1
|
Kametani Y, Ito R, Manabe Y, Kulski JK, Seki T, Ishimoto H, Shiina T. PBMC-engrafted humanized mice models for evaluating immune-related and anticancer drug delivery systems. Front Mol Biosci 2024; 11:1447315. [PMID: 39228913 PMCID: PMC11368775 DOI: 10.3389/fmolb.2024.1447315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Immune-related drug delivery systems (DDSs) in humanized mouse models are at the forefront of cancer research and serve as bridges between preclinical studies and clinical applications. These systems offer unique platforms for exploring new therapies and understanding their interactions with human cells and the immune system. Here, we focus on a DDS and a peripheral blood mononuclear cell (PBMC)-engrafted humanized mouse model that we recently developed, and consider some of the key components, challenges, and applications to advance these systems towards better cancer treatment on the basis of a better understanding of the immune response. Our DDS is unique and has a dual function, an anticancer effect and a capacity to fine-tune the immune reaction. The PBL-NOG-hIL-4-Tg mouse system is superior to other available humanized mouse systems for the development of such multifunctional DDSs because it supports the rapid reconstruction of an individual donor's immunity and avoids the onset of graft-versus-host disease.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA, Australia
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| |
Collapse
|
2
|
Seki T, Suzuki R, Ohshima S, Manabe Y, Onoue S, Hoshino Y, Yasuda A, Ito R, Kawada H, Ishimoto H, Shiina T, Kametani Y. Liposome-encapsulated progesterone efficiently suppresses B-lineage cell proliferation. Biochem Biophys Rep 2024; 38:101710. [PMID: 38638674 PMCID: PMC11024493 DOI: 10.1016/j.bbrep.2024.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
Progesterone suppresses several ancient pathways in a concentration-dependent manner. Based on these characteristics, progesterone is considered a candidate anticancer drug. However, the concentration of progesterone used for therapy should be higher than the physiological concentration, which makes it difficult to develop progesterone-based anticancer drugs. We previously developed liposome-encapsulated progesterone (Lipo-P4) with enhanced anticancer effects, which strongly suppressed triple-negative breast cancer cell proliferation in humanized mice. In this study, we aimed to clarify whether Lipo-P4 effectively suppresses the proliferation of B-lineage cancer cells. We selected six B-cell lymphoma and two myeloma cell lines, and analyzed their surface markers using flow cytometry. Next, we prepared liposome-encapsulated progesterone and examined its effect on cell proliferation in these B-lineage cancer cells, three ovarian clear cell carcinoma cell lines, two prostate carcinoma cell lines, and one triple-negative breast cancer adenocarcinoma cell line. Lipo-P4 suppressed the proliferation of all cancer cell lines. All B-lineage cell lines, except for the HT line, were more susceptible than the other cell types, regardless of the expression of differentiation markers. Empty liposomes did not suppress cell proliferation. These results suggest that progesterone encapsulated in liposomes efficiently inhibits the proliferation of B-lineage cells and may become an anticancer drug candidate for B-lineage cancers.
Collapse
Affiliation(s)
- Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Rikio Suzuki
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| | - Shion Onoue
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yuki Hoshino
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Hiroshi Kawada
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| |
Collapse
|
3
|
Kaushik S, Kumari L, Deepak RK. Humanized mouse model for vaccine evaluation: an overview. Clin Exp Vaccine Res 2024; 13:10-20. [PMID: 38362371 PMCID: PMC10864885 DOI: 10.7774/cevr.2024.13.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Animal models are essential in medical research for testing drugs and vaccines. These models differ from humans in various respects, so their results are not directly translatable in humans. To address this issue, humanized mice engrafted with functional human cells or tissue can be helpful. We propose using humanized mice that support the engraftment of human hematopoietic stem cells (HSCs) without irradiation to evaluate vaccines that influence patient immunity. For infectious diseases, several types of antigens and adjuvants have been developed and evaluated for vaccination. Peptide vaccines are generally used for their capability to fight cancer and infectious diseases. Evaluation of adjuvants is necessary as they induce inflammation, which is effective for an enhanced immune response but causes adverse effects in some individuals. A trial can be done on humanized mice to check the immunogenicity of a particular adjuvant and peptide combination. Messenger RNA has also emerged as a potential vaccine against viruses. These vaccines need to be tested with human immune cells because they work by producing a particular peptide of the pathogen. Humanized mice with human HSCs that can produce both myeloid and lymphoid cells show a similar immune response that these vaccines will produce in a patient.
