1
|
Chaves MA, Ferst JG, Fiorenza MF, Vit FF, da Silveira JC. The Influence of Ovarian-Derived Extracellular Vesicles in Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025. [PMID: 39741214 DOI: 10.1007/102_2024_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells. Additionally, the influence of EVs on the immune responses within the ovary was also addressed. Some attention is given to the potential of EVs as non-invasive biomarkers and therapeutic tools, particularly in addressing conditions like premature ovarian insufficiency and polycystic ovary syndrome. By discussing the existing challenges and emerging research, we hope that this chapter will provide a deeper understanding of EVs' therapeutic potential and offer insights or suggestions for advancing assisted reproductive technologies.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Juliana G Ferst
- Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Mariani F Fiorenza
- Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Franciele F Vit
- Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Juliano C da Silveira
- Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Mukherjee A, Verma A, Das T, Ghosh B, Ghosh Z. Circulating microRNAs in Body Fluid: "Fingerprint" RNA Snippets Deeply Impact Reproductive Biology. Reprod Sci 2024:10.1007/s43032-024-01753-y. [PMID: 39658771 DOI: 10.1007/s43032-024-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Circulating miRNAs (C-miRNAs) occuring in a cell-free form within body fluids and other extracellular environments have garnered attention in recent times. They offer deeper insight into various physiological and pathological processes which include reproductive health. This review delves into their diagnostic potential across a spectrum of reproductive disorders, including conditions affecting ovarian function, male infertility and post pregnancy issues. Through analysis of C-miRNA profiles in bodily fluids, researchers uncover crucial markers indicative of reproductive challenges. Dysregulated C-miRNAs emerge as important players in the progression of several reproductive disorders which is the main focus of this review. Advancements in technology, facilitate precise detection and quantification of C-miRNAs, paving the way for innovative diagnostic approaches. Challenges in studying C-miRNAs, such as their low abundance and variability in expression levels, underscore the need for standardized protocols and rigorous validation methods. Despite these challenges, ongoing research endeavors aim to unravel the complex regulatory roles of C-miRNAs in reproductive biology, with potential implications for clinical practice and therapeutic interventions.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, West Bengal, 741252, India.
| | - Arpana Verma
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Byapti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
3
|
Evans JP, Garcia-Gonzalez F. Applying an evolutionary perspective to assisted reproductive technologies. PNAS NEXUS 2024; 3:pgae512. [PMID: 39691447 PMCID: PMC11650523 DOI: 10.1093/pnasnexus/pgae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Assisted reproductive technologies (ART) are commonly used to address human infertility and to boost livestock production. During ART, procedures such as in vitro fertilization, artificial insemination, and intracytoplasmic sperm injection introduce gametes and embryos to unnatural and potentially stressful conditions that can influence offspring health, often via epigenetic effects. In this perspective we summarize these key risks of ART for embryonic and longer-term offspring fitness, emphasizing the need for experimental research on animal models to determine causal links between ART and offspring fitness across multiple generations. We also highlight how ART can bypass a range of naturally and sexually selected mechanisms that occur in the female reproductive tract and/or via female secretions that ultimately determine which sperm fertilize their eggs. We further argue that this curtailment of female-modulated mechanisms of sperm selection may have important consequences for ART-conceived offspring. We encourage the development of ART methods that better mimic natural processes of sperm selection and embrace the fundamental principles of natural and sexual selection. Ultimately, the aim of this perspective is to encourage dialogue between the fields of evolutionary biology and applied areas of animal and human reproduction.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, 6009 WA, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, 6009 WA, Australia
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| |
Collapse
|
4
|
Gabryś J, Pietras N, Kowal-Mierzwa W, Karnas E, Andronowska A, Nowak A, Kochan J, Bugno-Poniewierska M. Investigating the impact of extracellular vesicle addition during IVM on the fertilization rate of equine oocytes following ICSI. Reprod Biol 2024; 24:100967. [PMID: 39522357 DOI: 10.1016/j.repbio.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The efficacy of in vitro embryo production (IVEP) in equines is relatively limited compared to other species due to the lack of a reliable superovulation technique, limited availability of cumulus oocyte complexes (COCs), low in vitro oocyte maturation (IVM) and fertilization rates. Extracellular vesicles (EVs), which are nanoparticles involved in intercellular signaling in the ovarian environment, have shown potential as supplements to improve oocyte development during IVM. This study tested the hypothesis that EVs from small (< 20 mm) ovarian follicles could enhance fertilization rates in mares. Follicular fluid was collected postmortem, and EVs were isolated and characterized. The IVM process was conducted with or without EVs (200 µg EV protein/ml). EV internalization during IVM was examined using fluorescent labeling and confocal microscopy. Following intracytoplasmic sperm injection (ICSI), presumptive zygotes were cultured in a time-lapse system. Confocal microscopy confirmed EV internalization by COCs. Nanoparticle tracking analysis showed that obtained EVs were submicron-sized, and flow cytometry identified surface markers CD81 and CD63 on a subpopulation of EVs. Transmission electron microscopy revealed the characteristic disk shape of EV isolates. After culture, 196 oocytes (36.84 %) exhibited a first polar body and were subjected to ICSI. The EV-treated group showed a significantly higher fertilization rate (34.7 % vs. 20.2 %; P < 0.05), reduced degeneration, and increased cleavage efficiency (P < 0.1). Despite early embryonic arrest in both groups, these results suggest that follicular fluid-derived EVs could play a supportive role in equine IVF procedures.
Collapse
Affiliation(s)
- Julia Gabryś
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Natalia Pietras
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Wiktoria Kowal-Mierzwa
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Agnieszka Nowak
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Joanna Kochan
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
5
|
Garcia-Canovas M, Parrilla I, Cuello C, Gil MA, Martinez EA. Swine in vitro embryo production: Potential, challenges, and advances. Anim Reprod Sci 2024; 270:107600. [PMID: 39270509 DOI: 10.1016/j.anireprosci.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Pig production, a vital sector of the meat industry, faces demands for improved quality, efficiency, and sustainability. Advancements in breeding, disease control, and artificial insemination have enhanced production, while biotechnologies such as in vitro embryo production (IVP) and genetic engineering offer further progress. In vitro embryo production could facilitate the global exchange of valuable genetic material, accelerate breeding programs, and improve productivity, and it is essential for generating genetically modified (GM) pigs. These GM pigs have two main applications: first, they allow for targeted modifications aimed at improving production traits relevant to pig production in agriculture, such as meat quality and disease resistance. Second, they serve as valuable biomedical models for human disease research, regenerative medicine, and organ transplantation. Yet, despite notable advancements in recent decades, the efficiency of the current IVP systems for porcine embryos remains a challenge. Compared to the in vivo environment, suboptimal culture conditions lead to issues such as elevated polyspermy, poor embryo development, and the production of low-quality blastocysts. This review provides an overview of the key steps and recent advancements in porcine IVP technology. We will emphasize the promising utilization of oocytes from live females of high genetic value through ovum pick-up and the incorporation of extracellular vesicles and cytokines into IVP media. These innovative strategies hold immense potential to significantly enhance embryo development and overall success rates in porcine IVP, and could open the door for significant progress in both agriculture and biomedicine applications.
Collapse
Affiliation(s)
- Manuela Garcia-Canovas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain.
