1
|
Maistriaux L, Foulon V, Fievé L, Xhema D, Evrard R, Manon J, Coyette M, Bouzin C, Poumay Y, Gianello P, Behets C, Lengelé B. Reconstruction of the human nipple-areolar complex: a tissue engineering approach. Front Bioeng Biotechnol 2024; 11:1295075. [PMID: 38425730 PMCID: PMC10902434 DOI: 10.3389/fbioe.2023.1295075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Introduction: Nipple-areolar complex (NAC) reconstruction after breast cancer surgery is challenging and does not always provide optimal long-term esthetic results. Therefore, generating a NAC using tissue engineering techniques, such as a decellularization-recellularization process, is an alternative option to recreate a specific 3D NAC morphological unit, which is then covered with an in vitro regenerated epidermis and, thereafter, skin-grafted on the reconstructed breast. Materials and methods: Human NACs were harvested from cadaveric donors and decellularized using sequential detergent baths. Cellular clearance and extracellular matrix (ECM) preservation were analyzed by histology, as well as by DNA, ECM proteins, growth factors, and residual sodium dodecyl sulfate (SDS) quantification. In vivo biocompatibility was evaluated 30 days after the subcutaneous implantation of native and decellularized human NACs in rats. In vitro scaffold cytocompatibility was assessed by static seeding of human fibroblasts on their hypodermal side for 7 days, while human keratinocytes were seeded on the scaffold epidermal side for 10 days by using the reconstructed human epidermis (RHE) technique to investigate the regeneration of a new epidermis. Results: The decellularized NAC showed a preserved 3D morphology and appeared white. After decellularization, a DNA reduction of 98.3% and the absence of nuclear and HLA staining in histological sections confirmed complete cellular clearance. The ECM architecture and main ECM proteins were preserved, associated with the detection and decrease in growth factors, while a very low amount of residual SDS was detected after decellularization. The decellularized scaffolds were in vivo biocompatible, fully revascularized, and did not induce the production of rat anti-human antibodies after 30 days of subcutaneous implantation. Scaffold in vitro cytocompatibility was confirmed by the increasing proliferation of seeded human fibroblasts during 7 days of culture, associated with a high number of living cells and a similar viability compared to the control cells after 7 days of static culture. Moreover, the RHE technique allowed us to recreate a keratinized pluristratified epithelium after 10 days of culture. Conclusion: Tissue engineering allowed us to create an acellular and biocompatible NAC with a preserved morphology, microarchitecture, and matrix proteins while maintaining their cell growth potential and ability to regenerate the skin epidermis. Thus, tissue engineering could provide a novel alternative to personalized and natural NAC reconstruction.
Collapse
Affiliation(s)
- Louis Maistriaux
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Vincent Foulon
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Lies Fievé
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Maude Coyette
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Yves Poumay
- Research Unit for Molecular Physiology (URPhyM), Department of Medicine, Namur Research Institute for Life Sciences (NARILIS), UNamur, Namur, Belgium
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF), Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
3
|
Grosha J, Cho JH, Pasley S, Kilbride P, Zylberberg C, Rolle MW. Engineered Test Tissues: A Model for Quantifying the Effects of Cryopreservation Parameters. ACS Biomater Sci Eng 2023; 9:6198-6207. [PMID: 37802599 DOI: 10.1021/acsbiomaterials.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Engineered tissues are showing promise as implants to repair or replace damaged tissues in vivo or as in vitro tools to discover new therapies. A major challenge of the tissue engineering field is the sample preservation and storage until their transport and desired use. To successfully cryopreserve tissue, its viability, structure, and function must be retained post-thaw. The outcome of cryopreservation is impacted by several parameters, including the cryopreserving agent (CPA) utilized, the cooling rate, and the storage temperature. Although a number of CPAs are commercially available for cell cryopreservation, there are few CPAs designed specifically for tissue cryostorage and recovery. In this study, we present a flexible, relatively high-throughput method that utilizes engineered tissue rings as test tissues for screening the commercially available CPAs and cryopreservation parameters. Engineered test tissues can be fabricated with low batch-to-batch variability and characteristic morphology due to their endogenous extracellular matrix, and they have mechanical properties and a ring format suitable for testing with standard methods. The tissues were grown for 7 days in standard 48-well plates and cryopreserved in standard cryovials. The method allowed for the quantification of metabolic recovery, tissue apoptosis/necrosis, morphology, and mechanical properties. In addition to establishing the method, we tested different CPA formulations, freezing rates, and freezing points. Our proposed method enables timely preliminary screening of CPA formulations and cryopreservation parameters that may improve the storage of engineered tissues.
Collapse
Affiliation(s)
- Jonian Grosha
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Jun-Hung Cho
- Akron Biotech, Boca Raton, Florida 33487, United States
| | | | | | | | - Marsha W Rolle
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
- The Roux Institute, Northeastern University, Portland, Maine 04101, United States
| |
Collapse
|
4
|
Godefroy W, Faivre L, Sansac C, Thierry B, Allain JM, Bruneval P, Agniel R, Kellouche S, Monasson O, Peroni E, Jarraya M, Setterblad N, Braik M, Even B, Cheverry S, Domet T, Albanese P, Larghero J, Cattan P, Arakelian L. Development and qualification of clinical grade decellularized and cryopreserved human esophagi. Sci Rep 2023; 13:18283. [PMID: 37880340 PMCID: PMC10600094 DOI: 10.1038/s41598-023-45610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.
Collapse
Affiliation(s)
- William Godefroy
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France.
