1
|
Lee DH, Lee J, Ahn SY, Ho TL, Kim K, Ko EJ. Monophosphoryl lipid A and poly I:C combination enhances immune responses of equine influenza virus vaccine. Vet Immunol Immunopathol 2024; 271:110743. [PMID: 38522410 DOI: 10.1016/j.vetimm.2024.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Equine influenza is a contagious respiratory disease caused by H3N8 type A influenza virus. Vaccination against equine influenza is conducted regularly; however, infection still occurs globally because of the short immunity duration and suboptimal efficacy of current vaccines. Hence the objective of this study was to investigate whether an adjuvant combination can improve immune responses to equine influenza virus (EIV) vaccines. Seventy-two mice were immunized with an EIV vaccine only or with monophosphoryl lipid A (MPL), polyinosinic-polycytidylic acid (Poly I:C), or MPL + Poly I:C. Prime immunization was followed by boost immunization after 2 weeks. Mice were euthanized at 4, 8, and 32 weeks post-prime immunization, respectively. Sera were collected to determine humoral response. Bone marrow, spleen, and lung samples were harvested to determine memory cell responses, antigen-specific T-cell proliferation, and lung viral titers. MPL + Poly I:C resulted in the highest IgG, IgG1, and IgG2a antibodies and hemagglutination inhibition titers among the groups and sustained their levels until 32 weeks post-prime immunization. The combination enhanced memory B cell responses in the bone marrow and spleen. At 8 weeks post-prime immunization, the combination induced higher CD8+ central memory T cell frequencies in the lungs and CD8+ central memory T cells in the spleen. In addition, the combination group exhibited enhanced antigen-specific T cell proliferation, except for CD4+ T cells in the lungs. Our results demonstrated improved immune responses when using MPL + Poly I:C in EIV vaccines by inducing enhanced humoral responses, memory cell responses, and antigen-specific T cell proliferation.
Collapse
Affiliation(s)
- Dong-Ha Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jueun Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Kiyeon Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Ju Ko
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
2
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Zhang A, Li D, Song C, Jing H, Li H, Mi J, Zhang G, Jin S, Ren X, Huangfu H, Shi D, Chen R. Evaluation of different combination of pam2CSK4, poly (I:C) and imiquimod enhance immune responses to H9N2 avian influenza antigen in dendritic cells and duck. PLoS One 2022; 17:e0271746. [PMID: 35853030 PMCID: PMC9295992 DOI: 10.1371/journal.pone.0271746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Current commercial H9 avian influenza viruses (AIVs) vaccines cannot provide satisfactory antibody titers and protective immunity against AIVs in duck. Toll like receptors (TLR) ligand as AIVs adjuvants can activate dendritic cells to improve immune responses in multiple animals, while the studies were absent in duck. Therefore, we investigated TLR ligands pam2CSK4, poly (I:C) and/or imiquimod enhance immune responses to inactivated H9N2 avian influenza antigen (H9N2 IAIV) in peripheral blood monocyte-derived dendritic cells (MoDCs) and duck. In vitro, we observed that transcription factor NF-κB, Th1/Th2 type cytokines (IFN-γ, IL-2 and IL-6) and the ability of catching H9N2 IAIV antigen were significantly up-regulated when H9N2 IAIV along with TLR ligands (pam2CSK4, poly (I:C) and imiquimod, alone or combination) in duck MoDCs. Also, the best enhancement effects were showed in combination of pam2CSK4, poly (I:C) and imiquimod group, whereas IFN-α showed no significant enhancement in all experimental groups. In vivo, the results demonstrated that the percentages of CD4+/ CD8+ T lymphocytes, the levels of Th1/Th2 type cytokines and H9N2 HI titers were significant enhanced in combination of pam2CSK4, poly (I:C) and imiquimod group. However, pam2CSK4 alone or combining with imiquimod showed no enhancement or additive effects on Th1 cytokines (IFN-γ and IL-2), Th2 cytokines (IL-6) and HI titers in Muscovy duck, respectively. Taken together, our results concluded that not all TLR ligands showed enhancement of immune responses to H9N2 IAIV in duck. The combination of poly (I:C), imiquimod and pam2CSK4 that can be an effectively adjuvant candidate for H9N2 AIVs inactivated vaccine in duck, which provide novel insights in explore waterfowl vaccine.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Huannong (Zhaoqing) Institute of Biotechnology Co. Ltd., Zhaoqing, Guangdong, China
- Henan Poultry Disease Prevention and Control Engineering Technology Research Center, Zhengzhou, Henan, China
- * E-mail: (RC); (AZ)
| | - Deyin Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Chao Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Huiyuan Jing