Collapse
Affiliation(s)
| | - Lata Kumari
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
4
|
Kametani Y, Ito R, Ohshima S, Manabe Y, Ohno Y, Shimizu T, Yamada S, Katano N, Kirigaya D, Ito K, Matsumoto T, Tsuda B, Kashiwagi H, Goto Y, Yasuda A, Maeki M, Tokeshi M, Seki T, Fukase K, Mikami M, Ando K, Ishimoto H, Shiina T. Construction of the systemic anticancer immune environment in tumour-bearing humanized mouse by using liposome-encapsulated anti-programmed death ligand 1 antibody-conjugated progesterone. Front Immunol 2023; 14:1173728. [PMID: 37492571 PMCID: PMC10364058 DOI: 10.3389/fimmu.2023.1173728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Immune checkpoint inhibitors highlight the importance of anticancer immunity. However, their clinical utility and safety are limited by the low response rates and adverse effects. We focused on progesterone (P4), a hormone produced by the placenta during pregnancy, because it has multiple biological activities related to anticancer and immune regulation effects. P4 has a reversible immune regulatory function distinct from that of the stress hormone cortisol, which may drive irreversible immune suppression that promotes T cell exhaustion and apoptosis in patients with cancer. Because the anticancer effect of P4 is induced at higher than physiological concentrations, we aimed to develop a new anticancer drug by encapsulating P4 in liposomes. In this study, we prepared liposome-encapsulated anti-programmed death ligand 1 (PD-L1) antibody-conjugated P4 (Lipo-anti-PD-L1-P4) and evaluated the effects on the growth of MDA-MB-231 cells, a PD-L1-expressing triple-negative breast cancer cell line, in vitro and in NOG-hIL-4-Tg mice transplanted with human peripheral blood mononuclear cells (humanized mice). Lipo-anti-PD-L1-P4 at physiological concentrations reduced T cell exhaustion and proliferation of MDA-MB-231 in vitro. Humanized mice bearing MDA-MB-231 cells expressing PD-L1 showed suppressed tumor growth and peripheral tissue inflammation. The proportion of B cells and CD4+ T cells decreased, whereas the proportion of CD8+ T cells increased in Lipo-anti-PD-L1-P4-administrated mice spleens and tumor-infiltrated lymphocytes. Our results suggested that Lipo-anti-PD-L1-P4 establishes a systemic anticancer immune environment with minimal toxicity. Thus, the use of P4 as an anticancer drug may represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| | - Yusuke Ohno
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Human Disease Model Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Tomoka Shimizu
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Soga Yamada
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Nagi Katano
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daiki Kirigaya
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Banri Tsuda
- Department of Palliative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hirofumi Kashiwagi
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Yumiko Goto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | | | - Manabu Tokeshi
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| | - Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
5
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Kashiwagi H, Seki T, Oshima S, Ohno Y, Shimizu T, Yamada S, Katano N, Goto Y, Yasuda A, Tsuda B, Ito R, Izumi SI, Ishimoto H, Shiina T, Kametani Y. High-progesterone environment preserves T cell competency by evading glucocorticoid effects on immune regulation. Front Immunol 2022; 13:1000728. [PMID: 36203559 PMCID: PMC9530059 DOI: 10.3389/fimmu.2022.1000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Progesterone (P4) and glucocorticoid (GC) play crucial roles in the immunoregulation of a mother to accept and maintain a semi-allogenic fetus. P4 concentration increases during pregnancy and becomes much higher in the placenta than in the other peripheral tissues, wherein the concentration of cortisol (COR), the most abundant GC and a strong immunosuppressor, remains uniform throughout the rest of the body. Here, we evaluated the effect of a high-P4 environment on pregnant immunity by comparing it with COR. Naïve T cell proportion increased transiently in peripheral blood of pregnant women just after delivery and decreased after one month. T cells stimulated with superantigen toxic-shock-syndrome-1 (TSST-1) in the presence of P4 stayed in the naïve state and did not increase, irrespective of the presence of COR, and reactive T cells could not survive. Treatment of T cells with P4 without T cell receptor (TCR) stimulation transiently suppressed T cell activation and proliferation, whereas the levels remain unaltered if P4 was not given before stimulation. Comparison of the engraftment and response against specific antigens using hu-PBL-NOG-hIL-4-Tg mice showed that P4-pretreated lymphocytes preserved CD62L expression and engrafted effectively in the spleen. Moreover, they produced antigen-specific antibodies, whereas COR-pretreated lymphocytes did not. These results suggest that a high-P4 environment suppresses T cell activation and induces T cell migration into lymphoid tissues, where they maintain the ability to produce anti-pathogen antibodies, whereas COR does not preserve T cell function. The mechanism may be pivotal in maintaining non-fetus-specific T cell function in pregnancy.