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Caroline Sansac
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Paris, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Olivier Monasson
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Elisa Peroni
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Mohamed Jarraya
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint-Louis Plateforme Technologique Centre, Université Paris Cité - Inserm - CNRS, Paris, France
| | - Massymissa Braik
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Benjamin Even
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Sophie Cheverry
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
| | - Patricia Albanese
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Centre MEARY de Thérapie Cellulaire Et Génique, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Pierre Cattan
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| |
Collapse
|
5
|
Potart D, Gluais M, Gaubert A, Da Silva N, Hourques M, Sarrazin M, Izotte J, Mora Charrot L, L'Heureux N. The cell-assembled extracellular matrix: A focus on the storage stability and terminal sterilization of this human "bio" material. Acta Biomater 2023; 166:133-146. [PMID: 37149079 PMCID: PMC7614989 DOI: 10.1016/j.actbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
The Cell-Assembled extracellular Matrix (CAM) is an attractive biomaterial because it provided the backbone of vascular grafts that were successfully implanted in patients, and because it can now be assembled in "human textiles". For future clinical development, it is important to consider key manufacturing questions. In this study, the impact of various storage conditions and sterilization methods were evaluated. After 1 year of dry frozen storage, no change in mechanical nor physicochemical properties were detected. However, storage at 4 °C and room temperature resulted in some mechanical changes, especially for dry CAM, but physicochemical changes were minor. Sterilization modified CAM mechanical and physicochemical properties marginally except for hydrated gamma treatment. All sterilized CAM supported cell proliferation. CAM ribbons were implanted subcutaneously in immunodeficient rats to assess the impact of sterilization on the innate immune response. Sterilization accelerated strength loss but no significant difference could be shown at 10 months. Very mild and transient inflammatory responses were observed. Supercritical CO2 sterilization had the least effect. In conclusion, the CAM is a promising biomaterial since it is unaffected by long-term storage in conditions available in hospitals (hydrated at 4 °C), and can be sterilized terminally (scCO2) without compromising in vitro nor in vivo performance. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering, the use of extracellular matrix (ECM) proteins as a scaffolding biomaterial has become very popular. Recently, many investigators have focused on ECM produced by cells in vitro to produce unprocessed biological scaffolds. As this new kind of "biomaterial" becomes more and more relevant, it is critical to consider key manufacturing questions to facilitate future transition to the clinic. This article presents an extensive evaluation of long-term storage stability and terminal sterilization effects on an extracellular matrix assembled by cells in vitro. We believe that this article will be of great interest to help tissue engineers involved in so-called scaffold-free approaches to better prepare the translation from benchtop to bedside.
Collapse
Affiliation(s)
- Diane Potart
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Maude Gluais
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Alexandra Gaubert
- University of Bordeaux, CNRS, UMR 5320, Inserm, UMR121, ANRA, Bordeaux F-33076, France
| | - Nicolas Da Silva
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Marie Hourques
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Marie Sarrazin
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Julien Izotte
- Animal Facility A2, University of Bordeaux, Bordeaux F-33076, France
| | - Léa Mora Charrot
- Animal Facility A2, University of Bordeaux, Bordeaux F-33076, France
| | - Nicolas L'Heureux
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France.
| |
Collapse
|
6
|
Guimaraes AB, Correia AT, da Silva RS, Dos Santos ES, de Souza Xavier Costa N, Dolhnikoff M, Maizato M, Cestari IA, Pego-Fernandes PM, Guerreiro Cardoso PF. Evaluation of Structural Viability of Porcine Tracheal Scaffolds after 3 and 6 Months of Storage under Three Different Protocols. Bioengineering (Basel) 2023; 10:bioengineering10050584. [PMID: 37237655 DOI: 10.3390/bioengineering10050584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Tracheal replacement with a bioengineered tracheal substitute has been developed for long-segment tracheal diseases. The decellularized tracheal scaffold is an alternative for cell seeding. It is not defined if the storage scaffold produces changes in the scaffold's biomechanical properties. We tested three protocols for porcine tracheal scaffold preservation immersed in PBS and alcohol 70%, in the fridge and under cryopreservation. Ninety-six porcine tracheas (12 in natura, 84 decellularized) were divided into three groups (PBS, alcohol, and cryopreservation). Twelve tracheas were analyzed after three and six months. The assessment included residual DNA, cytotoxicity, collagen contents, and mechanical properties. Decellularization increased the maximum load and stress in the longitudinal axis and decreased the maximum load in the transverse axis. The decellularization of the porcine trachea produced structurally viable scaffolds, with a preserved collagen matrix suitable for further bioengineering. Despite the cyclic washings, the scaffolds remained cytotoxic. The comparison of the storage protocols (PBS at 4 °C, alcohol at 4 °C, and slow cooling cryopreservation with cryoprotectants) showed no significant differences in the amount of collagen and in the biomechanical properties of the scaffolds. Storage in PBS solution at 4 °C for six months did not change the scaffold mechanics.
Collapse
Affiliation(s)
- Alberto Bruning Guimaraes
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Aristides Tadeu Correia
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Ronaldo Soares da Silva
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Elizabete Silva Dos Santos
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Natalia de Souza Xavier Costa
- Laboratorio de Poluicao Atmosferica Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marisa Dolhnikoff
- Laboratorio de Poluicao Atmosferica Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marina Maizato
- Bioengenharia, Instituto do Coração do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Idagene Aparecida Cestari
- Bioengenharia, Instituto do Coração do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Paulo Manuel Pego-Fernandes
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Paulo Francisco Guerreiro Cardoso
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| |
Collapse
|
7
|
Mutsenko V, Anastassopoulos E, Zaragotas D, Simaioforidou A, Tarusin D, Lauterboeck L, Sydykov B, Brunotte R, Brunotte K, Rozanski C, Petrenko AY, Braslavsky I, Glasmacher B, Gryshkov O. Monitoring of freezing patterns within 3D collagen-hydroxyapatite scaffolds using infrared thermography. Cryobiology 2023:S0011-2240(23)00007-X. [PMID: 37062517 DOI: 10.1016/j.cryobiol.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
The importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to -25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf extract from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions ('in air' or 'in bulk CPA'). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 ('in air') vs. 7.71 ± 0.43 ('in bulk CPA', P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 ('in air') vs. 7.68 ± 0.34 ('in bulk CPA', P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen 'in air' were documented for crude leaf homogenate (CLH) from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min compared to Snomax, 5 μg/ml (2.14 ± 0.33 °C and 23.09 ± 0.05), respectively). The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation and optimization of CPA compositions with slow-nucleating properties.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.