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Hongfei Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Junxian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guizhi Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shuangxing Jin
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Poultry Disease Prevention and Control Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Xiaoli Ren
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Heping Huangfu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Dongmei Shi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Ruiai Chen
- Huannong (Zhaoqing) Institute of Biotechnology Co. Ltd., Zhaoqing, Guangdong, China
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
- * E-mail: (RC); (AZ)
| |
Collapse
|
4
|
Brennan K, Craven S, Cheung M, Kane D, Noone E, O'Callaghan J, Molloy EJ, Walsh PT, McAuliffe FM, Doyle SL. Cytosolic dsRNA improves neonatal innate immune responses to adjuvants in use in pediatric vaccines. J Leukoc Biol 2022; 112:523-537. [PMID: 35098572 PMCID: PMC9542317 DOI: 10.1002/jlb.5a0521-242r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pattern recognition receptors (PRRs) of the innate immune system represent the critical front‐line defense against pathogens, and new vaccine formulations target these PRR pathways to boost vaccine responses, through activation of cellular/Th1 immunity. The majority of pediatric vaccines contain aluminum (ALUM) or monophosphoryl lipid A (MPLA) as adjuvants to encourage immune activation. Evidence suggests that elements of the innate immune system, currently being targeted for vaccine adjuvanticity do not fully develop until puberty and it is likely that effective adjuvants for the neonatal and pediatric populations are being overlooked due to modeling of responses in adult systems. We recently reported that the activity of the cytosolic nucleic acid (CNA) sensing family of PRRs is strong in cord blood and peripheral blood of young children. This study investigates the function of CNA sensors in subsets of neonatal innate immune cells and shows that myeloid cells from cord blood can be activated to express T cell costimulatory markers, and also to produce Th1 promoting cytokines. CD80 and CD86 were consistently up‐regulated in response to cytosolic Poly(I:C) stimulation in all cell types examined and CNA activation also induced robust Type I IFN and low levels of TNFα in monocytes, monocyte‐derived macrophages, and monocyte‐derived dendritic cells. We have compared CNA activation to adjuvants currently in use (MPLA or ALUM), either alone or in combination and found that cytosolic Poly(I:C) in combination with MPLA or ALUM can improve expression of activation marker levels above those observed with either adjuvant alone. This may prove particularly promising in the context of improving the efficacy of existing ALUM‐ or MPLA‐containing vaccines, through activation of T cell‐mediated immunity.
Collapse
Affiliation(s)
- Kiva Brennan
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Simon Craven
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Maria Cheung
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Daniel Kane
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Eleanor Noone
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Joseph O'Callaghan
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Eleanor J Molloy
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Paediatrics School of Medicine, Trinity College Dublin Dublin Ireland
- Coombe Women and Infants University Hospital Dublin Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Sarah L Doyle
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| |
Collapse
|
5
|
Hazlewood JE, Tang B, Yan K, Rawle DJ, Harrison JJ, Hall RA, Hobson-Peters J, Suhrbier A. The Chimeric Binjari-Zika Vaccine Provides Long-Term Protection against ZIKA Virus Challenge. Vaccines (Basel) 2022; 10:85. [PMID: 35062746 PMCID: PMC8781009 DOI: 10.3390/vaccines10010085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
We recently developed a chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV) and used this to generate a chimeric ZIKV vaccine (BinJ/ZIKA-prME) that protected IFNAR-/- dams and fetuses from infection. Herein, we show that a single vaccination of IFNAR-/- mice with unadjuvanted BinJ/ZIKA-prME generated neutralizing antibody responses that were retained for 14 months. At 15 months post vaccination, mice were also completely protected against detectable viremia and substantial body weight loss after challenge with ZIKVPRVABC59. BinJ/ZIKA-prME vaccination thus provided long-term protective immunity without the need for adjuvant or replication of the vaccine in the vaccine recipient, both attractive features for a ZIKV vaccine.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; (J.J.H.); (R.A.H.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; (J.J.H.); (R.A.H.)