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| |
Collapse
|
6
|
Xue Y, Zheng H, Xiong Y, Li K. Extracellular vesicles affecting embryo development in vitro: a potential culture medium supplement. Front Pharmacol 2024; 15:1366992. [PMID: 39359245 PMCID: PMC11445000 DOI: 10.3389/fphar.2024.1366992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are nanometer-sized lipid bilayer vesicles released by cells, playing a crucial role in mediating cellular communication. This review evaluates the effect of EVs on early embryonic development in vitro by systematically searching the literature across three databases, Embase, PubMed, and Scopus, from inception (Embase, 1947; PubMed, 1996; and Scopus, 2004) to 30 June 2024. A total of 28 studies were considered relevant and included in this review. The EVs included in these investigations have been recovered from a range of sources, including oviduct fluid, follicular fluid, uterine fluid, seminal plasma, embryos, oviduct epithelial cells, endometrial epithelial cells, amniotic cells, and endometrial-derived mesenchymal stem cells collected primarily from mice, rabbits, cattle and pigs. This diversity in EV sources highlights the broad interest and potential applications of EVs in embryo culture systems. These studies have demonstrated that supplementation with EVs derived from physiologically normal biofluids and cells to the embryo culture medium system has positive effects on embryonic development. Conversely, EVs derived from cells under pathological conditions have shown a negative impact. This finding underscores the importance of the source and condition of EVs used in culture media. Further, the addition of EVs as a culture medium supplement holds significant therapeutic potential for optimizing in vitro embryo culture systems. In conclusion, this evaluation offers a thorough assessment of the available data on the role of EVs in embryo culture media and highlights the potential and challenges of using EVs in vitro embryo production.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haixia Zheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Walter J, Colleoni S, Lazzari G, Fortes C, Grossmann J, Roschitzki B, Laczko E, Naegeli H, Bleul U, Galli C. Maturational competence of equine oocytes is associated with alterations in their 'cumulome'. Mol Hum Reprod 2024; 30:gaae033. [PMID: 39288330 PMCID: PMC11444741 DOI: 10.1093/molehr/gaae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Assisted reproductive technologies are an emerging field in equine reproduction, with species-dependent peculiarities, such as the low success rate of conventional IVF. Here, the 'cumulome' was related to the developmental capacity of its corresponding oocyte. Cumulus-oocyte complexes collected from slaughterhouse ovaries were individually matured, fertilized by ICSI, and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS)-based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable 'cumulome'. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15), and blastocyst (BL; n = 19). CV and BL were also analyzed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Overrepresentation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway 'oxidative phosphorylation' as significantly enriched in the NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Colleoni
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Claudia Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| |
Collapse
|
8
|
Han Y, Zhang J, Liang W, Lv Y, Luo X, Li C, Qu X, Zhang Y, Gu W, Chen X, Jin Y. Follicular fluid exosome-derived miR-339-5p enhances in vitro maturation of porcine oocytes via targeting SFPQ, a regulator of the ERK1/2 pathway. Theriogenology 2024; 225:107-118. [PMID: 38805993 DOI: 10.1016/j.theriogenology.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
In this study, we aimed to investigate cytoplasmic maturation and miRNA expression of mature oocytes cultured in porcine follicular fluid exosomes. We also examined the effect of miR-339-5p on oocyte maturation. Twenty eight differentially expressed miRNAs were detected using miRNA-seq. We then transfected cumulus oocyte complexes with miR-339-5p mimics and inhibitor during culture. The results showed that exosomes increased endoplasmic reticulum levels and the amount of lipid droplets, and decreased ROS levels, lipid droplet size, and percentage of oocytes with abnormal cortical granule distribution. Overexpressing miR-339-5p significantly decreased cumulus expansion genes, oocyte maturation-related genes, target gene proline/glutamine-rich splicing factor (SFPQ), ERK1/2 phosphorylation levels, oocyte maturation rate, blastocyst rate, and lipid droplet number, but increased lipid droplet size and the ratio of oocytes with abnormal cortical granule distribution. Inhibiting miR-339-5p reversed the decrease observed during overexpression. Mitochondrial membrane potential and ROS levels did not differ significantly between groups. In summary, exosomes promote oocyte cytoplasmic maturation and miR-339-5p regulating ERK1/2 activity through SFPQ expression, thereby elevating oocyte maturation and blastocyst formation rate in vitro.
Collapse
Affiliation(s)
- Yue Han
- Yanbian University, Jilin, Yanji, 133000, China
| | | | | | - Yanqiu Lv
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xiaotong Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Jilin, Gongzhuling, 136100, China
| | - Chunyu Li
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xinglin Qu
- Yanbian University, Jilin, Yanji, 133000, China
| | | | - Weiyu Gu
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xuan Chen
- Yanbian University, Jilin, Yanji, 133000, China.
| | - Yi Jin
- Yanbian University, Jilin, Yanji, 133000, China.
| |
Collapse
|
9
|
Gad A, Menjivar NG, Felton R, Durrant B, Tesfaye D, Ruggeri E. Mapping the follicle-specific regulation of extracellular vesicle-mediated microRNA transport in the southern white rhinoceros (Ceratotherium simum simum)†. Biol Reprod 2024; 111:376-390. [PMID: 38775197 PMCID: PMC11327318 DOI: 10.1093/biolre/ioae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 08/17/2024] Open
Abstract
Efforts to implement effective assisted reproductive technologies (ARTs) for the conservation of the northern white rhinoceros (NWR; Ceratotherium simum cottoni) to prevent its forthcoming extinction, could be supported by research conducted on the closely related southern white rhinoceros (SWR; Ceratotherium simum simum). Within the follicle, extracellular vesicles (EVs) play a fundamental role in the bidirectional communication facilitating the crucial transport of regulatory molecules such as microRNAs (miRNAs) that control follicular growth and oocyte development. This study aimed to elucidate the dynamics of EV-miRNAs in stage-dependent follicular fluid (FF) during SWR ovarian antral follicle development. Three distinct follicular stages were identified based on diameter: Growing (G; 11-17 mm), Dominant (D; 18-29 mm), and Pre-ovulatory (P; 30-34 mm). Isolated EVs from the aspirated FF of segmented follicle stages were used to identify EV-miRNAs previously known via subsequent annotation to all equine (Equus caballus; eca), bovine (Bos taurus; bta), and human (Homo sapiens; hsa) miRNAs. A total of 417 miRNAs were detected, with 231 being mutually expressed across all three stages, including eca-miR-148a and bta-miR-451 as the top highly expressed miRNAs. Distinct expression dynamics in miRNA abundance were observed across the three follicular stages, including 31 differentially expressed miRNAs that target various pathways related to follicular growth and development, with 13 miRNAs commonly appearing amidst two different comparisons. In conclusion, this pioneering study provides a comprehensive understanding of the stage-specific expression dynamics of FF EV-miRNAs in the SWR. These findings provide insights that may lead to novel approaches in enhancing ARTs to catalyze rhinoceros conservation efforts.
Collapse
Affiliation(s)
- Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Rachel Felton
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Barbara Durrant
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elena Ruggeri
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| |
Collapse
|
10
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
11
|
Benedetti C, Pavani KC, Gansemans Y, Azari-Dolatabad N, Pascottini OB, Peelman L, Six R, Fan Y, Guan X, Deserranno K, Fernández-Montoro A, Hamacher J, Van Nieuwerburgh F, Fair T, Hendrix A, Smits K, Van Soom A. From follicle to blastocyst: microRNA-34c from follicular fluid-derived extracellular vesicles modulates blastocyst quality. J Anim Sci Biotechnol 2024; 15:104. [PMID: 39097731 PMCID: PMC11298084 DOI: 10.1186/s40104-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). METHODS Bovine antral follicles were dissected, categorized as small (2-4 mm) or large (5-8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). RESULTS We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. CONCLUSION This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.