| | | | - Dimitris Zaragotas
- Department of Agricultural Engineering Technologists, TEI Thessaly, Larissa, Greece
| | | | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Ricarda Brunotte
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Kai Brunotte
- Institute of Forming Technology and Forming Machines, Leibniz University Hannover, Garbsen, Germany
| | - Corinna Rozanski
- Institute of Building Materials Science, Leibniz University Hannover, Hannover, Germany
| | - Alexander Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
8
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
9
|
Peng B, Du L, Zhang T, Chen J, Xu B. Research progress in decellularized extracellular matrix hydrogels for intervertebral disc degeneration. Biomater Sci 2023; 11:1981-1993. [PMID: 36734099 DOI: 10.1039/d2bm01862d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As one of the most common clinical disorders, low back pain (LBP) influences patient quality of life and causes substantial social and economic burdens. Many factors can result in LBP, the most common of which is intervertebral disc degeneration (IDD). The progression of IDD cannot be alleviated by conservative or surgical treatments, and gene therapy, growth factor therapy, and cell therapy have their own limitations. Recently, research on the use of hydrogel biomaterials for the treatment of IDD has garnered great interest, and satisfactory treatment results have been achieved. This article describes the classification of hydrogels, the methods of decellularized extracellular matrix (dECM) production and the various types of gel formation. The current research on dECM hydrogels for the treatment of IDD is described in detail in this article. First, an overview of the material sources, decellularization methods, and gel formation methods is given. The focus is on research performed over the last three years, which mainly consists of bovine and porcine NP tissues, while for decellularization methods, combinations of several approaches are primarily used. dECM hydrogels have significantly improved mechanical properties after the polymers are cross-linked. The main effects of these gels include induction of stem cell differentiation to intervertebral disc (IVD) cells, good mechanical properties to restore IVD height after polymer cross-linking, and slow release of exosomes. Finally, the challenges and problems still faced by dECM hydrogels for the treatment of IDD are summarised, and potential solutions are proposed. This paper is the first to summarise the research on dECM hydrogels for the treatment of IDD and aims to provide a theoretical reference for subsequent studies.
Collapse
Affiliation(s)
- Bing Peng
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Lilong Du
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Tongxing Zhang
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Beizhengzhong Road, Hunan, 410399, China.
| | - Baoshan Xu
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| |
Collapse
|
10
|
Influence of Storage Conditions on Decellularized Porcine Conjunctiva. Bioengineering (Basel) 2023; 10:bioengineering10030350. [PMID: 36978741 PMCID: PMC10045143 DOI: 10.3390/bioengineering10030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Porcine decellularized conjunctiva (PDC) represents a promising alternative source for conjunctival reconstruction. Methods of its re-epithelialization in vitro with primary human conjunctival epithelial cells (HCEC) have already been established. However, a long-term storage method is required for a simplified clinical use of PDC. This study investigates the influence of several storage variants on PDC. PDC were stored in (1) phosphate-buffered saline solution (PBS) at 4 °C, (2) in glycerol-containing epithelial cell medium (EM/gly) at −80 °C and (3) in dimethyl sulfoxide-containing epithelial cell medium (EM/DMSO) at −196 °C in liquid nitrogen for two and six months, respectively. Fresh PDC served as control. Histological structure, biomechanical parameters, the content of collagen and elastin and the potential of re-epithelialization with primary HCEC under cultivation for 14 days were compared (n = 4–10). In all groups, PDC showed a well-preserved extracellular matrix without structural disruptions and with comparable fiber density (p ≥ 0.74). Collagen and elastin content were not significantly different between the groups (p ≥ 0.18; p ≥ 0.13, respectively). With the exception of the significantly reduced tensile strength of PDC after storage at −196 °C in EM/DMSO for six months (0.46 ± 0.21 MPa, p = 0.02), no differences were seen regarding the elastic modulus, tensile strength and extensibility compared to control (0.87 ± 0.25 MPa; p ≥ 0.06). The mean values of the epithelialized PDC surface ranged from 51.9 ± 8.8% (−196 °C) to 78.3 ± 4.4% (−80 °C) and did not differ significantly (p ≥ 0.35). In conclusion, all examined storage methods were suitable for storing PDC for at least six months. All PDC were able to re-epithelialize, which rules out cytotoxic influences of the storage conditions and suggests preserved biocompatibility for in vivo application.
Collapse
|
11
|
Meran L, Tullie L, Eaton S, De Coppi P, Li VSW. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds. Nat Protoc 2023; 18:108-135. [PMID: 36261633 DOI: 10.1038/s41596-022-00751-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 01/14/2023]
Abstract
Tissue engineering is an interdisciplinary field that combines stem cells and matrices to form functional constructs that can be used to repair damaged tissues or regenerate whole organs. Tissue stem cells can be expanded and functionally differentiated to form 'mini-organs' resembling native tissue architecture and function. The choice of the scaffold is also pivotal to successful tissue reconstruction. Scaffolds may be broadly classified into synthetic or biological depending upon the purpose of the engineered organ. Bioengineered intestinal grafts represent a potential source of transplantable tissue for patients with intestinal failure, a condition resulting from extensive anatomical and functional loss of small intestine and therefore digestive and absorptive capacity. Prior strategies in intestinal bioengineering have predominantly used either murine or pluripotent cells and synthetic or decellularized rodent scaffolds, thus limiting their translation. Microscale models of human intestinal epithelium on shaped hydrogels and synthetic scaffolds are more physiological, but their regenerative potential is limited by scale. Here we present a protocol for bioengineering human intestinal grafts using patient-derived materials in a bioreactor culture system. This includes the isolation, expansion and biobanking of patient-derived intestinal organoids and fibroblasts, the generation of decellularized human intestinal scaffolds from native human tissue and providing a system for recellularization to form transplantable grafts. The duration of this protocol is 12 weeks, and it can be completed by scientists with prior experience of organoid culture. The resulting engineered mucosal grafts comprise physiological intestinal epithelium, matrix and surrounding niche, offering a valuable tool for both regenerative medicine and the study of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Laween Meran
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
- Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Xu R, Treeby BE, Martin E. Experiments and simulations demonstrating the rapid ultrasonic rewarming of frozen tissue cryovials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:517. [PMID: 36732249 DOI: 10.1121/10.0016886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The development of methods to safely rewarm large cryopreserved biological samples remains a barrier to the widespread adoption of cryopreservation. Here, experiments and simulations were performed to demonstrate that ultrasound can increase rewarming rates relative to thermal conduction alone. An ultrasonic rewarming setup based on a custom 444 kHz tubular piezoelectric transducer was designed, characterized, and tested with 2 ml cryovials filled with frozen ground beef. Rewarming rates were characterized in the -20 °C to 5 °C range. Thermal conduction-based rewarming was compared to thermal conduction plus ultrasonic rewarming, demonstrating a tenfold increase in rewarming rate when ultrasound was applied. The maximum recorded rewarming rate with ultrasound was 57° C/min, approximately 2.5 times faster than with thermal conduction alone. Coupled acoustic and thermal simulations were developed and showed good agreement with the heating rates demonstrated experimentally and were also used to demonstrate spatial heating distributions with small (<3° C) temperature differentials throughout the sample when the sample was below 0° C. The experiments and simulations demonstrate the potential for ultrasonic cryovial rewarming with a possible application to large volume rewarming, as faster rewarming rates may improve the viability of cryopreserved tissues and reduce the time needed for cells to regain normal function.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
13
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
14
|
Hannon E, Pellegrini M, Scottoni F, Durkin N, Shibuya S, Lutman R, Proctor TJ, Hutchinson JC, Arthurs OJ, Phylactopoulos DE, Maughan EF, Butler CR, Eaton S, Lowdell MW, Bonfanti P, Urbani L, De Coppi P. Lessons learned from pre-clinical testing of xenogeneic decellularized esophagi in a rabbit model. iScience 2022; 25:105174. [PMID: 36217545 PMCID: PMC9547295 DOI: 10.1016/j.isci.2022.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022] Open
Abstract
Decellularization of esophagi from several species for tissue engineering is well described, but successful implantation in animal models of esophageal replacement has been challenging. The purpose of this study was to assess feasibility and applicability of esophageal replacement using decellularized porcine esophageal scaffolds in a new pre-clinical model. Following surgical replacement in rabbits with a vascularizing muscle flap, we observed successful anastomoses of decellularized scaffolds, cues of early neovascularization, and prevention of luminal collapse by the use of biodegradable stents. However, despite the success of the surgical procedure, the long-term survival was limited by the fragility of the animal model. Our results indicate that transplantation of a decellularized porcine scaffold is possible and vascular flaps may be useful to provide a vascular supply, but long-term outcomes require further pre-clinical testing in a different large animal model.