Collapse
Affiliation(s)
- Hirofumi Kashiwagi
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Shino Oshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yusuke Ohno
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Tomoka Shimizu
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Soga Yamada
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Nagi Katano
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yumiko Goto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Banri Tsuda
- Department of Palliative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shun-ichiro Izumi
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
- *Correspondence: Yoshie Kametani, ;
| |
Collapse
|
7
|
Insights into mechanisms of graft-versus-host disease through humanised mouse models. Biosci Rep 2022; 42:231673. [PMID: 35993192 PMCID: PMC9446388 DOI: 10.1042/bsr20211986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic haematopoietic stem cell transplantation (HSCT) for the treatment of haematological cancers and other blood-related disorders. GVHD is an inflammatory disorder, where the transplanted donor immune cells can mediate an immune response against the recipient and attack host tissues. Despite over 60 years of research, broad-range immune suppression is still used to prevent or treat GVHD, leading to an increased risk of cancer relapse and infection. Therefore, further insights into the disease mechanisms and development of predictive and prognostic biomarkers are key to improving outcomes and reducing GVHD development following allogeneic HSCT. An important preclinical tool to examine the pathophysiology of GVHD and to understand the key mechanisms that lead to GVHD development are preclinical humanised mouse models. Such models of GVHD are now well-established and can provide valuable insights into disease development. This review will focus on models where human peripheral blood mononuclear cells are injected into immune-deficient non-obese diabetic (NOD)-scid-interleukin-2(IL-2)Rγ mutant (NOD-scid-IL2Rγnull) mice. Humanised mouse models of GVHD can mimic the clinical setting for GVHD development, with disease progression and tissues impacted like that observed in humans. This review will highlight key findings from preclinical humanised mouse models regarding the role of donor human immune cells, the function of cytokines and cell signalling molecules and their impact on specific target tissues and GVHD development. Further, specific therapeutic strategies tested in these preclinical models reveal key molecular pathways important in reducing the burden of GVHD following allogeneic HSCT.
Collapse
|
8
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
9
|
HER2-antigen-specific humoral immune response in breast cancer lymphocytes transplanted in hu-PBL hIL-4 NOG mice. Sci Rep 2021; 11:12798. [PMID: 34140620 PMCID: PMC8211648 DOI: 10.1038/s41598-021-92311-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
The status of humoral immunity of cancer patients is not clear compared to cellular immunity because the ability of specific antibody production is difficult to analyze in vitro. We previously developed a humanized mouse model to evaluate antigen-specific antibody production by transplanting human peripheral blood mononuclear cells (PBMCs) into NOG-hIL-4-Tg mice (hu-PBL hIL-4 NOG). In this study, these mice were transplanted with PBMCs derived from breast cancer patients (BC) and immunized with a human epidermal growth factor receptor 2 (HER2) peptide, CH401MAP, to analyze humoral immunity of BCs. The hu-PBL hIL-4 NOG mice recapitulated immune environment of BCs as the ratio of CD8+/CD4+T cells was lower and that of PD-1 + T cells was higher compared to healthy donors (HDs). Diverse clusters were detected in BC-mouse (BC-M) plasma components involving immunoglobulins and complements unlike HD-M, and there was a significant diversity in CH401MAP-specific IgG titers in BC-M. The number of B cell clones producing high CH401MAP-specific IgG was not increased by immunization in BC-M unlike HD-M. These results demonstrated that the humoral immunity of BCs appeared as diverse phenotypes different from HDs in hu-PBL hIL-4 NOG mice, which may provide important information for the study of personalized medicine.
Collapse
|
10
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Humanized Mice as an Effective Evaluation System for Peptide Vaccines and Immune Checkpoint Inhibitors. Int J Mol Sci 2019; 20:ijms20246337. [PMID: 31888191 PMCID: PMC6940818 DOI: 10.3390/ijms20246337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide vaccination was developed for the prevention and therapy of acute and chronic infectious diseases and cancer. However, vaccine development is challenging, because the patient immune system requires the appropriate human leukocyte antigen (HLA) recognition with the peptide. Moreover, antigens sometimes induce a low response, even if the peptide is presented by antigen-presenting cells and T cells recognize it. This is because the patient immunity is dampened or restricted by environmental factors. Even if the immune system responds appropriately, newly-developed immune checkpoint inhibitors (ICIs), which are used to increase the immune response against cancer, make the immune environment more complex. The ICIs may activate T cells, although the ratio of responsive patients is not high. However, the vaccine may induce some immune adverse effects in the presence of ICIs. Therefore, a system is needed to predict such risks. Humanized mouse systems possessing human immune cells have been developed to examine human immunity in vivo. One of the systems which uses transplanted human peripheral blood mononuclear cells (PBMCs) may become a new diagnosis strategy. Various humanized mouse systems are being developed and will become good tools for the prediction of antibody response and immune adverse effects.