Collapse
Affiliation(s)
- Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | | | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Rani Six
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Yuan Fan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Xuefeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Koen Deserranno
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000, Ghent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
12
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Aoki S, Inoue Y, Hamazaki M, Hara S, Noguchi T, Shirasuna K, Iwata H. miRNAs in Follicular and Oviductal Fluids Support Global DNA Demethylation in Early-Stage Embryos. Int J Mol Sci 2024; 25:5872. [PMID: 38892059 PMCID: PMC11172648 DOI: 10.3390/ijms25115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Global methylation levels differ in in vitro- and in vivo-developed embryos. Follicular fluid (FF) contains extracellular vesicles (EVs) containing miRNAs that affect embryonic development. Here, we examined our hypothesis that components in FF affect global DNA methylation and embryonic development. Oocytes and FF were collected from bovine ovaries. Treatment of zygotes with a low concentration of FF induced global DNA demethylation, improved embryonic development, and reduced DNMT1/3A levels. We show that embryos take up EVs containing labeled miRNA secreted from granulosa cells and the treatment of zygotes with EVs derived from FF reduces global DNA methylation in embryos. Furthermore, the methylation levels of in vitro-developed blastocysts were higher than those of in their vivo counterparts. Based on small RNA-sequencing and in silico analysis, we predicted miR-29b, -199a-3p, and -148a to target DNMTs and to induce DNA demethylation, thereby improving embryonic development. Moreover, among FF from 30 cows, FF with a high content of these miRNAs demethylated more DNA in the embryos than FF with a lower miRNA content. Thus, miRNAs in FF play a role in early embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hisataka Iwata
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Kanagawa, Japan; (S.A.)
| |
Collapse
|
14
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
15
|
Luis-Calero M, Marinaro F, Fernández-Hernández P, Ortiz-Rodríguez JM, G Casado J, Pericuesta E, Gutiérrez-Adán A, González E, Azkargorta M, Conde R, Bizkarguenaga M, Embade N, Elortza F, Falcón-Pérez JM, Millet Ó, González-Fernández L, Macías-García B. Characterization of preovulatory follicular fluid secretome and its effects on equine oocytes during in vitro maturation. Res Vet Sci 2024; 171:105222. [PMID: 38513461 DOI: 10.1016/j.rvsc.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 μg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.
Collapse
Affiliation(s)
- Marcos Luis-Calero
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Pablo Fernández-Hernández
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Javier G Casado
- Unidad de inmunología, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
| | | | | | | | - Ricardo Conde
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | | | - Óscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Lauro González-Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
| | - Beatriz Macías-García
- Departamento de Medicina Animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
| |
Collapse
|
16
|
Sysoeva A, Akhmedova Z, Nepsha O, Makarova N, Silachev D, Shevtsova Y, Goryunov K, Karyagina V, Bugrova A, Starodubtseva N, Novoselova A, Chagovets V, Kalinina E. Characteristics of the Follicular Fluid Extracellular Vesicle Molecular Profile in Women in Different Age Groups in ART Programs. Life (Basel) 2024; 14:541. [PMID: 38792563 PMCID: PMC11121889 DOI: 10.3390/life14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to investigate the molecular composition of follicular fluid (FF) extracellular vesicles (EVs) in women of different reproductive ages and its possible relationship to sperm fertilizing ability. FF EVs were obtained by differential centrifugation. The concentration and size distribution of FF EVs were analyzed by nanoparticle tracking analysis. The lipidome and proteome were analyzed by liquid chromatography-mass spectrometry. The isolated FF EVs had a variety of shapes and sizes; their concentration and size distribution did not differ significantly between the age groups. In women younger than 35 years, the concentration of vesicular progesterone was 6.6 times higher than in women older than 35 years, and the total levels of the main lipid classes were increased in younger women. A proteomic analysis revealed that not only FF EV-specific proteins, but also proteins involved in sperm activation were present. New data were obtained on the composition of FF EVs, confirming their importance as molecular indicators of age-related changes in the female reproductive system. In addition, these results shed light on the possible interaction between the FF EVs of women in different age groups and male germ cells. Therefore, studying the transcriptomic and metabolomic profile of FF EVs may be a crucial approach to evaluate the efficacy of ART.
Collapse
Affiliation(s)
- Anastasia Sysoeva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Zumriyat Akhmedova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Oksana Nepsha
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Natalya Makarova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Victoria Karyagina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Anna Bugrova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalya Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Anastasia Novoselova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Elena Kalinina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| |
Collapse
|
17
|
Barranco I, Spinaci M, Nesci S, Mateo-Otero Y, Baldassarro VA, Algieri C, Bucci D, Roca J. Seminal extracellular vesicles alter porcine in vitro fertilization outcome by modulating sperm metabolism. Theriogenology 2024; 219:167-179. [PMID: 38437767 DOI: 10.1016/j.theriogenology.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90β). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy; Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy.
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| |
Collapse
|
18
|
Edure T, Matsuno Y, Matsushita K, Maruyama N, Fujii W, Naito K, Sugiura K. Dynamics of extracellular vesicle uptake by mural granulosa cells in mice. Mol Reprod Dev 2024; 91:e23737. [PMID: 38450862 DOI: 10.1002/mrd.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.
Collapse
Affiliation(s)
- Taichi Edure
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kodai Matsushita
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Nepsha OS, Burmenskaya OV, Akhmedova ZF, Romanov EA, Sysoeva AP, Goryunov KV, Shevtsova YA, Silachev DN, Makarova NP, Kalinina EA. Changes in the Transcription of Proliferation- and Apoptosis-Related Genes in Embryos in Women of Different Ages under the Influence of Extracellular Vesicles from Donor Follicular Fluid In Vitro. Bull Exp Biol Med 2024; 176:658-665. [PMID: 38727955 DOI: 10.1007/s10517-024-06087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 05/18/2024]
Abstract
We studied the influence of extracellular vesicles from the follicular fluid of a young donor on gene expression (MKI67, MYBL2, CCNB1, CCND1, CCNE1, CALM2, BAX, NDRG1, TP53I3, VEGF, VCAN, HAS2, CTSL2, PIBF1, RPL37, PFKP, GPX3, and AQP3) in embryos of women of different ages. According to nanoparticle tracking analysis data, the concentration of extracellular vesicles was 3.75±0.47×1011 particles/ml and the mean particle size was 138.78±9.90 nm. During co-culturing of the follicular fluid extracellular vesicles with blastocysts of young women, we observed significantly increased expression of mRNA for genes CTSL2, CCND1, CCNE1, VEGF and reduced expression of BAX gene mRNA in comparison with embryos in women of late reproductive age. We hypothesized that addition of extracellular vesicles of the oocyte follicular fluid from a young donor to the culture medium of embryos could slow down apoptosis process typical of blastocyst cells in women above 36 years.
Collapse
Affiliation(s)
- O S Nepsha
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - O V Burmenskaya
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Z F Akhmedova
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Romanov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A P Sysoeva
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K V Goryunov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu A Shevtsova
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D N Silachev
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N P Makarova
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Kalinina
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
20
|
Homobono BP, das Mercês MO, Nogueira LHDS, de Souza EB, Cardoso APL, Santos ABS, Ramos ADS, Costa MHP, Santana PDPB, de Almeida NNDC, Cordeiro MS, Santos SDSD. Fertilization with follicular fluid reduces HSP70 and BAX expression on bovine in vitro embryos. Reprod Domest Anim 2024; 59:e14548. [PMID: 38459830 DOI: 10.1111/rda.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The in vivo fertilization process occurs in the presence of follicular fluid (FF). The aim of this study was to evaluate the effect of in vitro fertilization medium supplementation with 5% or 10% bovine follicular fluid (BFF) on the production of in vitro bovine embryos. FF was collected from ovarian follicles with a diameter of 8-10 mm, and cumulus-oocyte complexes (COCs) were co-incubated with sperm for 24 h in the commercial medium BotuFIV® (BotuPharma©), being distributed among the experimental groups: oocytes fertilized in a control medium; oocytes fertilized in a medium supplemented with 5% BFF; and oocytes fertilized in a medium supplemented with 10% BFF. After fertilization, the zygotes were cultured in vitro for 8 days. Embryo development was assessed through cleavage rates (day 2) and blastocyst formation rates (day 8). The relative expression of the genes OCT4, IFNT2, BAX, HSP70 and SOD2 was measured using the real-time polymerase chain reaction method. There was no difference (p > .05) among the different experimental groups in terms of cleavage rates and blastocyst formation rates. Regarding the gene expression results, only the blastocysts from oocytes fertilized with 10% BFF showed significantly lower expression of IFNT2 (p = .003) and SOD2 (p = .01) genes compared to blastocysts from oocytes fertilized in control medium alone, while there was no difference between blastocyst from oocytes fertilized in control medium and the ones from oocytes fertilized with 5% BFF. In addition to this, the blastocysts from oocytes fertilized with 5% BFF showed significantly reduced levels of expression of the heat shock protein HSP70 (p < .001) and the pro-apoptotic protein BAX (p = .015) compared to blastocysts from oocytes fertilized with control medium. This may indicate that lower supplementation of BFF to the IVF medium creates a more suitable environment for fertilization and is less stressful for the zygote.
