanced cell death in the R273H-P53 cells; however, in contrast, an activation of autophagy by serum starvation or rapamycin increased sensitivity of cells to ALLN-induced cytotoxicity. An activated autophagy was associated with increased ROS and ERK signaling and an inhibition of either ROS or ERK signaling resulted in reduced cytotoxicity. Furthermore, inhibition of GOF-p53 was found to enhance autophagy resulting in increased cell death. Our findings provide novel insights pertaining to mechanisms by which a GOF-p53 harboring lung cancer cell is better sensitized, which can lead to the development of advanced therapy against resistant lung cancer cells.
Collapse
|
21
|
Liu K, Zhang Y, Liu L, Yuan Q. MALAT1 promotes proliferation, migration, and invasion of MG63 cells by upregulation of TGIF2 via negatively regulating miR-129. Onco Targets Ther 2018; 11:8729-8740. [PMID: 30584331 PMCID: PMC6287664 DOI: 10.2147/ott.s182993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose This article aimed to investigate the mechanism by which MALAT1 and miR-129 affected the development of osteosarcoma. Methods Tumor tissues and adjacent tissues of 23 osteosarcoma patients were collected. Normal osteoblasts hFOB1.19 and osteosarcoma cells MG63 were cultured. MG63 cells were transfected and grouped: si-negative control (NC) group, si-MALAT1 group, miR-129 NC group, miR-129 mimics group, p-Empty vector group, p-MALAT1 group, p-MALAT1+ miR-129 mimics group, and p-MALAT1+ si-TGIF2 group. Luciferase reporter assay, Cell Counting Kit-8 assay, Transwell assay, quantitative reverse transcription PCR, Western blot, and Pearson correlation analysis were performed. Results MALAT1 expression in tumor tissues and MG63 cells was increased (P<0.01). High MALAT1 expression predicted poor prognosis of osteosarcoma patients. MG63 cells of si-MALAT1 group exhibited much lower cell viability, migration, and invasive cell numbers when compared with si-NC group (P<0.01). For MG63 cells of miR-129 mimics group, they had markedly lower cell viability, migration, and invasive cell numbers than miR-129 NC group (P<0.01). miR-129 was targetedly and negatively regulated by MALAT1. TGIF2, which was targetedly and negatively regulated by miR-129, was overexpressed in tumor tissues and MG63 cells (P<0.01). miR-129 overexpresison and TGIF2 downregulation significantly reversed the enhanced cell viability, migration, and invasion induced by MALAT1 (P<0.01). Conclusion MALAT1 promotes TGIF2 expression through negative regulation of miR-129, which further promotes the proliferation, migration, and invasion of MG63 cells.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Yingang Zhang
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Liang Liu
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Qiling Yuan
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
22
|
Selvakumar GP, Iyer SS, Kempuraj D, Ahmed ME, Thangavel R, Dubova I, Raikwar SP, Zaheer S, Zaheer A. Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation. Mol Neurobiol 2018; 56:3865-3881. [PMID: 30218400 DOI: 10.1007/s12035-018-1340-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the several neurodegenerative diseases where accumulation of aggregated proteins like α-synuclein occurs. Dysfunction in autophagy leading to this protein build-up and subsequent dopaminergic neurodegeneration may be one of the causes of PD. The mechanisms that impair autophagy remain poorly understood. 1-Methyl-4-phenylpiridium ion (MPP+) is a neurotoxin that induces experimental PD in vitro. Our studies have shown that glia maturation factor (GMF), a brain-localized inflammatory protein, induces dopaminergic neurodegeneration in PD and that suppression of GMF prevents MPP+-induced loss of dopaminergic neurons. In the present study, we demonstrate a molecular action of GMF on the autophagic machinery resulting in dopaminergic neuronal loss and propose GMF-mediated autophagic dysfunction as one of the contributing factors in PD progression. Using dopaminergic N27 neurons, primary neurons from wild type (WT), and GMF-deficient (GMF-KO) mice, we show that GMF and MPP+ enhanced expression of MAPKs increased the mammalian target of rapamycin (mTOR) activation and endoplasmic reticulum stress markers such as phospho-eukaryotic translation initiation factor 2 alpha kinase 3 (p-PERK) and inositol-requiring enzyme 1α (IRE1α). Further, GMF and MPP+ reduced Beclin 1, focal adhesion kinase (FAK) family-interacting protein of 200 kD (FIP200), and autophagy-related proteins (ATGs) 3, 5, 7, 16L, and 12. The combined results demonstrate that GMF affects autophagy through autophagosome formation with significantly reduced lysosomal-associated membrane protein 1/2, and the number of autophagic acidic vesicles. Using primary neurons, we show that MPP+ treatment leads to differential expression and localization of p62/sequestosome and in GMF-KO neurons, there was a marked increase in p62 staining implying autophagy deficiency with very little co-localization of α-synuclein and p62 as compared with WT neurons. Collectively, this study provides a bidirectional role for GMF in executing dopaminergic neuronal death mediated by autophagy that is relevant to PD.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Smita Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA.
