1
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
2
|
Li Z, Hu Y, Wang W, Zou F, Yang J, Gao W, Feng S, Chen G, Shi C, Cai Y, Deng G, Chen X. Integrating pathogen- and host-derived blood biomarkers for enhanced tuberculosis diagnosis: a comprehensive review. Front Immunol 2024; 15:1438989. [PMID: 39185416 PMCID: PMC11341448 DOI: 10.3389/fimmu.2024.1438989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
This review explores the evolving landscape of blood biomarkers in the diagnosis of tuberculosis (TB), focusing on biomarkers derived both from the pathogen and the host. These biomarkers provide critical insights that can improve diagnostic accuracy and timeliness, essential for effective TB management. The document highlights recent advancements in molecular techniques that have enhanced the detection and characterization of specific biomarkers. It also discusses the integration of these biomarkers into clinical practice, emphasizing their potential to revolutionize TB diagnostics by enabling more precise detection and monitoring of the disease progression. Challenges such as variability in biomarker expression and the need for standardized validation processes are addressed to ensure reliability across different populations and settings. The review calls for further research to refine these biomarkers and fully harness their potential in the fight against TB, suggesting a multidisciplinary approach to overcome existing barriers and optimize diagnostic strategies. This comprehensive analysis underscores the significance of blood biomarkers as invaluable tools in the global effort to control and eliminate TB.
Collapse
Affiliation(s)
- Zhaodong Li
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yunlong Hu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fa Zou
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing Yang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Gao
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - SiWan Feng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guanghuan Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Chenyan Shi
- Department of Preventive Medicine, School of Public Health, Shenzhen University, Shenzhen, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
3
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
4
|
Bernardini R, Tengattini S, Li Z, Piubelli L, Bavaro T, Modolea AB, Mattei M, Conti P, Marini S, Zhang Y, Pollegioni L, Temporini C, Terreni M. Effect of glycosylation on the affinity of the MTB protein Ag85B for specific antibodies: towards the design of a dual-acting vaccine against tuberculosis. Biol Direct 2024; 19:11. [PMID: 38268026 PMCID: PMC10809592 DOI: 10.1186/s13062-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.
Collapse
Affiliation(s)
- Roberta Bernardini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy.
| | - Zhihao Li
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Anamaria Bianca Modolea
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan, 20133, Italy
| | - Stefano Marini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Yongmin Zhang
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Caterina Temporini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
5
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Nakayama H, Hanafusa K, Yamaji T, Oshima E, Hotta T, Takamori K, Ogawa H, Iwabuchi K. Phylactic role of anti-lipoarabinomannan IgM directed against mannan core during mycobacterial infection in macrophages. Tuberculosis (Edinb) 2023; 143:102391. [PMID: 37574397 DOI: 10.1016/j.tube.2023.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan
| |
Collapse
|
7
|
Ma G, Luo P, Xu R, Ma R, Qiu L, Xu C, Yang R, Li Y, Zhao Z, Huang L, Yang Y, Wang P. Improving the profile and reliability of cytoplasmic proteins from M. tuberculosis using biomimetic affinity chromatography coupled with LC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123756. [PMID: 37236071 DOI: 10.1016/j.jchromb.2023.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
M. tuberculosis is the most successful intracellular pathogen and remains a major threat to human health. It is crucial to investigate the profile of cytoplasmic proteins from M. tuberculosis for pathogenesis, clinical markers, and protein vaccine development. In this study, six biomimetic affinity chromatography (BiAC) resins with high differences were selected for M. tuberculosis-cytoplasmic protein fractionation. All fractions were identified using liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 1246 M. tuberculosis proteins were detected (p < 0.05), among which 1092 M. tuberculosis proteins were identified in BiAC fractionations and 714 M. tuberculosis proteins in un-fractionations (Table S1.3.1). The majority of 66.8% (831/1246) identifications were distributed in the range of Mw 7.0-70.0 kDa, pI 3.5-8.0, and Gravy values <0.3. Furthermore, 560 M. tuberculosis proteins were detected in both the BiAC fractionations and un-fractionations. Compared with the un-fractionations, the average number of prot_matches, prot_cover, prot_sequence, and emPAI values of these 560 proteins in the BiAC fractionations were increased by 3.791, 1.420, 1.307, and 1.788 times, respectively. Overall, compared with un-fractionations, the confidence and profile of M. tuberculosis cytoplasmic proteins were improved by BiAC fractionations coupled with LC-MS/MS analysis. The strategy of BiAC fractionation can be used as an effective method for pre-separating protein mixtures in proteomic studies.