Collapse
Affiliation(s)
- Edward Hannon
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Paediatric Surgery, Leeds Children’s Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Marco Pellegrini
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Federico Scottoni
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Pediatric Surgery, Regina Margherita Children’s Hospital, Turin 10126, Italy
| | - Natalie Durkin
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Soichi Shibuya
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Roberto Lutman
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Toby J. Proctor
- Centre for Cell, Gene and Tissue Therapies, Royal Free Hospital & University College London, London NW3 2PF, UK
| | - J. Ciaran Hutchinson
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Owen J. Arthurs
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Demetra-Ellie Phylactopoulos
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Elizabeth F. Maughan
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Charing Cross Airway Service, Department of Otolaryngology, Charing Cross Hospital, Imperial Healthcare NHS Trust, London W6 8RF, UK
| | - Colin R. Butler
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,ENT Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark W. Lowdell
- Centre for Cell, Gene and Tissue Therapies, Royal Free Hospital & University College London, London NW3 2PF, UK
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London NW1 1AT, UK,Institute of Immunity & Transplantation, University College London, London NW3 2PP, UK
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK,Faculty of Life Sciences and Medicine, King’s College London, London SE5 8AF, UK
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK,Corresponding author
| |
Collapse
|
15
|
Barbon S, Biccari A, Stocco E, Capovilla G, D’Angelo E, Todesco M, Sandrin D, Bagno A, Romanato F, Macchi V, De Caro R, Agostini M, Merigliano S, Valmasoni M, Porzionato A. Bio-Engineered Scaffolds Derived from Decellularized Human Esophagus for Functional Organ Reconstruction. Cells 2022; 11:cells11192945. [PMID: 36230907 PMCID: PMC9563623 DOI: 10.3390/cells11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70–98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix–cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2–6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Andrea Biccari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Giovanni Capovilla
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Marco Agostini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-96-40-160
| | - Stefano Merigliano
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Michele Valmasoni
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| |
Collapse
|
16
|
Tam PKH, Wong KKY, Atala A, Giobbe GG, Booth C, Gruber PJ, Monone M, Rafii S, Rando TA, Vacanti J, Comer CD, Elvassore N, Grikscheit T, de Coppi P. Regenerative medicine: postnatal approaches. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:654-666. [PMID: 35963270 DOI: 10.1016/s2352-4642(22)00193-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.
Collapse
Affiliation(s)
- Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region, China; Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Kenneth Kak Yuen Wong
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire Booth
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter J Gruber
- Department of Surgery, Yale University, New Haven, CT, USA
| | - Mimmi Monone
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Thomas A Rando
- Paul F Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Vacanti
- Department of Pediatric Surgery, Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Mass General Hospital for Children, Boston, MA, USA
| | - Carly D Comer
- Department of Pediatric Surgery, Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Mass General Hospital for Children, Boston, MA, USA
| | - Nicola Elvassore
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Tracy Grikscheit
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paolo de Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
17
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
18
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
19
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
20
|
Singh M, Park C, Roche ET. Decellularization Following Fixation of Explanted Aortic Valves as a Strategy for Preserving Native Mechanical Properties and Function. Front Bioeng Biotechnol 2022; 9:803183. [PMID: 35071211 PMCID: PMC8770733 DOI: 10.3389/fbioe.2021.803183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical or biological aortic valves are incorporated in physical cardiac simulators for surgical training, educational purposes, and device testing. They suffer from limitations including either a lack of anatomical and biomechanical accuracy or a short lifespan, hence limiting the authentic hands-on learning experience. Medical schools utilize hearts from human cadavers for teaching and research, but these formaldehyde-fixed aortic valves contort and stiffen relative to native valves. Here, we compare a panel of different chemical treatment methods on explanted porcine aortic valves and evaluate the microscopic and macroscopic features of each treatment with a primary focus on mechanical function. A surfactant-based decellularization method after formaldehyde fixation is shown to have mechanical properties close to those of the native aortic valve. Valves treated in this method were integrated into a custom-built left heart cardiac simulator to test their hemodynamic performance. This decellularization, post-fixation technique produced aortic valves which have ultimate stress and elastic modulus in the range of the native leaflets. Decellularization of fixed valves reduced the valvular regurgitation by 60% compared to formaldehyde-fixed valves. This fixation method has implications for scenarios where the dynamic function of preserved valves is required, such as in surgical trainers or device test rigs.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Clara Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
21
|
Jones BC, Shibuya S, Durkin N, De Coppi P. Regenerative medicine for childhood gastrointestinal diseases. Best Pract Res Clin Gastroenterol 2021; 56-57:101769. [PMID: 35331401 DOI: 10.1016/j.bpg.2021.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Several paediatric gastrointestinal diseases result in life-shortening organ failure. For many of these conditions, current therapeutic options are suboptimal and may not offer a cure. Regenerative medicine is an inter-disciplinary field involving biologists, engineers, and clinicians that aims to produce cell and tissue-based therapies to overcome organ failure. Exciting advances in stem cell biology, materials science, and bioengineering bring engineered gastrointestinal cell and tissue therapies to the verge of clinical trial. In this review, we summarise the requirements for bioengineered therapies, the possible sources of the various cellular and non-cellular components, and the progress towards clinical translation of oesophageal and intestinal tissue engineering to date.