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD 4067, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; (J.J.H.); (R.A.H.)
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD 4067, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (J.E.H.); (B.T.); (K.Y.); (D.J.R.)
| |
Collapse
|
6
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
7
|
Abstract
The immune (innate and adaptive) system has evolved to protect the host from any danger present in the surrounding outer environment (microbes and associated MAMPs or PAMPs, xenobiotics, and allergens) and dangers originated within the host called danger or damage-associated molecular patterns (DAMPs) and recognizing and clearing the cells dying due to apoptosis. It also helps to lower the tissue damage during trauma and initiates the healing process. The pattern recognition receptors (PRRs) play a crucial role in recognizing different PAMPs or MAMPs and DAMPs to initiate the pro-inflammatory immune response to clear them. Toll-like receptors (TLRs) are first recognized PRRs and their discovery proved milestone in the field of immunology as it filled the gap between the first recognition of the pathogen by the immune system and the initiation of the appropriate immune response required to clear the infection by innate immune cells (macrophages, neutrophils, dendritic cells or DCs, and mast cells). However, in addition to their expression by innate immune cells and controlling their function, TLRs are also expressed by adaptive immune cells. We have identified 10 TLRs (TLR1-TLR10) in humans and 12 TLRs (TLR1-TLR13) in laboratory mice till date as TLR10 in mice is present only as a defective pseudogene. The present chapter starts with the introduction of innate immunity, timing of TLR evolution, and the evolution of adaptive immune system and its receptors (T cell receptors or TCRs and B cell receptors or BCRs). The next section describes the role of TLRs in the innate immune function and signaling involved in the generation of inflammation. The subsequent sections describe the expression and function of different TLRs in murine and human adaptive immune cells (B cells and different types of T cells, including CD4+T cells, CD8+T cells, CD4+CD25+Tregs, and CD8+CD25+Tregs, etc.). The modulation of TLRs expressed on T and B cells has a great potential to develop different vaccine candidates, adjuvants, immunotherapies to target various microbial infections, including current COVID-19 pandemic, cancers, and autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
8
|
Abstract
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Izabela Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|
9
|
Im J, Baik JE, Lee D, Park OJ, Park DH, Yun CH, Han SH. Bacterial Lipoproteins Induce BAFF Production via TLR2/MyD88/JNK Signaling Pathways in Dendritic Cells. Front Immunol 2020; 11:564699. [PMID: 33123136 PMCID: PMC7566273 DOI: 10.3389/fimmu.2020.564699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell activating factor (BAFF) plays a crucial role in survival, differentiation, and antibody secretion of B cells. Microbial products with B-cell mitogenic properties can indirectly promote expansion and activation of B cells by stimulating accessory cells, such as dendritic cells (DCs), to induce BAFF. Although bacterial lipoproteins are potent B-cell mitogen like lipopolysaccharides (LPSs), it is uncertain whether they can stimulate DCs to induce BAFF expression. Here, we evaluated the effect of bacterial lipoproteins on BAFF expression in mouse bone marrow-derived DCs. Lipoprotein-deficient Staphylococcus aureus mutant induced relatively low expression level of membrane-bound BAFF (mBAFF) and the mRNA compared with its wild-type strain, implying that bacterial lipoproteins can positively regulate BAFF induction. The synthetic lipopeptides Pam2CSK4 and Pam3CSK4, which mimic bacterial lipoproteins, dose-dependently induced BAFF expression, and their BAFF-inducing capacities were comparable to those of LPS in DCs. Induction of BAFF by the lipopeptide was higher than the induction by other microbe-associated molecular patterns, including peptidoglycan, flagellin, zymosan, lipoteichoic acid, and poly(I:C). Pam3CSK4 induced both mBAFF and soluble BAFF expression in a dose- and time-dependent manner. BAFF expression by Pam3CSK4 was completely absent in DCs from TLR2- or MyD88-deficient mice. Among various MAP kinase inhibitors, only JNK inhibitors blocked Pam3CSK4-induced BAFF mRNA expression, while inhibitors blocking ERK or p38 kinase had no such effect. Furthermore, Pam3CSK4 increased the DNA-binding activities of NF-κB and Sp1, but not that of C/EBP. Pam3CSK4-induced BAFF promoter activity via TLR2/1 was blocked by NF-κB or Sp1 inhibitor. Collectively, these results suggest that bacterial lipoproteins induce expression of BAFF through TLR2/MyD88/JNK signaling pathways leading to NF-κB and Sp1 activation in DCs, and BAFF derived from bacterial lipoprotein-stimulated DCs induces B-cell proliferation.