Collapse
|
21
|
Aoki S, Inoue Y, Hara S, Itou J, Shirasuna K, Iwata H. microRNAs associated with the quality of follicular fluids affect oocyte and early embryonic development. Reprod Med Biol 2024; 23:e12559. [PMID: 38239486 PMCID: PMC10795439 DOI: 10.1002/rmb2.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
Purpose Oocyte and embryo quality differs significantly among individuals. Follicular fluid (FF) is a solo environment of oocyte maturation and may flux into the oviduct. Supplementation of in vitro maturation (IVM) and culture (IVC) medium with extracellular vesicles of FFs supports oocyte maturation and embryonic development. We addressed a hypothesis that miRNA profiles in FFs are crucial background of oocyte maturation and embryonic development. Methods FFs were collected from the ovaries of individual cows, and the FFs were classified into Good or Poor FF based on the developmental rate to the blastocyst stage of enclosed oocytes. miRNAs associated with the Good FFs were explored using small RNA sequencing. In addition, FFs were classified using the concentration of Good-FF-associated miRNAs. These classified FFs or miRNA were added to the IVM or IVC mediums. Results Supplementation of IVM and IVC medium with Good FF improved embryonic development. Good FFs contained miR-151-3p and miR-425-5p at a high concentration compared with those in Poor FFs. FFs selected by the concentration of miR-151-3p and miR-425-5p improved oocyte maturation and embryonic development. Supplementation of IVM or IVC medium with either miR-151-3p or miR-425-5p improved embryonic development to the blastocyst stage. Conclusion miRNAs were associated with the Good FFs determined oocyte maturation and embryonic development.
Collapse
Affiliation(s)
- Sogo Aoki
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Yuki Inoue
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Shunsuke Hara
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Jun Itou
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Koumei Shirasuna
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| | - Hisataka Iwata
- Department of Animal Science, Graduate School of AgricultureTokyo University of AgricultureAtsugi CityKanagawaJapan
| |
Collapse
|
22
|
Han Y, Qu X, Chen X, Lv Y, Zhang Y, Jin Y. Effects of follicular fluid exosomes on in vitro maturation of porcine oocytes. Anim Biotechnol 2023; 34:2757-2765. [PMID: 36036234 DOI: 10.1080/10495398.2022.2114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Exosomes are related to effective communication between cells. In this study we aimed to investigate the effect of porcine follicular fluid exosomes (FF-Exo) on cumulus expansion, oocyte mitochondrial membrane potential, and maturation in in vitro culture. We used different concentrations of FF-Exo (Exo-0, Exo-1, Exo-10, Exo-20, and Exo-40) and added them to an oocyte maturation medium. Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot (WB) showed that the isolated samples were exosomes. Immunofluorescence showed that exosomes could be taken up by cumulus cells. Compared with the Exo-0 group, there was no significant difference in oocyte maturation rate in the Exo-1 group (p > 0.05), while the Exo-10 group (p < 0.05), Exo-20 group (p < 0.01) and Exo-40 group (p < 0.01) significantly increased. The maturation rate of the Exo-20 and Exo-40 groups was the highest, and there was no significant difference between the two groups (p > 0.05). However, different concentrations of treatment could not effectively induce cumulus expansion and the results of JC1 showed that it had no significant effect on mitochondrial membrane potential (p > 0.05). In conclusion, the results suggest that porcine FF-Exo are involved in oocyte nuclear maturation.
Collapse
Affiliation(s)
- Yue Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Xinglin Qu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Xuan Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yanqiu Lv
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yuyang Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yi Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
23
|
Maugrion E, Shedova EN, Uzbekov R, Teixeira-Gomes AP, Labas V, Tomas D, Banliat C, Singina GN, Uzbekova S. Extracellular Vesicles Contribute to the Difference in Lipid Composition between Ovarian Follicles of Different Size Revealed by Mass Spectrometry Imaging. Metabolites 2023; 13:1001. [PMID: 37755281 PMCID: PMC10538054 DOI: 10.3390/metabo13091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.
Collapse
Affiliation(s)
- Emilie Maugrion
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | | | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Medical Faculty, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Ana-Paula Teixeira-Gomes
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Valerie Labas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Charles Banliat
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
- Ecole Supérieure d’Agricultures (ESA), 49007 Angers, France
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia
| | - Svetlana Uzbekova
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
| |
Collapse
|
24
|
Guo XR, Ma Y, Ma ZM, Dai TS, Wei SH, Chu YK, Dan XG. Exosomes: The role in mammalian reproductive regulation and pregnancy-related diseases. Front Physiol 2023; 14:1056905. [PMID: 36969587 PMCID: PMC10036776 DOI: 10.3389/fphys.2023.1056905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Exosomes are a kind of extracellular vesicles that are produced and secreted by different mammalian cells. They serve as cargo proteins and can transfer different kinds of biomolecules, including proteins, lipids, and nucleic acids, which consequently act on target cells to exert different biological effects. Recent years have witnessed a significant increase in the number of studies on exosomes due to the potential effects of exosomes in the diagnosis and treatment of cancers, neurodegenerative diseases, and immune disorders. Previous studies have demonstrated that exosomal contents, especially miRNAs, are implicated in numerous physiological processes such as reproduction, and are crucial regulators of mammalian reproduction and pregnancy-related diseases. Here, we describe the origin, composition, and intercellular communication of exosomes, and discuss their functions in follicular development, early embryonic development, embryonic implantation, male reproduction and development of pregnancy-related diseases in humans and animals. We believe this study will provide a foundation for revealing the mechanism of exosomes in regulating mammalian reproduction, and providing new approaches and ideas for the diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Xing-Ru Guo
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Zi-Ming Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tian-Shu Dai
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shi-Hao Wei
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yuan-Kui Chu
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| | - Xin-Gang Dan
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| |
Collapse
|
25
|
Evaluation of the potential of miR-21 as a diagnostic marker for oocyte maturity and embryo quality in women undergoing ICSI. Sci Rep 2023; 13:1440. [PMID: 36697494 PMCID: PMC9876918 DOI: 10.1038/s41598-023-28686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs are small molecules that play a crucial role in regulating a woman's reproductive system. The present study evaluates the expression of miR-21 in the serum, follicular fluid (FF), and cumulus cells (CCs) and their association with oocyte maturity and embryo quality in women undergoing intracytoplasmic sperm injection. Women subjects were divided into the case (54 Patients with female factor infertility) and control groups (33 patients with male factor infertility). The level of miR-21 was measured using Real-Time PCR. The level of miR-21 was significantly lower in the CCs, FF, and serum in the case compared to the control group (p < 0.05). MiR-21 abundance was higher in FF and CCs samples than in serum. Furthermore, there was a significant increase in CCs to FF in the case group (p < 0.05). A significant decrease in oocyte count, MII oocytes, and percentage of mature oocytes were observed in the case group (p < 0.05). The expression of miR-21 in FF and CCs was positively related to oocyte maturation, but no correlation with embryo development was observed. This study found that miR-21 is expressed less in women with female factor infertility, and human oocytes' development is crucially affected by the expression of miR-21. Therefore, miR-21 could provide new helpful biomarkers of oocyte maturity.