Collapse
Affiliation(s)
- Brendan C Jones
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Soichi Shibuya
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie Durkin
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
22
|
Levenson G, Berger A, Demma J, Perrod G, Domet T, Arakelian L, Bruneval P, Broudin C, Jarraya M, Setterblad N, Rahmi G, Larghero J, Cattan P, Faivre L, Poghosyan T. Circumferential esophageal replacement by a decellularized esophageal matrix in a porcine model. Surgery 2021; 171:384-392. [PMID: 34392978 DOI: 10.1016/j.surg.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tissue engineering is an attractive alternative to conventional esophageal replacement techniques using intra-abdominal organs which are associated with a substantial morbidity. The objective was to evaluate the feasibility of esophageal replacement by an allogenic decellularized esophagus in a porcine model. Secondary objectives were to evaluate the benefit of decellularized esophagus recellularization with autologous bone marrow mesenchymal stromal cells and omental maturation of the decellularized esophagus. METHODS Eighteen pigs divided into 4 experimental groups according to mesenchymal stromal cells recellularization and omental maturation underwent a 5-cm long circumferential replacement of the thoracic esophagus. Turbo green florescent protein labelling was used for in vivo mesenchymal stromal cells tracking. The graft area was covered by a stent for 3 months. Clinical and histologic outcomes were analyzed over a 6-month period. RESULTS The median follow-up was 112 days [5; 205]. Two animals died during the first postoperative month, 2 experienced an anastomotic leakage, 13 experienced a graft area stenosis following stent migration of which 3 were sacrificed as initially planned after successful endoscopic treatment. The stent could be removed in 2 animals: the graft area showed a continuous mucosa without stenosis. After 3 months, the graft area showed a tissue specific regeneration with a mature epithelium and muscular cells. Clinical and histologic results were similar across experimental groups. CONCLUSION Circumferential esophageal replacement by a decellularized esophagus was feasible and allowed tissue remodeling toward an esophageal phenotype. We could not demonstrate any benefit provided by the omental maturation of the decellularized esophagus nor its recellularization with mesenchymal stromal cells.
Collapse
Affiliation(s)
- Guillaume Levenson
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department de Chirurgie Viscérale, Oncologique, et Endocrinienne, Paris, France; INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France. https://twitter.com/Levenson_G
| | - Arthur Berger
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France. https://twitter.com/bergerarthur7
| | - Jonathan Demma
- Hadassah Medical Center, Service de Chirurgie Générale, Université Hébraïque de Jerusalem, Jerusalem, Israel
| | - Guillaume Perrod
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France
| | - Thomas Domet
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Lousineh Arakelian
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Patrick Bruneval
- Department of Pathology, Georges-Pompidou European hospital, AP-HP and Université de Paris, Paris, France
| | - Chloe Broudin
- Department of Pathology, Georges-Pompidou European hospital, AP-HP and Université de Paris, Paris, France
| | - Mohamed Jarraya
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Banque de Tissus Humains, Paris, France
| | - Niclas Setterblad
- Plateforme technologique de l'IRSL/ Technological Core Facility, Saint-Louis Research Institute, Saint-louis Hospital, Université de Paris
| | - Gabriel Rahmi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France
| | - Jerome Larghero
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Pierre Cattan
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department de Chirurgie Viscérale, Oncologique, et Endocrinienne, Paris, France; INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France.
| | - Lionel Faivre
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France. https://twitter.com/FaivreLionel1
| | - Tigran Poghosyan
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirugie Viscérale et Oncologique, Paris, France. https://twitter.com/PoghosyanTigra1
| |
Collapse
|
23
|
Gharenaz NM, Movahedin M, Mazaheri Z. Comparison of two methods for prolong storage of decellularized mouse whole testis for tissue engineering application: An experimental study. Int J Reprod Biomed 2021; 19:321-332. [PMID: 33997591 PMCID: PMC8106816 DOI: 10.18502/ijrm.v19i4.9058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/04/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biological scaffolds are derived by the decellularization of tissues or organs. Various biological scaffolds, such as scaffolds for the liver, lung, esophagus, dermis, and human testicles, have been produced. Their application in tissue engineering has created the need for cryopreservation processes to store these scaffolds. Objective The aim was to compare the two methods for prolong storage testicular scaffolds. Materials and Methods In this experimental study, 20 male NMRI mice (8 wk) were sacrificed and their testes were removed and treated with 0.5% sodium dodecyl sulfate followed by Triton X-100 0.5%. The efficiency of decellularization was determined by histology and DNA quantification. Testicular scaffolds were stored in phosphate-buffered saline solution at 4°C or cryopreserved by programmed slow freezing followed by storage in liquid nitrogen. Masson's trichrome staining, Alcian blue staining and immunohistochemistry, collagen assay, and glycosaminoglycan assay were done prior to and after six months of storage under each condition. Results Hematoxylin-eosin staining showed no remnant cells after the completion of decellularization. DNA content analysis indicated that approximately 98% of the DNA was removed from the tissue (p = 0.02). Histological evaluation confirmed the preservation of extracellular matrix components in the fresh and frozen-thawed scaffolds. Extracellular matrix components were decreased by 4°C-stored scaffolds. Cytotoxicity tests with mouse embryonic fibroblast showed that the scaffolds were biocompatible and did not have a harmful effect on the proliferation of mouse embryonic fibroblast cells. Conclusion Our results demonstrated the superiority of the slow freezing method for prolong storage of testicular scaffolds.
Collapse
Affiliation(s)
- Nasrin Majidi Gharenaz
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
24
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Gryshkov O, Mutsenko V, Tarusin D, Khayyat D, Naujok O, Riabchenko E, Nemirovska Y, Danilov A, Petrenko AY, Glasmacher B. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. Int J Mol Sci 2021; 22:3096. [PMID: 33803546 PMCID: PMC8003018 DOI: 10.3390/ijms22063096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell-cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.