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Haddadi A, Chaffey A, Ng SH, Yalamati D, Wilson HL. Combination of Innate Immune Modulators as Vaccine Adjuvants in Mice. Vaccines (Basel) 2020; 8:E569. [PMID: 33019524 PMCID: PMC7712867 DOI: 10.3390/vaccines8040569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new, effective, and safe vaccines necessarily requires the identification of new adjuvant(s) to enhance the potency and longevity of antigen-specific immune responses. In the present study, we compare the antibody-mediated and cell-mediated immune (CMI) responses within groups of mice vaccinated subcutaneously with ovalbumin (OVA; as an experimental antigen) plus polyphosphazene (an innate immune modulator), Polyinosinic:polycytidylic acid (poly-I:C; (an RNA mimetic) and glycopeptide ARC5 (which is a Toll-like receptor (TLR), TLR2 ligand and PAM3CSK4 analogue) formulated together in a soluble vaccine. We also investigated the effect of a polymeric nanoparticle of ARC4 and ARC7 (which are a novel muramyl dipeptide analogue and a monophosophoryl lipid A (MPLA) analogue, respectively) plus OVA +/- ARC5 as a subcutaneous vaccine in mice. OVA+ARC4/ARC7 nanoparticle +/- ARC5 triggered a robust and balanced Th1/Th2-type humoral response with significant anti-OVA IgA in serum, and significant interferon (IFN)-γ and interleukin (IL)-17 production in splenocytes after 35 days relative to the controls. Formulation of OVA with ARC4/ARC7 nanoparticles should be investigated for inducing protective immunity against infectious pathogens in mice and other species.
Collapse
Affiliation(s)
- Azita Haddadi
- Division of Pharmacy, College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Alyssa Chaffey
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.C.); (S.H.N.)
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.C.); (S.H.N.)
| | | | - Heather L. Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.C.); (S.H.N.)
| |
Collapse
|
11
|
Negahdaripour M, Nezafat N, Heidari R, Erfani N, Hajighahramani N, Ghoshoon MB, Shoolian E, Rahbar MR, Najafipour S, Dehshahri A, Morowvat MH, Ghasemi Y. Production and Preliminary In Vivo Evaluations of a Novel in silico-designed L2-based Potential HPV Vaccine. Curr Pharm Biotechnol 2020; 21:316-324. [PMID: 31729940 DOI: 10.2174/1389201020666191114104850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND L2-based Human Papillomavirus (HPV) prophylactic vaccines, containing epitopes from HPV minor capsid proteins, are under investigation as second-generation HPV vaccines. No such vaccine has passed clinical trials yet, mainly due to the low immunogenicity of peptide vaccines; so efforts are being continued. A candidate vaccine composed of two HPV16 L2 epitopes, flagellin and a Toll-Like Receptor (TLR) 4 agonist (RS09) as adjuvants, and two universal T-helper epitopes was designed in silico in our previous researches. METHODS The designed vaccine construct was expressed in E. coli BL21 (DE3) and purified through metal affinity chromatography. Following mice vaccination, blood samples underwent ELISA and flow cytometry analyses for the detection of IgG and seven Th1 and Th2 cytokines. RESULTS Following immunization, Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-10) type cytokines, as well as IgG, were induced significantly compared with the PBS group. Significant increases in IFN-γ, IL-2, and IL-5 levels were observed in the vaccinated group versus Freund's adjuvant group. CONCLUSION The obtained cytokine induction profile implied both cellular and humoral responses, with a more Th-1 favored trend. However, an analysis of specific antibodies against L2 is required to confirm humoral responses. No significant elevation in inflammatory cytokines, (IL-6 and TNF-α), suggested a lack of unwanted inflammatory side effects despite using a combination of two TLR agonists. The designed construct might be capable of inducing adaptive and innate immunity; nevertheless, comprehensive immune tests were not conducted at this stage and will be a matter of future work.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Nasrollah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad B Ghoshoon