Collapse
|
26
|
Fan W, Qi Y, Wang Y, Yan H, Li X, Zhang Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front Cell Dev Biol 2023; 10:1079387. [PMID: 36684431 PMCID: PMC9849778 DOI: 10.3389/fcell.2022.1079387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) have become a research hotspot in recent years because they act as messengers between cells in the physiological and pathological processes of the human body. It can be produced by the follicle, prostate, embryo, uterus, and oviduct in the reproductive field and exists in the extracellular environment as follicular fluid, semen, uterine cavity fluid, and oviduct fluid. Because extracellular vesicles are more stable at transmitting information, it allows all cells involved in the physiological processes of embryo formation, development, and implantation to communicate with one another. Extracellular vesicles carried miRNAs and proteins as mail, and when the messenger delivers the mail to the recipient cell, the recipient cell undergoes a series of changes. Current research begins with intercepting and decoding the information carried by extracellular vesicles. This information may help us gain a better understanding of the secrets of reproduction, as well as assist reproductive technology as an emerging marker and treatment.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqian Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huiting Yan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Yingjie Zhang,
| |
Collapse
|
27
|
Bastos NM, Goulart RS, Bambil DB, Bridi A, Mazzarella R, Alves L, da Silva Rosa PM, Neto AL, Silva SL, de Almeida Santana MH, Negrão JA, Pugliesi G, Meirelles FV, Perecin F, da Silveira JC. High body energy reserve influences extracellular vesicles miRNA contents within the ovarian follicle. PLoS One 2023; 18:e0280195. [PMID: 36626404 PMCID: PMC9831338 DOI: 10.1371/journal.pone.0280195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Aiming to evaluate the effects of increased body energy reserve (BER) in Nellore cows' reproductive efficiency, cows were fed with different nutritional plans to obtain animals with high BER (HBER; Ad libitum diet) and moderate BER (MBER: cows fed 70% of HBER group ingestion). To evaluate the BER, cows were weekly weighted and evaluated for subcutaneous fat thickness and insulin serum concentration along the experimental period. At the end of the experimental period, animals were submitted to estrous synchronization and artificial insemination. Animals were slaughtered approximately 120 h after ovulation induction and the reproductive tracts were collected for embryo recovery and samples collection. Cumulus-oocyte-complexes (COC) and follicular fluid were collected from 3-6 mm in diameter ovarian follicles to perform miRNA analysis of cumulus cells (CC) and extracellular vesicles from follicular fluid (EV FF). As expected, differences were observed among MBER and HBER groups for body weight, fat thickness, and insulin serum concentration. HBER animals showed lower ovulation and embryo recovery rates compared to MBER animals. Different miRNAs were found among CC and EV FF within groups, suggesting that the BER may influence follicular communication. This suggests that small follicles (3-6 mm diameter) are already under BER effects, which may be greater on later stages of follicular development.
Collapse
Affiliation(s)
- Natália Marins Bastos
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rodrigo Silva Goulart
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Danilo Brito Bambil
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rosane Mazzarella
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Luana Alves
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Adomar Laurindo Neto
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Saulo Luz Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - João Alberto Negrão
- Department of Basic Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Distribution of tetraspanins in bovine ovarian tissue and fresh/vitrified oocytes. Histochem Cell Biol 2023; 159:163-183. [PMID: 36242635 PMCID: PMC9922244 DOI: 10.1007/s00418-022-02155-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
Abstract
Tetraspanin proteins are mostly known as organizers of molecular complexes on cell membranes, widely expressed on the surface of most nucleated cells. Although tetraspanins participate in many physiological processes of mammals, including reproduction, their relevance to the processes of folliculogenesis and oogenesis has not yet been fully elucidated. We bring new information regarding the distribution of tetraspanins CD9, CD81, CD151, CD82, and CD63 at different stages of follicular development in cattle. The found distribution of tetraspanin CD9, CD63, and integrin alpha V in similar areas of ovarian tissue outlined their possible cooperation. We also describe yet-unknown distribution patterns of CD151, CD82, and CD63 on immature and mature bovine oocytes. The unique localization of tetraspanins CD63 and CD82 in the zona pellucida of bovine oocytes suggested their involvement in transzonal projections. Furthermore, we present an unchanged distribution pattern of the studied tetraspanins in vitrified mature bovine oocytes. The immunofluorescent analysis was supplemented by in silico data addressing tetraspanins expression in the ovarian cells and oocytes across several species. The obtained results suggest that in the study of the oocyte development and potentially the fertilization process of cattle, the role of tetraspanins and integrins should also be taken into account.
Collapse
|
29
|
Liu C, Wang M, Yao H, Cui M, Gong X, Wang L, Sui C, Zhang H. Inhibition of oocyte maturation by follicular extracellular vesicles of non-hyperandrogenic PCOS patients requiring IVF. J Clin Endocrinol Metab 2022; 108:1394-1404. [PMID: 36527699 DOI: 10.1210/clinem/dgac733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
CONTEXT Polycystic ovarian syndrome (PCOS) is one of the most common diseases that contribute to subfertility. Recent evidence showed that oocytes of women with PCOS matured in vitro away from the follicular fluid presented better potentials, whereas the reason remained unclear. OBJECTIVE To investigate whether follicular extracellular vesicles (EVs) of PCOS patients interfere with the quality of oocytes. METHODS Follicular EVs of women with PCOS (PCOS-EVs) and control women (CTRL-EVs) were isolated and determined using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. The two types of EVs were co-cultured with murine germinal vesicle oocytes, respectively. Fluorescence labeled EVs were used to visualize internalization by oocytes. After co-culture, oocyte maturation rates were calculated. Mitochondria distribution and reactive oxygen species (ROS) level were detected in the different groups. Spindle morphology was evaluated using immunofluorescence. Moreover, the expression of catalase (CAT), glutathione synthetase (GSS), and superoxide dismutase (SOD) was determined in the oocytes. RESULTS Both PCOS-EVs and CTRL-EVs are bilayered vesicles, approximately 100-150 nm in size, and enriched in EV-associating protein markers. EVs were internalized by oocytes within one hour. Oocyte maturation rate decreased significantly in the PCOS-EV group compared with the CTRL-EV group; whereas the abnormal mitochondria distribution rate and abnormal spindle rate were significantly increased in the PCOS-EV group. Moreover, PCOS-EVs increased the ROS level and the expression of CAT, GSS, and SOD in the oocytes. CONCLUSIONS PCOS-EVs interfered with oocyte mitochondria and spindles and inhibited oocyte maturation. Moreover, oxidative stress induced by PCOS-EVs might be a potential cause.
Collapse
Affiliation(s)
- Chang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Haixia Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Shangrao People's Hospital, Shangrao, China
| | - Mengge Cui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xueqi Gong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
30
|
Female reproduction and the microbiota in mammals: Where are we? Theriogenology 2022; 194:144-153. [DOI: 10.1016/j.theriogenology.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
31
|
Seminal extracellular vesicles subsets modulate gene expression in cumulus cells of porcine in vitro matured oocytes. Sci Rep 2022; 12:19096. [PMID: 36351965 PMCID: PMC9646759 DOI: 10.1038/s41598-022-22004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Seminal plasma (SP), a fluid composed mainly by secretions from accessory sex glands, contains a heterogenous population of extracellular vesicles (EVs), involved in several reproductive physiological processes. Seminal plasma has been found to modulate ovary function, in terms of hormone secretion and immune regulation. This study evaluated the potential effect of SP-EV-subsets on the modulation of cumulus-oocyte-complex (COCs) physiology during in vitro maturation (IVM). Two SP-EV-subsets, small-EVs (S-EVs) and large-EVs (L-EVs), were isolated from pig SP by size-exclusion-chromatography. Next, COCs were IVM in the absence (control) or presence of each SP-EV-subset to evaluate their uptake by COCs (PKH67-EVs labelling) and their effect on oocyte and cumulus cells (CCs) (gene expression, and progesterone and estradiol-17β levels). S-EVs and L-EVs were able to bind CCs but not oocytes. Supplementation with L-EVs induced changes (P ≤ 0.05) in the transcript levels of oocyte maturation- (HAS2) and steroidogenesis-related genes (CYP11A1 and HSD3B1) in CCs. No effect on nuclear oocyte maturation and progesterone and estradiol-17β levels was observed when COCs were IVM with any of the two SP-EV-subsets. In conclusion, while SP-EV-subsets can be integrated by CCs during IVM, they do not affect oocyte maturation and only L-EVs are able to modulate CCs function, mainly modifying the expression of steroidogenesis-related genes.