Collapse
Affiliation(s)
- Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavsky Street, 61015 Kharkiv, Ukraine; (D.T.); (Y.N.); (A.Y.P.)
| | - Diaa Khayyat
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany;
| | - Ekaterina Riabchenko
- Institute for Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia; (E.R.); (A.D.)
| | - Yuliia Nemirovska
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavsky Street, 61015 Kharkiv, Ukraine; (D.T.); (Y.N.); (A.Y.P.)
| | - Arseny Danilov
- Institute for Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia; (E.R.); (A.D.)
| | - Alexander Y. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavsky Street, 61015 Kharkiv, Ukraine; (D.T.); (Y.N.); (A.Y.P.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
26
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Kheirjou R, Rad JS, Khosroshahi AF, Roshangar L. The useful agent to have an ideal biological scaffold. Cell Tissue Bank 2020; 22:225-239. [PMID: 33222022 DOI: 10.1007/s10561-020-09881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Tissue engineering which is applied in regenerative medicine has three basic components: cells, scaffolds and growth factors. This multidisciplinary field can regulate cell behaviors in different conditions using scaffolds and growth factors. Scaffolds perform this regulation with their structural, mechanical, functional and bioinductive properties and growth factors by attaching to and activating their receptors in cells. There are various types of biological extracellular matrix (ECM) and polymeric scaffolds in tissue engineering. Recently, many researchers have turned to using biological ECM rather than polymeric scaffolds because of its safety and growth factors. Therefore, selection the right scaffold with the best properties tailored to clinical use is an ideal way to regulate cell behaviors in order to repair or improve damaged tissue functions in regenerative medicine. In this review we first divided properties of biological scaffold into intrinsic and extrinsic elements and then explain the components of each element. Finally, the types of scaffold storage methods and their advantages and disadvantages are examined.
Collapse
Affiliation(s)
- Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran.
| |
Collapse
|
28
|
Fang S, Riber SS, Hussein K, Ahlmann AH, Harvald EB, Khan F, Beck HC, Weile LKK, Sørensen JA, Sheikh SP, Riber LP, Andersen DC. Decellularized human umbilical artery: Biocompatibility and in vivo functionality in sheep carotid bypass model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110955. [PMID: 32409090 DOI: 10.1016/j.msec.2020.110955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Sara Schødt Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Kamal Hussein
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
| | - Alexander Høgsted Ahlmann
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Eva Bang Harvald
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Fazal Khan
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Hans Christian Beck
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Centre for Clinical Proteomics, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Louise Katrine Kjær Weile
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Gynaecology and Obstetrics, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Jens Ahm Sørensen
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Plastic Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Søren Paludan Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Lars Peter Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark.
| |
Collapse
|
29
|
Kim IG, Wu Y, Park SA, Cho H, Choi JJ, Kwon SK, Shin JW, Chung EJ. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Tissue Eng Part A 2019; 25:1478-1492. [DOI: 10.1089/ten.tea.2018.0277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Su A. Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jun Jae Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann N Y Acad Sci 2019; 1460:77-87. [PMID: 31667884 PMCID: PMC7027566 DOI: 10.1111/nyas.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
To foster translation and commercialization of tissue-engineered products, preservation methods that do not significantly compromise tissue properties need to be designed and tested. Robust preservation methods will enable the distribution of tissues to third parties for research or transplantation, as well as banking of off-the-shelf products. We recently engineered bone grafts from induced pluripotent stem cells and devised strategies to facilitate a tissue-engineering approach to segmental bone defect therapy. In this study, we tested the effects of two potential preservation methods on the survival, quality, and function of tissue-engineered human bone. Engineered bone grafts were cultured for 5 weeks in an osteogenic environment and then stored in phosphate-buffered saline (PBS) solution at 4 °C or in Synth-a-Freeze™ at -80 °C. After 48 h, samples were warmed up in a water bath at 37 °C, incubated in osteogenic medium, and analyzed 1 and 24 h after revitalization. The results show that while storage in Synth-a-Freeze at -80 °C results in cell death and structural alteration of the extracellular matrix, hypothermic storage in PBS does not significantly affect tissue viability and integrity. This study supports the use of short-term hypothermic storage for preservation and distribution of high-quality tissue-engineered bone grafts for research and future clinical applications.
Collapse
Affiliation(s)
- Edmund Tam
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Madison McGrath
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Anaam Alostaad
- The New York Stem Cell Foundation Research Institute, New York, New York
| | | |
Collapse
|
31
|
Trevisan C, Fallas MEA, Maghin E, Franzin C, Pavan P, Caccin P, Chiavegato A, Carraro E, Boso D, Boldrin F, Caicci F, Bertin E, Urbani L, Milan A, Biz C, Lazzari L, De Coppi P, Pozzobon M, Piccoli M. Generation of a Functioning and Self-Renewing Diaphragmatic Muscle Construct. Stem Cells Transl Med 2019; 8:858-869. [PMID: 30972959 PMCID: PMC6646700 DOI: 10.1002/sctm.18-0206] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Surgical repair of large muscular defects requires the use of autologous graft transfer or prosthetic material. Naturally derived matrices are biocompatible materials obtained by tissue decellularization and are commonly used in clinical practice. Despite promising applications described in the literature, the use of acellular matrices to repair large defects has been only partially successful, highlighting the need for more efficient constructs. Scaffold recellularization by means of tissue engineering may improve not only the structure of the matrix, but also its ability to functionally interact with the host. The development of such a complex construct is challenging, due to the complexity of the native organ architecture and the difficulties in recreating the cellular niche with both proliferative and differentiating potential during growth or after damage. In this study, we tested a mouse decellularized diaphragmatic extracellular matrix (ECM) previously described by our group, for the generation of a cellular skeletal muscle construct with functional features. The decellularized matrix was stored using different conditions to mimic the off‐the‐shelf clinical need. Pediatric human muscle precursors were seeded into the decellularized scaffold, demonstrating proliferation and differentiation capability, giving rise to a functioning three‐dimensional skeletal muscle structure. Furthermore, we exposed the engineered construct to cardiotoxin injury and demonstrated its ability to activate a regenerative response in vitro promoting cell self‐renewal and a positive ECM remodeling. Functional reconstruction of an engineered skeletal muscle with maintenance of a stem cell pool makes this a promising tool toward future clinical applications in diaphragmatic regeneration. stem cells translational medicine2019;8:858&869
Collapse
Affiliation(s)
- Caterina Trevisan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| | - Mario Enrique Alvrez Fallas
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| | - Edoardo Maghin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| | - Chiara Franzin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Piero Pavan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Industrial Engineering, University of Padova, Padova, Italy.,Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Angela Chiavegato
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute for Neuroscience, Padova, Italy
| | - Eugenia Carraro
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Daniele Boso
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | | | - Enrica Bertin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luca Urbani
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Institute of Hepatology, The Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences & Medicine, King's College, London, United Kingdom