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Eskandar Shoolian
- Charité University of Medicine, Campus Research House of Clinical Chemistry and Biochemistry, Augustenburger Platz 1, 13353 Berlin, Germany.,Biotechnology incubator center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad R Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sohrab Najafipour
- Microbiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad H Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
12
|
Wang Z, Chen T, Lin W, Zheng W, Chen J, Huang F, Xie X. Functional tumor specific CD8 + T cells in spleen express a high level of PD-1. Int Immunopharmacol 2020; 80:106242. [PMID: 32014811 DOI: 10.1016/j.intimp.2020.106242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/11/2023]
Abstract
The inhibitory effects of programmed cell death 1 (PD-1) receptor on tumor specific T cells were mainly investigated at tumor site. While PD-1 expression can be rapidly unregulated upon T cell activation at lymphoid tissues, little is known about where PD-1 signal exerts its inhibitory function in tumor-bearing host. To address this issue, we assessed the effects of PD-1 on vaccine induced activation of splenic CD8 + T cells in mice. The vaccine consisted of mice CD8 + T cell epitope peptide and poly IC. After vaccination, spleen or tumor tissues were dissociated, IFN-γ synthesis and PD-1 expression by CD8 + T cells were detected by flow cytometry. We found that CD8 + T cells could be successfully activated in spleen after immunization, characterized by the capability of producing IFN-γ when encountering relevant peptide. These activated splenic CD8 + T cells also expressed a high level of PD-1. Although PD-L1 expression in spleen parenchyma was also increased after vaccination, PD-1 blockade did not affect the activation of splenic CD8 + T cells, but enhanced the anti-tumor effects of peptide vaccine. This synergetic effect of peptide vaccine plus PD-1 blockade was coupled with increased aggregation of IFN-γ + CD8 + tumor infiltrated lymphocytes (TILs), rather than CD4 + TILs. The results indicated that for tumor-bearing host, PD-1 pathway exerted its inhibitory function at tumor site and PD-1 expression on the splenic CD8 + T cells correlated positively with IFN-γ synthesis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cell Line, Tumor/transplantation
- Drug Resistance, Neoplasm/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Immunotherapy/methods
- Interferon-gamma/metabolism
- Intramolecular Oxidoreductases/administration & dosage
- Intramolecular Oxidoreductases/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Poly I-C/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Specific Pathogen-Free Organisms
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Up-Regulation/immunology
- Vaccines, Subunit/administration & dosage
Collapse
Affiliation(s)
- Zili Wang
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ting Chen
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wanzun Lin
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Weili Zheng
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Junying Chen
- Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Fei Huang
- Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xianhe Xie
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China.
| |
Collapse
|
13
|
The Combinations Chitosan-Pam 3CSK 4 and Chitosan-Monophosphoryl Lipid A: Promising Immune-Enhancing Adjuvants for Anticaries Vaccine PAc. Infect Immun 2019; 87:IAI.00651-19. [PMID: 31527122 DOI: 10.1128/iai.00651-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that recombinant protein PAc could be administered as an anticaries vaccine. However, the relatively weak immunogenicity of PAc limits its application. In the present study, we investigated the effect of two adjuvant combinations of chitosan plus Pam3CSK4 (chitosan-Pam3CSK4) and of chitosan plus monophosphoryl lipid A (chitosan-MPL) in the immune responses to the PAc protein in vivo and in vitro PAc-chitosan-Pam3CSK4 or PAc-chitosan-MPL promoted significantly higher PAc-specific antibody titers in serum and saliva, inhibited Streptococcus mutans colonization onto the tooth surfaces, and endowed better protection effect with significantly less caries activities than PAc alone. Chitosan-Pam3CSK4 and chitosan-MPL showed no statistically significant differences. In conclusion, our study demonstrated that the chitosan-Pam3CSK4 and chitosan-MPL combinations are promising for anticaries vaccine development.