Collapse
|
32
|
Leal CLV, Cañón-Beltrán K, Cajas YN, Hamdi M, Yaryes A, Millán de la Blanca MG, Beltrán-Breña P, Mazzarella R, da Silveira JC, Gutiérrez-Adán A, González EM, Rizos D. Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. J Anim Sci Biotechnol 2022; 13:116. [PMID: 36280872 PMCID: PMC9594899 DOI: 10.1186/s40104-022-00763-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Background In vitro production of bovine embryos is a well-established technology, but the in vitro culture (IVC) system still warrants improvements, especially regarding embryo quality. This study aimed to evaluate the effect of extracellular vesicles (EVs) isolated from oviductal (OF) and uterine fluid (UF) in sequential IVC on the development and quality of bovine embryos. Zygotes were cultured in SOF supplemented with either BSA or EVs-depleted fetal calf serum (dFCS) in the presence (BSA-EV and dFCS-EV) or absence of EVs from OF (D1 to D4) and UF (D5 to D8), mimicking in vivo conditions. EVs from oviducts (early luteal phase) and uterine horns (mid-luteal phase) from slaughtered heifers were isolated by size exclusion chromatography. Blastocyst rate was recorded on days 7–8 and their quality was assessed based on lipid contents, mitochondrial activity and total cell numbers, as well as survival rate after vitrification. Relative mRNA abundance for lipid metabolism-related transcripts and levels of phosphorylated hormone-sensitive lipase (pHSL) proteins were also determined. Additionally, the expression levels of 383 miRNA in OF- and UF-EVs were assessed by qRT-PCR. Results Blastocyst yield was lower (P < 0.05) in BSA treatments compared with dFCS treatments. Survival rates after vitrification/warming were improved in dFCS-EVs (P < 0.05). EVs increased (P < 0.05) blastocysts total cell number in dFCS-EV and BSA-EV compared with respective controls (dFCS and BSA), while lipid content was decreased in dFCS-EV (P < 0.05) and mitochondrial activity did not change (P > 0.05). Lipid metabolism transcripts were affected by EVs and showed interaction with type of protein source in medium (PPARGC1B, LDLR, CD36, FASN and PNPLA2, P < 0.05). Levels of pHSL were lower in dFCS (P < 0.05). Twenty miRNA were differentially expressed between OF- and UF-EVs and only bta-miR-148b was increased in OF-EVs (P < 0.05). Conclusions Mimicking physiological conditions using EVs from OF and UF in sequential IVC does not affect embryo development but improves blastocyst quality regarding survival rate after vitrification/warming, total cell number, lipid content, and relative changes in expression of lipid metabolism transcripts and lipase activation. Finally, EVs miRNA contents may contribute to the observed effects. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00763-7.
Collapse
Affiliation(s)
- Cláudia Lima Verde Leal
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Karina Cañón-Beltrán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442066.20000 0004 0466 9211Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos, Tunja, Colombia
| | - Yulia N. Cajas
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442123.20000 0001 1940 3465Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Meriem Hamdi
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Aracelli Yaryes
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - María Gemma Millán de la Blanca
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Paula Beltrán-Breña
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Rosane Mazzarella
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Juliano Coelho da Silveira
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Alfonso Gutiérrez-Adán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Encina M González
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Anatomy and Embryology, Veterinary Faculty-Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Dimitrios Rizos
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| |
Collapse
|
33
|
Diversity of Extracellular Vesicles in Human Follicular Fluid: Morphological Analysis and Quantification. Int J Mol Sci 2022; 23:ijms231911676. [PMID: 36232981 PMCID: PMC9570429 DOI: 10.3390/ijms231911676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The oocyte microenvironment constituted by the follicular fluid (FF) is a key for the optimal development of female gametes. Its composition reflects the physiological state of the ovarian follicle. The particularity of FF is to contain a huge diversity of extracellular vesicles specific to women, in the same way as seminal plasma in men. Here, we described and compared morphological aspects of broad subcategories of human FF-related Extracellular Vesicles (EVs). EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. EVs isolated from FF are involved in different biological functions related to follicular growth, oocyte maturation, and embryo development. However, knowledge on the morphology of FF-derived EVs is limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. The aim of this study was to provide a comprehensive morphological description of EVs from FF of healthy subjects and quantification. EVs separation was realized by centrifugation, with comparison of the EV yield obtained from differential centrifugation and one-step ultracentrifugation. Cryo-Transmission Electron Microscopy was used to reveal the morphology, size, and phenotype of EVs. Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) were used to quantify and analyze the size distribution for each centrifugation step. We performed a comprehensive inventory of human follicular fluid EVs. We show that human FF contains a huge diversity of EVs. This study brings novel insights on EVs from normal FF and provides a reference for further studies of EVs in ovarian diseases.
Collapse
|
34
|
Godakumara K, Dissanayake K, Hasan MM, Kodithuwakku SP, Fazeli A. Role of extracellular vesicles in intercellular communication during reproduction. Reprod Domest Anim 2022; 57 Suppl 5:14-21. [PMID: 35837748 PMCID: PMC9796405 DOI: 10.1111/rda.14205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
The mammalian reproduction is a process of controlled cellular growth and development regulated by constant communication between the gametes, the subsequent embryo and the maternal system. Extracellular vesicles (EVs) are involved in these communications to a significant degree from the gamete production and maturation to fertilization, embryo development and implantation. They regulate the cellular physiology and the immune reaction to bring about a favourable environment for a successful pregnancy. Deciphering the mechanisms employed in EV-mediated embryo maternal communication could improve our knowledge in mammalian reproduction and increase the efficiency of animal breeding.
Collapse
Affiliation(s)
- Kasun Godakumara
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Keerthie Dissanayake
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Department of Anatomy, Faculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Mohammad Mehedi Hasan
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Maternal and Fetal Medicine Department, Institute of Women's HealthUniversity College LondonLondonUK
| | - Suranga. P. Kodithuwakku
- Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Department of Animal Science, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Academic Unit of Reproductive and Developmental MedicineThe University of SheffieldSheffieldUK
| |
Collapse
|
35
|
da Silva Nunes PC, Mazzarella R, da Silveira JC, Dellova DCAL. Evaluation of circulating extracellular vesicles and miRNA in neutered and obese female dogs. Sci Rep 2022; 12:16439. [PMID: 36180561 PMCID: PMC9525304 DOI: 10.1038/s41598-022-20523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue is a metabolic and endocrine organ, and its adipocytes can synthesize and secrete extracellular vesicles (EVs), thus allowing intercellular communication. EVs are nanoparticles that transport lipids, proteins, metabolites, and nucleic acids (mRNA and microRNAs). MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression. miR-132, miR-26b, and miR-155 are associated with obesity, lipid metabolism and adipogenesis. The aim of this study was to evaluate the enriched EVs fraction containing miRNAs (miR-132, miR-26b, and miR-155) in serum from obese female dogs. Thirty-two neutered females in good general condition were recruited, including 21 obese and 11 healthy controls. The initial evaluation of the females included a general physical examination and laboratory tests. Small EVs (sEVs) were isolated from whole blood by serial centrifugation and ultracentrifugation, and nanoparticle analysis was used to determine the size and concentration of serum sEVs. miRNAs were extracted from sEVs enriched fraction and analyzed by real-time polymerase chain reaction. Obese female dogs with hypertriglyceridemia showed an increase in the sEVs concentration and in the expression of miR-132 and miR-26b in sEVs enriched fraction. No changes were observed in the group of obese female dogs with normal serum biochemical profile and in relation to miR-155 expression. These results suggest that obese female dogs with hypertriglyceridemia may present alterations in sEVs and in the expression of miRNAs related to lipid metabolism and adipogenesis.