| |
Collapse
|
23
|
Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, Aleman L, Chiong M, Garcia L, Bambs C, Troncoso R, Cifuentes M, Morselli E, Ferreccio C, Quest AFG, Criollo A, Lavandero S. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic Biol Med 2018; 124:61-78. [PMID: 29859344 DOI: 10.1016/j.freeradbiomed.2018.05.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs), also known as chronic diseases, are long-lasting conditions that affect millions of people around the world. Different factors contribute to their genesis and progression; however they share common features, which are critical for the development of novel therapeutic strategies. A persistently altered inflammatory response is typically observed in many NCDs together with redox imbalance. Additionally, dysregulated proteostasis, mainly derived as a consequence of compromised autophagy, is a common feature of several chronic diseases. In this review, we discuss the crosstalk among inflammation, autophagy and oxidative stress, and how they participate in the progression of chronic diseases such as cancer, cardiovascular diseases, obesity and type II diabetes mellitus.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alexis Diaz-Vega
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Larissa Aleman
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Garcia
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Bambs
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Shao QH, Zhang XL, Chen Y, Zhu CG, Shi JG, Yuan YH, Chen NH. Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways. Mol Immunol 2018; 99:115-123. [PMID: 29763880 DOI: 10.1016/j.molimm.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022]
Abstract
20C, a novel bibenzyl compound, is isolated from Gastrodia elata. In our previous study, 20C showed protective effects on tunicamycin-induced endoplasmic reticulum stress, rotenone-induced apoptosis and rotenone-induced oxidative damage. However, the anti-neuroinflammatory effect of 20C is still with limited acquaintance. The objective of this study was to confirm the anti-neuroinflammatory effect of 20C on Lipopolysaccharide (LPS)-activated BV-2 cells and further elucidated the underlying molecular mechanisms. In this study, 20C significantly attenuated the protein levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin (IL)-1β, and secretion of nitric oxide (NO) and tumor necrosis factor (TNF)-α induced by Lipopolysaccharide (LPS) in BV-2 cells. Moreover, 20C up-regulated the levels of autophagy-related proteins in LPS-activated BV-2 cells. The requirement of mitogen-activated protein kinases (MAPKs) has been well documented for regulating the process of autophagy. Both 20C and rapamycin enhanced autophagy by suppressing the phosphorylation of MAPKs signaling pathway. Furthermore, 20C treatment significantly inhibited the levels of toll like receptor 4 (TLR4), phosphorylated-protein kinase B (Akt) and phosphorylated-mechanistic target of rapamycin (mTOR), indicating blocking TLR4/Akt/mTOR might be an underlying basis for the anti-inflammatory effect of 20C. These findings suggest that 20C has therapeutic potential for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
25
|
Li K, Guo J, Wu Y, Jin D, Jiang H, Liu C, Qin C. Suppression of YAP by DDP disrupts colon tumor progression. Oncol Rep 2018; 39:2114-2126. [PMID: 29512779 PMCID: PMC5928767 DOI: 10.3892/or.2018.6297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/16/2023] Open
Abstract
Colon cancer is a commonly diagnosed cancer that often has a poor prognosis. Combined with the development of drug resistance to cancer treatment agents the treatment efficacy of colon cancer can be limited. Activation of the oncogene YAP has been shown to be related to colon cancer progression and is associated with poor prognosis, drug resistance and metastasis, even under treatment. Cisplatin (DDP) is a commonly used drug that can control carcinoma progression, although its mechanisms are poorly understood. In the present study, we examined whether DDP specifically suppressed YAP in order to inhibit colon carcinoma progression. Our data revealed that Mst/Yap signaling was unusually activated in colon cancers, promoting cell proliferation and invasion. DDP treatment decreased the expression of YAP at both the transcriptional and post-translational levels, leading to cell cycle arrest, apoptosis and senescence in cancer cells, in addition to decreasing epithelial-to-mesenchymal transition, cell motility and in vitro cell invasion and migration. Ultimately, DDP increased the expression of E-cadherin and decreased the expression of vimentin. The present study also revealed that post-translational regulation of YAP phosphorylation controlled the subcellular distribution between the nucleus and the cytoplasm. In conclusion, the findings of the present study revealed that DDP was a suitable therapeutic candidate for colon cancer that specifically targets the Mst/Yap signaling pathway.
Collapse
Affiliation(s)
- Kun Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiwei Guo
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Dan Jin
- Department of Pain Management, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Hong Jiang
- Department of Anorectal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|