Collapse
|
14
|
Combination of TLR2 and TLR3 agonists derepress infectious bursal disease virus vaccine-induced immunosuppression in the chicken. Sci Rep 2019; 9:8197. [PMID: 31160675 PMCID: PMC6547722 DOI: 10.1038/s41598-019-44578-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
Live intermediate plus infectious bursal disease virus (IBDV) vaccines (hot vaccines) are used for protection against the virulent IBDV strains in young chickens. We evaluated the potential of Toll-like receptor (TLR) agonists to alleviate hot vaccine-induced immunosuppression. The combination of Pam3CSK4 and poly I:C synergistically upregulated IFN-β, IFN-γ, IL-12, IL-4, and IL-13 transcripts and cross-inhibited IL-1β, IL-10, and iNOS transcripts in the chicken peripheral blood mononuclear cells (PBMCs) as analyzed by quantitative real-time PCR. Further, four-week old specific pathogen free White Leghorn chickens (n = 60) were randomly divided into six groups and either immunized with hot IBDV vaccine with or without Pam3CSK4 and/or poly I:C or not vaccinated to serve as controls. The results indicated that poly I:C alone and in combination with Pam3CSK4 alleviated vaccine-induced immunosuppression, as evidenced by greater weight gain, increased overall antibody responses to both sheep erythrocytes and live infectious bronchitis virus vaccine, upregulated IFN-γ transcripts and nitric oxide production by PBMCs (P < 0.05), and lower bursal lesion score in the experimental birds. In conclusion, poly I:C alone and its combination with Pam3CSK4 reduced the destruction of B cells as well as bursal damage with restoration of function of T cells and macrophages when used with a hot IBDV vaccine.
Collapse
|
15
|
Blufstein A, Behm C, Gahn J, Uitz O, Naumovska I, Moritz A, Rausch-Fan X, Andrukhov O. Synergistic effects triggered by simultaneous Toll-like receptor-2 and -3 activation in human periodontal ligament stem cells. J Periodontol 2019; 90:1190-1201. [PMID: 31049957 PMCID: PMC6852053 DOI: 10.1002/jper.19-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Background Although periodontitis is associated with disruption of the host‐microbial homeostasis, viruses are currently discussed to influence disease progression. Viral pathogens are recognized by Toll‐like receptor (TLR)‐3, which engages a different signaling pathway than other TLRs. This study aimed to investigate the effect of TLR‐3 agonist polyinosinic:polycytidylic acid (Poly I:C) on the expression of inflammatory markers and bone metabolism proteins by human periodontal ligament stem cells (hPDLSCs) compared with TLR‐2 agonist Pam3CSK4, which mimics the effect of bacterial lipoproteins. To assess potential combined effects of bacterial and viral infections, hPDLSCs response to simultaneous TLR‐2 and TLR‐3 activation was investigated. Methods HPDLSCs were stimulated with Poly I:C (0.0001‐1 µg/mL), Pam3CSK4 (1 µg/mL), and their combinations for 24 hours. Gene expression and protein levels of interleukin (IL)‐6, IL‐8, monocyte chemoattractant protein (MCP)‐1, and osteoprotegerin (OPG) were measured with qPCR and ELISA. Results Production of IL‐6, IL‐8, MCP‐1, and OPG was significantly increased by Poly I:C or Pam3CSK4 to a similar extent. The levels of all inflammatory mediators induced by simultaneous stimulation with Poly I:C and Pam3CSK4 were significantly higher compared with single stimuli as well as to their summed response. Gene expression and protein levels of OPG were enhanced by Poly I:C, but by lesser extent than by Pam3CSK4. OPG levels upon simultaneous stimulation with Pam3CSK4 and Poly I:C were significantly lower compared with Pam3CSK4 stimulation alone. Conclusions Simultaneous TLR‐2 and TLR‐3 activation synergistically triggers IL‐6, IL‐8, and MCP‐1 production, which was not observed for OPG. These findings suggest that TLR‐3 activation by viral infections might promote periodontitis progression.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oksana Uitz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Ivana Naumovska
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Salgado CL, Dias EL, Stringari LL, Covre LP, Dietze R, Lima Pereira FE, de Matos Guedes HL, Rossi-Bergmann B, Gomes DCO. Pam3CSK4 adjuvant given intranasally boosts anti-Leishmania immunogenicity but not protective immune responses conferred by LaAg vaccine against visceral leishmaniasis. Microbes Infect 2019; 21:328-335. [PMID: 30817996 DOI: 10.1016/j.micinf.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
Abstract
The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Emmanoel Loss Dias
- Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Global Health and Tropical Medicine, Instituto de Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Herbet Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Núcleo Multidisciplinar de Pesquisa UFRJ, Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil.