Collapse
Affiliation(s)
- Paola Caroline da Silva Nunes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Rosane Mazzarella
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Deise Carla Almeida Leite Dellova
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil.
| |
Collapse
|
36
|
Smith TI, Russell AE. Extracellular vesicles in reproduction and pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:292-317. [PMID: 39697491 PMCID: PMC11648528 DOI: 10.20517/evcna.2022.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
Collapse
Affiliation(s)
- Tahlia I. Smith
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- These authors contributed equally
| | - Ashley E. Russell
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- Magee Womens Research Institute - Allied Member, Pittsburgh, PA 15213, USA
- These authors contributed equally
| |
Collapse
|
37
|
Bovine ICSI: limiting factors, strategies to improve its efficiency and alternative approaches. ZYGOTE 2022; 30:749-767. [PMID: 36082429 DOI: 10.1017/s0967199422000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-β-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.
Collapse
|
38
|
Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep 2022; 12:14886. [PMID: 36050481 PMCID: PMC9437019 DOI: 10.1038/s41598-022-18438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Michal Andrzej Kosior
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Natascia Cocchia
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Valentina Longobardi
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Flavia Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Anna Lange Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, 20133, Lodi, Milano, Italy.
| | - Bianca Gasparrini
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| |
Collapse
|
39
|
Gad A, Murin M, Bartkova A, Kinterova V, Marcollova K, Laurincik J, Prochazka R. Small-extracellular vesicles and their microRNA cargo from porcine follicular fluids: the potential association with oocyte quality. J Anim Sci Biotechnol 2022; 13:82. [PMID: 35725584 PMCID: PMC9208166 DOI: 10.1186/s40104-022-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicular fluids (FFs) contain several kinds of regulatory factors that maintain a suitable microenvironment for oocyte development. Extracellular vesicles (EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs (miRNAs). This study aimed to investigate small-EV (s-EV) miRNAs in porcine FFs and their potential association with oocyte quality. Methods Individual aspirated oocytes were stained with lissamine green B stain (LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality (unstained; HQ) or low-quality (stained; LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina NovaSeq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation. Results A total of 19 miRNAs (including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23 (including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution. Conclusion Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00723-1.
Collapse
Affiliation(s)
- Ahmed Gad
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Matej Murin
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.
| | - Alexandra Bartkova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94901, Nitra, Slovakia
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Katerina Marcollova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Jozef Laurincik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94901, Nitra, Slovakia
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| |
Collapse
|
40
|
Extracellular vesicles in mammalian reproduction: a review. ZYGOTE 2022; 30:440-463. [PMID: 35652626 DOI: 10.1017/s0967199422000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the last decades, extracellular vesicles (EVs) have been found to be implicated in a complex universal mechanism of communication between different cell types. EVs are nanostructures of lipid nature that have an exosomal or ectosomal biogenesis, responsible for the intercellular transport of proteins, lipids, carbohydrates, nucleic acids, ions, among other molecules. The content of EVs can vary due to various factors such as hormonal stimuli, non-physiological conditions, metabolic state, etc. Once EVs reach their target cell, they can modulate processes such as gene expression, metabolism, response to external factors, and can even be associated with the delivery of molecules involved in epigenetic inheritance processes in germ cells. In mammalian reproduction, EVs have been shown to play an important role, either in vivo or in vitro, modulating a variety of processes in sperm, oocytes and embryos, and in their respective environments. Moreover, EVs represent a biodegradable, harmless and specific vehicle, which makes them attractive allies to consider when improving assisted reproductive technologies (ARTs). Therefore, the present review aims to describe the content of the main EVs involved in mammalian reproduction and how they can vary due to different factors, as well as to detail how EVs modulate, directly or indirectly, different molecular processes in gametes and embryos. In addition, we will highlight the mechanisms that remain to be elucidated. We will also propose new perspectives according to the characteristics of each particular EV to improve the different ARTs.
Collapse
|
41
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
42
|
Julia G, Barbara KM, Sebastian S, Joanna K, Agnieszka N, Julianna Ł, Elżbieta K, Monika BP. Extracellular vesicles from follicular fluid may improve the nuclear maturation rate of in vitro matured mare oocytes. Theriogenology 2022; 188:116-124. [DOI: 10.1016/j.theriogenology.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
|
43
|
Stamperna K, Giannoulis T, Cañon-Beltrán K, Dovolou E, Kalemkeridou M, Nanas I, Rizos D, Moutou KA, Mamuris Z, Amiridis GS. Oviductal epithelial cells transcriptome and extracellular vesicles characterization during thermoneutral and heat stress conditions in dairy cows. Theriogenology 2022; 187:152-163. [DOI: 10.1016/j.theriogenology.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
|
44
|
Bastos NM, Ferst JG, Goulart RS, Coelho da Silveira J. The role of the oviduct and extracellular vesicles during early embryo development in bovine. Anim Reprod 2022; 19:e20220015. [PMID: 35493787 PMCID: PMC9037602 DOI: 10.1590/1984-3143-ar2022-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.
Collapse
|
45
|
Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev 2021; 34:190-202. [PMID: 35231232 DOI: 10.1071/rd21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oocyte/embryo selection methodologies are either invasive or noninvasive and can be applied at various stages of development from the oocyte to cleaved embryos and up to the blastocyst stage. Morphology and the proportion of embryos developing to the blastocyst stage are important criteria to assess developmental competence. Evaluation of morphology remains the method of choice for selecting viable oocytes for IVP or embryos prior to transfer. Although non-invasive approaches are improving, invasive ones have been extremely helpful in finding candidate genes to determine oocyte/embryo quality. There is still a strong need for further refinement of existing oocyte and embryo selection methods and quality parameters. The development of novel, robust and non-invasive procedures will ensure that only embryos with the highest developmental potential are chosen for transfer. In the present review, various methods for assessing the quality of oocytes and preimplantation embryos, particularly in cattle, are considered. These methods include assessment of morphology including different staining procedures, transcriptomic and proteomic analyses, metabolic profiling, as well as the use of artificial intelligence technologies.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Frankfurter Straße 106, Giessen 35392, Germany
| |
Collapse
|
46
|
Hamdi M, Cañon-Beltrán K, Mazzarella R, Cajas YN, Leal CLV, Gutierrez-Adan A, González EM, Da Silveira JC, Rizos D. Characterization and profiling analysis of bovine oviduct and uterine extracellular vesicles and their miRNA cargo through the estrous cycle. FASEB J 2021; 35:e22000. [PMID: 34731497 DOI: 10.1096/fj.202101023r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) found in various biological fluids and particularly in reproductive fluids, have gained considerable attention for their possible role in cell- to- cell communication. Among, the different bioactive molecules cargos of EVs, MicroRNAs (miRNAs) are emerging as promising diagnostic biomarkers with high clinical potential. Aiming to understand the roles of EVs in bovine reproductive tract, we intended to characterize and profile the EVs of oviduct and uterine fluids (OF-EVs, UF-EVs) and their miRNA across the estrous cycle. Nanoparticle tracking analysis and transmission electron microscopy confirmed the existence of small EV population in OF and UF at all stages, (size between 30 and 200 nm; concentration: 3.4 × 1010 EVs/ml and 6.0 × 1010 EVs/ml for OF and UF, respectively, regardless of stage). The identification of EV markers (CD9, HSP70, and ALIX proteins) was confirmed by western blot. The miRNA analysis revealed the abundance of 310 and 351 miRNAs in OF-EVs and UF-EVs, respectively. Nine miRNAs were differentially abundant in OF-EVs between stages of the cycle, eight of them displayed a progressive increase from S1 to S4 (p < .05). In UF-EVs, a total of 14 miRNAs were differentially abundant between stages. Greater differences were observed between stage 1 (S1) and stage 3 (S3), with 11 miRNAs enriched in S3 compared to S1. Functional enrichment analysis revealed the involvement of these miRNAs in relevant pathways such as cell signaling, intercellular junctions, and reproductive functions that may be implicated in oviduct and uterus modulation across the cycle, but also in their preparation for embryo/conceptus presence and development.