| | - Anna Milan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| | - Carlo Biz
- Department of Surgery, Oncology, and Gastroenterology DiSCOG, Orthopaedic Clinic, University of Padova, Padua, Italy
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Michela Pozzobon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Women and Children Health, University of Padova, Padova, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater 2019; 84:208-221. [PMID: 30342283 DOI: 10.1016/j.actbio.2018.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Decellularized biological scaffolds hold great promise in cardiovascular surgery. In order to ensure off-the-shelf availability, routine use of decellularized scaffolds requires tissue banking. In this study, the suitability of cryopreservation, vitrification and freeze-drying for the preservation of decellularized bovine pericardial (DBP) scaffolds was evaluated. Cryopreservation was conducted using 10% DMSO and slow-rate freezing. Vitrification was performed using vitrification solution (VS83) and rapid cooling. Freeze-drying was done using a programmable freeze-dryer and sucrose as lyoprotectant. The impact of the preservation methods on the DBP extracellular matrix structure, integrity and composition was assessed using histology, biomechanical testing, spectroscopic and thermal analysis, and biochemistry. In addition, the cytocompatibility of the preserved scaffolds was also assessed. All preservation methods were found to be suitable to preserve the extracellular matrix structure and its components, with no apparent signs of collagen deterioration or denaturation, or loss of elastin and glycosaminoglycans. Biomechanical testing, however, showed that the cryopreserved DBP displayed a loss of extensibility compared to vitrified or freeze-dried scaffolds, which both displayed similar biomechanical behavior compared to non-preserved control scaffolds. In conclusion, cryopreservation altered the biomechanical behavior of the DBP scaffolds, which might lead to graft dysfunction in vivo. In contrast to cryopreservation and vitrification, freeze-drying is performed with non-toxic protective agents and does not require storage at ultra-low temperatures, thus allowing for a cost-effective and easy storage and transport. Due to these advantages, freeze-drying is a preferable method for the preservation of decellularized pericardium. STATEMENT OF SIGNIFICANCE: Clinical use of DBP scaffolds for surgical reconstructions or substitutions requires development of a preservation technology that does not alter scaffold properties during long-term storage. Conclusive investigation on adverse impacts of the preservation methods on DBP matrix integrity is still missing. This work is aiming to close this gap by studying three potential preservation technologies, cryopreservation, vitrification and freeze-drying, in order to achieve the off-the-shelf availability of DBP patches for clinical application. Furthermore, it provides novel insights for dry-preservation of decellularized xenogeneic scaffolds that can be used in the routine clinical cardiovascular practice, allowing the surgeon the opportunity to choose an ideal implant matching with the needs of each patient.
Collapse
|
33
|
Zambaiti E, Scottoni F, Rizzi E, Russo S, Deguchi K, Eaton S, Pellegata AF, De Coppi P. Whole rat stomach decellularisation using a detergent-enzymatic protocol. Pediatr Surg Int 2019; 35:21-27. [PMID: 30443739 PMCID: PMC6326006 DOI: 10.1007/s00383-018-4372-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Conditions leading to reduced gastric volume are difficult to manage and are associated to poor quality-of-life. Stomach augmentation using a tissue-engineered stomach is a potential solution to restore adequate physiology and food reservoir. Aim of this study was to evaluate the decellularisation of whole rat stomach using a detergent-enzymatic protocol. METHODS Stomachs harvested from rats were decellularised through luminal and vascular cannulation using 24-h detergent-enzymatic treatment and completely characterized by appropriate staining, DNA and Extracellular matrix -component quantifications. RESULTS The detergent-enzymatic protocol allows a complete decellularisation of the gastric tissue, with a complete removal of the DNA with two cycles as confirmed by both quantifications and histological analysis. Extracellular matrix components, collagen, fibronectin, laminin and elastin, were optimally preserved by the treatment, while glycosaminoglycans were reduced. CONCLUSION Gastric tissue can be efficiently decellularised. Scaffolds retained original structure and important components that could enhance integration with other tissues for in vivo transplant. The use of naturally derived material could be potentially considered for the treatment of both congenital and acquired conditions.
Collapse
Affiliation(s)
- Elisa Zambaiti
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Federico Scottoni
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Eleonora Rizzi
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Simone Russo
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Koichi Deguchi
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Alessandro F. Pellegata
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, UCL, Great Ormond Street Institute of Child Health, University College of London, Surgery Offices, 30 Guilford Street, London, WC1N 1EH UK ,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Mallis P, Chachlaki P, Katsimpoulas M, Stavropoulos-Giokas C, Michalopoulos E. Optimization of Decellularization Procedure in Rat Esophagus for Possible Development of a Tissue Engineered Construct. Bioengineering (Basel) 2018; 6:bioengineering6010003. [PMID: 30586900 PMCID: PMC6466343 DOI: 10.3390/bioengineering6010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Current esophageal treatment is associated with significant morbidity. The gold standard therapeutic strategies are stomach interposition or autografts derived from the jejunum and colon. However, severe adverse reactions, such as esophageal leakage, stenosis and infection, accompany the above treatments, which, most times, are life threating. The aim of this study was the optimization of a decellularization protocol in order to develop a proper esophageal tissue engineered construct. Methods: Rat esophagi were obtained from animals and were decellularized. The decellularization process involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS) buffers for 6 h each, followed by incubation in a serum medium. The whole process involved two decellularization cycles. Then, a histological analysis was performed. In addition, the amounts of collagen, sulphated glycosaminoglycans and DNA content were quantified. Results: The histological analysis revealed that only the first decellularization cycle was enough to produce a cellular and nuclei free esophageal scaffold with a proper extracellular matrix orientation. These results were further confirmed by biochemical quantification. Conclusions: Based on the above results, the current decellularization protocol can be applied successfully in order to produce an esophageal tissue engineered construct.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Panagiota Chachlaki
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| |
Collapse
|
35
|
Vadivelu R, Kashaninejad N, Sreejith KR, Bhattacharjee R, Cock I, Nguyen NT. Cryoprotectant-Free Freezing of Cells Using Liquid Marbles Filled with Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43439-43449. [PMID: 30474954 DOI: 10.1021/acsami.8b16236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cryopreservation without cryoprotectant remains a significant challenge for the re-establishment of cell culture after freeze-thaw. Thus, finding an alternative and a simple cryopreservation method is necessary. Liquid marble (LM)-based digital microfluidics is a promising approach for cryoprotectant-free cryopreservation. However, the use of this platform to efficiently preserve samples with low cell density and well-controlled serum concentrations has not been investigated. We addressed this issue by embedding an agarose-containing fetal bovine serum (FBS) inside the LM. A low density of 500 cells/μL of murine 3T3 cells was selected for evaluating the postcryogenic survivability. The effects on the post-thaw cell viability of the concentration of agarose, the amount of FBS inside the agarose, and the volume of the LM were investigated systematically. This paper also presents an analysis on the changes in shape and crack size of post-thawed agarose. The results revealed that the embedded agarose gel serves as a controlled release mechanism of FBS and significantly improves cell viability. Post-thaw recovery sustains major cellular features, such as viability, cell adhesion, and morphology. The platform technology reported here opens up new possibilities to cryopreserve rare biological samples without the toxicity risk of cryoprotectants.