| |
Collapse
|
17
|
Weir GM, MacDonald LD, Rajagopalan R, Sivko GS, Valderas MW, Rayner J, Berger BJ, Sammatur L, Stanford MM. Single dose of DPX-rPA, an enhanced-delivery anthrax vaccine formulation, protects against a lethal Bacillus anthracis spore inhalation challenge. NPJ Vaccines 2019; 4:6. [PMID: 30774997 PMCID: PMC6368554 DOI: 10.1038/s41541-019-0102-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Anthrax is a serious biological threat caused by pulmonary exposure to aerosolized spores of Bacillus anthracis. Biothrax® (anthrax vaccine adsorbed (AVA)) is the only Food and Drug Administration-licensed vaccine and requires five administrations over 12 months with annual boosting to maintain pre-exposure prophylaxis. Here we report the evaluation of a single intramuscular injection of recombinant B. anthracis-protective antigen (rPA) formulated in the DPX delivery platform. Immune responses were compared to an alum-based formulation in mice and rabbits. Serological analysis of anti-rPA immunoglobulin G and toxin neutralization activity demonstrated higher responses induced by DPX-rPA when compared to rPA in alum. DPX-rPA was compared to AVA in rabbits and non-human primates (NHPs). In both species, DPX-rPA generated responses after a single immunization, whereas AVA required two immunizations. In rabbits, single injection of DPX-rPA or two injections of AVA conferred 100% protection from anthrax challenge. In NHPs, single-dose DPX-rPA was 100% protective against challenge, whereas one animal in the two-dose AVA group and all saline administered animals succumbed to infection. DPX-rPA was minimally reactogenic in all species tested. These data indicate that DPX-rPA may offer improvement over AVA by reducing the doses needed for protective immune responses and is a promising candidate as a new-generation anthrax vaccine. A lipid-based anthrax vaccine formulation offers immunity from the first injection. Bacillus anthracis is a lethal pathogen at high risk for use in biological warfare. The only FDA-licensed vaccine for anthrax, AVA, requires multiple doses over six months followed by regular boosters, indicating a need for rapidly immunizing vaccines. Genevieve Weir and Lisa MacDonald, from IMV Inc., with Canadian and US collaborators, here describe a prophylactic consisting of B. anthracis antigens suspended in a lipid-in-oil formulation. Their candidate, DPX-rPA, generated antigen-specific antibodies in rabbits and monkeys after one dose, compared to two for AVA. DPX-rPA also protected both species from B. anthracis spores after one dose. The results indicate that single-dose DPX-rPA is equally protective as two doses of AVA and could serve as pre-exposure and post-exposure prophylaxis. Future studies may confirm its potential as a vaccine for humans.
Collapse
Affiliation(s)
- Genevieve M Weir
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada
| | - Lisa D MacDonald
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada
| | | | - Gloria S Sivko
- 2Battelle, 1425 Plain City Georgesville Road, West Jefferson, OH 43162 USA
| | | | - Jonathan Rayner
- 3Southern Research, 2000 9th Avenue S, Birmingham, AL 35205 USA
| | - Bradley J Berger
- 4Suffield Research Centre, Defence Research and Development Canada, Medicine Hat, AB T1A 8K6 Canada
| | - Leeladhar Sammatur
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada
| | - Marianne M Stanford
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada.,5Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Room 7-C, PO BOX 15000, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
18
|
Nigar S, Yamamoto Y, Okajima T, Sato T, Ogita T, Shimosato T. Immune synergistic oligodeoxynucleotide from Lactobacillus rhamnosus GG enhances the immune response upon co-stimulation by bacterial and fungal cell wall components. Anim Sci J 2018; 89:1504-1511. [PMID: 30033529 DOI: 10.1111/asj.13082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Bacterial genomic DNA has recently been shown to elicit a highly evolved immune defense. This response can be selectively triggered for a wide range of therapeutic applications, including use as a vaccine adjuvant to immunotherapies for allergy, cancer, and infectious diseases. Previously, we identified a low-concentration immune synergistic oligodeoxynucleotide (iSN-ODN, named iSN34) from Lactobacillus rhamnosus GG that has immunosynergistic activity upon costimulation of target cells with ligands of Toll-like receptor 9 (TLR9). Here, we extend that observation by demonstrating the synergistic induction (in mouse splenocytes) of IL-6 by the combination of iSN34 with cell wall components of bacteria and fungi. We observed that splenocytes pretreated with iSN34 and then costimulated with agonists for TLR1/2 (Pam3 CSK4 ), TLR4 (lipopolysaccharide), or TLR2/6 (Zymosan) exhibited enhanced accumulation of IL-6. These results suggested that the combination of iSN34 with TLR1/2, TLR4, or TLR2/6 agonists may permit the induction of a potent immune response.