Collapse
Affiliation(s)
- Meriem Hamdi
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.,Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Karina Cañon-Beltrán
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.,Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos, Tunja, Colombia
| | - Rosane Mazzarella
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Yulia N Cajas
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.,Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), Cuenca, Ecuador
| | - Claudia L V Leal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Juliano C Da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
47
|
Pedrosa AC, Andrade Torres M, Vilela Alkmin D, Pinzon JEP, Kitamura Martins SMM, Coelho da Silveira J, Furugen Cesar de Andrade A. Spermatozoa and seminal plasma small extracellular vesicles miRNAs as biomarkers of boar semen cryotolerance. Theriogenology 2021; 174:60-72. [PMID: 34419697 DOI: 10.1016/j.theriogenology.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/03/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Freeze boar semen is still the biggest challenge for the swine industry due to the high cold shock sensitivity of boar sperm cells and the variance of post-thaw results among individuals and ejaculates from the same boar. To solve this problem, we investigate if miRNAs present in sperm cells and small extracellular vesicles (EVs) from seminal plasma of raw boar ejaculates can predict high-quality ejaculates after underwent the freeze-thaw process. For this, we obtained miRNAs samples of sperm cells and EVs from raw seminal plasma from 27 ejaculates before the cryopreservation process. Two groups with different freezability considering the analysis post-thaw of structure and sperm functionality were formed: High freezability (HF; n = 04) and low freezability (LF; n = 04). That done, we investigated the miRNAs profile of sperm cells and EVs from seminal plasma in both groups. Three miRNAs were differently abundant in LF ejaculates, being the ssc-miR-503 found in higher levels in sperm cells (P < 0.10). The ssc-miR-130a and ssc-miR-9 most abundant in EVs from seminal plasma (P < 0.10), in LF ejaculates. Through enrichment analysis, it was possible to verify that these miRNAs could be performing modifications in the development of male germ cells and in the production of energy to spermatozoa to maintain their viability and functionality. Therefore, we can demonstrate that ssc-miR-503, ssc-miR-130a, and ssc-miR-9 are related to low sperm cryotolerance in boars semen. So those miRNAs can be used as a biomarker to predict their low ability to tolerate the cryopreservation process.
Collapse
Affiliation(s)
- Ana Carolina Pedrosa
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mariana Andrade Torres
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Jorge E P Pinzon
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
48
|
da Silveira JC, Andrade GM, Simas RC, Martins-Júnior HA, Eberlin MN, Smith LC, Perecin F, Meirelles FV. Lipid profile of extracellular vesicles and their relationship with bovine oocyte developmental competence: New players in intra follicular cell communication. Theriogenology 2021; 174:1-8. [PMID: 34403846 DOI: 10.1016/j.theriogenology.2021.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Cell communication within the ovarian follicle is crucial during folliculogenesis to assure an ideal environment for the oocyte to achieve full developmental competence. Intercellular communication is facilitated by the presence of follicular fluid, which mediates the transfer of signaling molecules. Recently, extracellular vesicles (exosomes and microvesicles) containing mRNAs, miRNAs and proteins were described in mammalian follicular fluid. Besides these molecules, extracellular vesicles (EVs) can mediate the transfer of lipids that can act as signal transducers activating second messengers and modulating intracellular pathways. Our goal was to determine the lipid profile of exosomes (small extracellular vesicles) and microvesicles (large extracellular vesicles) from bovine ovarian follicles containing oocytes with different developmental capabilities to verify potential relationships to competence. Using mass spectrometry, we examined the lipid content of EVs present in the follicular fluid of follicles enclosing oocytes that were either unable to cleave (NCLEAVE), arrested at cleavage stage (CLEAVE), or developed to the blastocyst stage (BLAST) after parthenogenetic activation. Although most of the 514 lipids identified in the follicular fluid EVs were common among all groups, 10 exosome-derived lipids and 15 microvesicle-derived lipids were present exclusively in the BLAST group, suggesting a potential relationship with developmental competence. Therefore, our data indicate that the EVs present in follicular fluid of antral follicles of similar morphology contain lipids that may be used as biomarkers associated with the developmental capability of the oocyte to develop to the blastocyst stage.
Collapse
Affiliation(s)
- Juliano Coelho da Silveira
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Gabriella Mamede Andrade
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil; Nilo Frantz Reproductive Medicine, Porto Alegre, Brazil
| | - Rosineide Costa Simas
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goias, Goiania, Brazil
| | | | - Marcos Nogueira Eberlin
- MackMass Laboratory, School of Engineering - PPGEMN, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Lawrence Charles Smith
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil; Université de Montréal, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, St. Hyacinthe, Québec, Canada
| | - Felipe Perecin
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Faculty of Animal Sciences and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
49
|
Currin L, Baldassarre H, Bordignon V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals (Basel) 2021; 11:2275. [PMID: 34438733 PMCID: PMC8388507 DOI: 10.3390/ani11082275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Laparoscopic ovum pick-up (LOPU) coupled with in vitro embryo production (IVEP) in prepubertal cattle and buffalo accelerates genetic gain. This article reviews LOPU-IVEP technology in prepubertal Holstein Cattle and Mediterranean Water Buffalo. The recent expansion of genomic-assisted selection has renewed interest and demand for prepubertal LOPU-IVEP schemes; however, low blastocyst development rates has constrained its widespread implementation. Here, we present an overview of the current state of the technology, limitations that persist and suggest possible solutions to improve its efficiency, with a focus on gonadotropin stimulations strategies to prime oocytes prior to follicular aspiration, and IVEP procedures promoting growth factor metabolism and limiting oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.C.); (H.B.)
| |
Collapse
|
50
|
de Ávila ACFCM, Bridi A, Andrade GM, Del Collado M, Sangalli JR, Nociti RP, da Silva Junior WA, Bastien A, Robert C, Meirelles FV, Perecin F, da Silveira JC. Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation†. Biol Reprod 2021; 102:362-375. [PMID: 31504242 DOI: 10.1093/biolre/ioz177] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by ovarian follicle cells. Extracellular vesicles are an important form of intercellular communication, since they carry bioactive contents, such as microRNAs (miRNAs), mRNAs, and proteins. MicroRNAs are small noncoding RNA capable of modulating mRNA translation. Thus, EVs can play a role in follicle and oocyte development. However, it is not clear if EV contents vary with the estrous cycle stage. The aim of this study was to investigate the bovine miRNA content in EVs obtained from follicles at different estrous cycle stages, which are associated with different progesterone (P4) levels in the follicular fluid (FF). We collected FF from 3 to 6 mm follicles and evaluated the miRNA profile of the EVs and their effects on cumulus-oocyte complexes during in vitro maturation. We observed that EVs from low P4 group have a higher abundance of miRNAs predicted to modulate pathways, such as MAPK, RNA transport, Hippo, Cell cycle, FoxO, oocyte meiosis, and TGF-beta. Additionally, EVs were taken up by cumulus cells and, thus, affected the RNA global profile 9 h after EV supplementation. Cumulus cells supplemented with EVs from low P4 presented upregulated genes that could modulate biological processes, such as oocyte development, immune responses, and Notch signaling compared with genes of cumulus cells in the EV free media or with EVs from high P4 follicles. In conclusion, our results demonstrate that EV miRNA contents are distinct in follicles exposed to different estrous cycle stage. Supplementation with EVs impacts gene expression and biological processes in cumulus cells.
Collapse
Affiliation(s)
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Gabriella Mamede Andrade
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Maite Del Collado
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Alexandre Bastien
- Animal Science Department, Research Center in Reproductive Biology, Institute on Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Claude Robert
- Animal Science Department, Research Center in Reproductive Biology, Institute on Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|