Collapse
|
36
|
Giobbe GG, Zambon A, Vetralla M, Urbani L, Deguchi K, Pantano MF, Pugno NM, Elvassore N, De Coppi P, Spilimbergo S. Preservation over time of dried acellular esophageal matrix. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae4ff] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun 2018; 9:4286. [PMID: 30327457 PMCID: PMC6191423 DOI: 10.1038/s41467-018-06385-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes. Combining decellularised scaffolds with patient-derived cells holds promise for bioengineering of functional tissues. Here the authors develop a two-stage approach to engineer an oesophageal graft that retains the structural organisation of native oesophagus.
Collapse
|
38
|
Luc G, Charles G, Gronnier C, Cabau M, Kalisky C, Meulle M, Bareille R, Roques S, Couraud L, Rannou J, Bordenave L, Collet D, Durand M. Decellularized and matured esophageal scaffold for circumferential esophagus replacement: Proof of concept in a pig model. Biomaterials 2018; 175:1-18. [PMID: 29793088 DOI: 10.1016/j.biomaterials.2018.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Surgical resection of the esophagus requires sacrificing a long portion of it. Its replacement by the demanding gastric pull-up or colonic interposition techniques may be avoided by using short biologic scaffolds composed of decellularized matrix (DM). The aim of this study was to prepare, characterize, and assess the in vivo remodeling of DM and its clinical impact in a preclinical model. A dynamic chemical and enzymatic decellularization protocol of porcine esophagus was set up and optimized. The resulting DM was mechanically and biologically characterized by DNA quantification, histology, and histomorphometry techniques. Then, in vitro and in vivo tests were performed, such as DM recellularization with human or porcine adipose-derived stem cells, or porcine stromal vascular fraction, and maturation in rat omentum. Finally, the DM, matured or not, was implanted as a 5-cm-long esophagus substitute in an esophagectomized pig model. The developed protocol for esophageal DM fulfilled previously established criteria of decellularization and resulted in a scaffold that maintained important biologic components and an ultrastructure consistent with a basement membrane complex. In vivo implantation was compatible with life without major clinical complications. The DM's scaffold in vitro characteristics and in vivo implantation showed a pattern of constructive remodeling mimicking major native esophageal characteristics.
Collapse
Affiliation(s)
- Guillaume Luc
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Guillaume Charles
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Caroline Gronnier
- Univ. Bordeaux, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Magali Cabau
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Charlotte Kalisky
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Mallory Meulle
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Reine Bareille
- Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France
| | - Samantha Roques
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Lionel Couraud
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; LAPVSO, F-31201, Toulouse Cedex 2, France
| | - Johanna Rannou
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Laurence Bordenave
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France
| | - Denis Collet
- CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Marlène Durand
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France.
| |
Collapse
|
39
|
Motoike S, Kajiya M, Komatsu N, Takewaki M, Horikoshi S, Matsuda S, Ouhara K, Iwata T, Takeda K, Fujita T, Kurihara H. Cryopreserved clumps of mesenchymal stem cell/extracellular matrix complexes retain osteogenic capacity and induce bone regeneration. Stem Cell Res Ther 2018; 9:73. [PMID: 29562931 PMCID: PMC5863484 DOI: 10.1186/s13287-018-0826-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) cultured clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. C-MSCs can regulate cellular functions in vitro and can be grafted into a defect site without an artificial scaffold to induce bone regeneration. Long-term cryopreservation of C-MSCs, which can enable them to serve as a ready-to-use cell preparation, may be helpful in developing beneficial cell therapy for bone regeneration. Therefore, the aim of this study was to investigate the effect of cryopreservation on C-MSCs. METHODS MSCs isolated from rat femurs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make a round clumps of cells. The C-MSCs were cryopreserved in cryomedium including 10% dimethyl sulfoxide. RESULTS Cryopreserved C-MSCs retained their 3D structure and did not exhibit a decrease in cell viability. In addition, stem cell marker expression levels and the osteogenic differentiation properties of C-MSCs were not reduced by cryopreservation. However, C-MSCs pretreated with collagenase before cryopreservation showed a lower level of type I collagen and could not retain their 3D structure, and their rates of cell death increased during cryopreservation. Both C-MSC and cryopreserved C-MSC transplantation into rat calvarial defects induced successful bone regeneration. CONCLUSION These data indicate that cryopreservation does not reduce the biological properties of C-MSCs because of its abundant type I collagen. More specifically, cryopreserved C-MSCs could be applicable for novel bone regenerative therapies.
Collapse
Affiliation(s)
- Souta Motoike
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan.
| | - Nao Komatsu
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Manabu Takewaki
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
40
|
Gerli MFM, Guyette JP, Evangelista-Leite D, Ghoshhajra BB, Ott HC. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery. PLoS One 2018; 13:e0191497. [PMID: 29352303 PMCID: PMC5774802 DOI: 10.1371/journal.pone.0191497] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacques Paul Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniele Evangelista-Leite
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian Burns Ghoshhajra
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Harald Christian Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|