Collapse
Affiliation(s)
- Shireen Nigar
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano, Japan.,Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Yoshinari Yamamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuma Okajima
- Department of Agricultural and Life Science, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano, Japan
| | - Takashi Sato
- Department of Pulmonology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tasuku Ogita
- Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, Japan
| | - Takeshi Shimosato
- Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Minamiminowa, Nagano, Japan
| |
Collapse
|
19
|
Vaccine therapy in hematologic malignancies. Blood 2018; 131:2640-2650. [DOI: 10.1182/blood-2017-11-785873] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Abstract
Immune-based therapy has emerged as a paradigm shift in cancer therapy with dramatic responses observed in previously incurable disease. Cancer vaccines are being developed to disrupt tumor-associated tolerance and activate and selectively expand tumor-specific lymphocytes within the native effector cell repertoire while maintaining immune-regulatory protection against autoimmunity. Although individual antigen approaches result in immune response with a suggestion of clinical effect in some settings, broader efficacy may be dependent on presentation of multiple antigens that capture clonal diversity presented in the context of functionally potent antigen-presenting cells. The use of whole cell–based strategies such as dendritic cell/tumor fusions have yielded provocative results in single-arm studies and are currently being explored in multicenter randomized trials. The posttransplant setting is a potentially promising platform for vaccination due to cytoreduction and relative depletion of inhibitory accessory cells fostering greater immune responsiveness. Integration of these efforts with other immunotherapeutic strategies and agents that target the tumor microenvironment is being studied in an effort to generate durable immunologic responses with clinically meaningful impact on disease.
Collapse
|
20
|
Lee SH, Park SR. Toll-like Receptor 1/2 Agonist Pam3CSK4 Suppresses Lipopolysaccharide-driven IgG1 Production while Enhancing IgG2a Production by B Cells. Immune Netw 2018; 18:e10. [PMID: 29503740 PMCID: PMC5833117 DOI: 10.4110/in.2018.18.e10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Interaction between pathogen-associated molecular patterns and pattern recognition receptors triggers innate and adaptive immune responses. Several studies have reported that toll-like receptors (TLRs) are involved in B cell proliferation, differentiation, and Ig class switch recombination (CSR). However, roles of TLRs in B cell activation and differentiation are not completely understood. In this study, we investigated the direct effect of stimulation of TLR1/2 agonist Pam3CSK4 on mouse B cell viability, proliferation, activation, Ig production, and Ig CSR in vitro. Treatment with 0.5 µg/ml of Pam3CSK4 only barely induced IgG1 production although it enhanced B cell viability. In addition, high-dosage Pam3CSK4 diminished IgG1 production in a dose-dependent manner, whereas the production of other Igs, cell viability, and proliferation increased. Pam3CSK4 additively increased TLR4 agonist lipopolysaccharide (LPS)-induced mouse B cell growth and activation. However, interestingly, Pam3CSK4 abrogated LPS-induced IgG1 production but enhanced LPS-induced IgG2a production. Further, Pam3CSK4 decreased LPS-induced germline γ1 transcripts (GLTγ1)/GLTε expression but increased GLTγ2a expression. On the other hand, Pam3CSK4 had no effect on LPS-induced plasma cell differentiation. Taken together, these results suggest that TLR1/2 agonist Pam3CSK4 acts as a potent mouse B cell mitogen in combination with TLR4 agonist LPS, but these 2 different TLR agonists play diverse roles in regulating the Ig CSR of each isotype, particularly IgG1/IgE and IgG2a.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.,Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|