Collapse
|
12
|
Ito R, Maruoka S, Gon Y, Katano I, Takahashi T, Ito M, Izuhara K, Nunomura S. Recent Advances in Allergy Research Using Humanized Mice. Int J Mol Sci 2019; 20:ijms20112740. [PMID: 31167385 PMCID: PMC6600417 DOI: 10.3390/ijms20112740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022] Open
Abstract
The prevalence rates of allergic diseases are increasing worldwide, particularly in industrial countries. To date, many mouse models have been generated for allergy research; studies conducted using these models have suggested the importance of cross-talk between immune cells and tissue-resident non-immune cells in the onset of allergic diseases. However, there are several differences between the immune systems of rodents and humans, and human studies are limited. Thus, mice reconstituted with human immune cells are a novel tool for the preclinical evaluation of the efficacy and safety of developing drugs. Genetic technologies for generating humanized mice have improved markedly in recent years. In this review, we will discuss recent progress in allergy research using humanized mice and introduce our recent humanized mouse model of airway inflammation in human immune cells.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals (CIEA), Kawasaki 210-0821, Japan.
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Ikumi Katano
- Central Institute for Experimental Animals (CIEA), Kawasaki 210-0821, Japan.
| | - Takeshi Takahashi
- Central Institute for Experimental Animals (CIEA), Kawasaki 210-0821, Japan.
| | - Mamoru Ito
- Central Institute for Experimental Animals (CIEA), Kawasaki 210-0821, Japan.
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-0937, Japan.
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-0937, Japan.
| |
Collapse
|
13
|
Shultz LD, Keck J, Burzenski L, Jangalwe S, Vaidya S, Greiner DL, Brehm MA. Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 2019; 30:123-142. [PMID: 30847553 PMCID: PMC6610695 DOI: 10.1007/s00335-019-09796-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022]
Abstract
With the increase in knowledge resulting from the sequencing of the human genome, the genetic basis for the underlying differences in individuals, their diseases, and how they respond to therapies is starting to be understood. This has formed the foundation for the era of precision medicine in many human diseases that is beginning to be implemented in the clinic, particularly in cancer. However, preclinical testing of therapeutic approaches based on individual biology will need to be validated in animal models prior to translation into patients. Although animal models, particularly murine models, have provided significant information on the basic biology underlying immune responses in various diseases and the response to therapy, murine and human immune systems differ markedly. These fundamental differences may be the underlying reason why many of the positive therapeutic responses observed in mice have not translated directly into the clinic. There is a critical need for preclinical animal models in which human immune responses can be investigated. For this, many investigators are using humanized mice, i.e., immunodeficient mice engrafted with functional human cells, tissues, and immune systems. We will briefly review the history of humanized mice, the remaining limitations, approaches to overcome them and how humanized mouse models are being used as a preclinical bridge in precision medicine for evaluation of human therapies prior to their implementation in the clinic.
Collapse
Affiliation(s)
- Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - James Keck
- The Jackson Laboratory, 1650 Santa Ana Avenue, Sacramento, CA, 95838, USA
| | - Lisa Burzenski
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Sonal Jangalwe
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Shantashri Vaidya
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Dale L Greiner
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Michael A Brehm
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| |
Collapse
|
14
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
15
|
Seki T, Miyamoto A, Ohshima S, Ohno Y, Yasuda A, Tokuda Y, Ando K, Kametani Y. Expression of glucocorticoid receptor shows negative correlation with human B-cell engraftment in PBMC-transplanted NOGhIL-4-Tg mice. Biosci Trends 2018; 12:247-256. [PMID: 29806632 DOI: 10.5582/bst.2018.01083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The humanized mouse system is a promising tool for analyzing human immune responses in vivo. Recently, we developed a new humanized mouse system using the severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG)-hIL-4-Tg mouse, which enabled us to evaluate the human humoral immune response after peripheral blood mononuclear cell (PBMC) transplantation. However, the mechanism by which hIL-4 enhances antigen-specific IgG production in these mice is not clear. In this study, we analyzed the relationship between human lymphocyte subsets and the expression level of the glucocorticoid receptor (GR) to clarify the humoral immune condition in human PBMC-transplanted NOG-hIL-4 mice. The results showed that the human GR mRNA level was significantly lower in NOG-hIL-4-Tg splenocytes than in conventional NOG splenocytes after immunization. Whereas no obvious difference of the proportion of T helper-cell subsets was observed between the NOG and NOG-hIL-4-Tg mouse strains, the B-cell proportion and antigen-specific IgG concentration in plasma showed strong negative correlations with the GR mRNA level. These results suggest that the GR expression level was changed in PBMCs in the humanized NOG-hIL-4-Tg mice, which may support B-cell survival and function in the mouse system.
Collapse
Affiliation(s)
- Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine.,Department of Breast and Endocrine Surgery, Tokai University School of Medicine
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine
| | - Yusuke Ohno
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine
| | - Yutaka Tokuda
- Department of Breast and Endocrine Surgery, Tokai University School of Medicine
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine.,Institute of Advanced Biosciences, Tokai University
| |
Collapse
|