Collapse
Affiliation(s)
- Guorong Ma
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Pengzheng Luo
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ruiqiang Xu
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Rui Ma
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan 750004, PR China
| | - Lei Qiu
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, PR China
| | - Chenran Xu
- School of Clinical Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Rang Yang
- School of Clinical Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yating Li
- School of Clinical Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhihao Zhao
- School of Clinical Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ling Huang
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yanhui Yang
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan 750004, PR China
| | - Pei Wang
- School of Basic Medical, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
8
|
Byrum JR, Waltari E, Janson O, Guo SM, Folkesson J, Chhun BB, Vinden J, Ivanov IE, Forst ML, Li H, Larson AG, Blackmon L, Liu Z, Wu W, Ahyong V, Tato CM, McCutcheon KM, Hoh R, Kelly JD, Martin JN, Peluso MJ, Henrich TJ, Deeks SG, Prakash M, Greenhouse B, Mehta SB, Pak JE. MultiSero: An Open-Source Multiplex-ELISA Platform for Measuring Antibody Responses to Infection. Pathogens 2023; 12:671. [PMID: 37242341 PMCID: PMC10221076 DOI: 10.3390/pathogens12050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A multiplexed enzyme-linked immunosorbent assay (ELISA) that simultaneously measures antibody binding to multiple antigens can extend the impact of serosurveillance studies, particularly if the assay approaches the simplicity, robustness, and accuracy of a conventional single-antigen ELISA. Here, we report on the development of multiSero, an open-source multiplex ELISA platform for measuring antibody responses to viral infection. Our assay consists of three parts: (1) an ELISA against an array of proteins in a 96-well format; (2) automated imaging of each well of the ELISA array using an open-source plate reader; and (3) automated measurement of optical densities for each protein within the array using an open-source analysis pipeline. We validated the platform by comparing antibody binding to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigens in 217 human sera samples, showing high sensitivity (0.978), specificity (0.977), positive predictive value (0.978), and negative predictive value (0.977) for classifying seropositivity, a high correlation of multiSero determined antibody titers with commercially available SARS-CoV-2 antibody tests, and antigen-specific changes in antibody titer dynamics upon vaccination. The open-source format and accessibility of our multiSero platform can contribute to the adoption of multiplexed ELISA arrays for serosurveillance studies, for SARS-CoV-2 and other pathogens of significance.
Collapse
Affiliation(s)
- Janie R. Byrum
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Eric Waltari
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Owen Janson
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
- EPPIcenter Program, University of California, San Francisco, CA 94143, USA
| | - Syuan-Ming Guo
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Jenny Folkesson
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Bryant B. Chhun
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Joanna Vinden
- Infectious Diseases and Immunity Graduate Program, University of California, Berkeley, CA 94720-3370, USA
| | - Ivan E. Ivanov
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Marcus L. Forst
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam G. Larson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lena Blackmon
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Ziwen Liu
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Vida Ahyong
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - Cristina M. Tato
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | | | - Rebecca Hoh
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA 94110, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
| | - Manu Prakash
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bryan Greenhouse
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
- Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA 94143, USA
- EPPIcenter Program, University of California, San Francisco, CA 94143, USA
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| | - John E. Pak
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Luan X, Fan X, Wang R, Deng Y, Chen Z, Li N, Yan Y, Li X, Liu H, Li G, Wan K. High Immunogenicity of a T-Cell Epitope-Rich Recombinant Protein Rv1566c-444 From Mycobacterium tuberculosis in Immunized BALB/c Mice, Despite Its Low Diagnostic Sensitivity. Front Immunol 2022; 13:824415. [PMID: 35265079 PMCID: PMC8899609 DOI: 10.3389/fimmu.2022.824415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of immunodominant antigens is of great significance for the development of new especially sensitive diagnostic reagents and effective vaccines in controlling tuberculosis (TB). In the present study, we targeted the T-Cell epitope-rich fragment (nucleotide position 109-552) of Rv1566c from Mycobacterium tuberculosis (MTB) and got a recombinant protein Rv1566c-444 and the full-length protein Rv1566c with Escherichia coli expression system, then compared their performances for TB diagnosis and immunogenicity in a mouse model. The results showed that Rv1566c-444 had similar sensitivity with Rv1566c (44.44% Vs 30.56%) but lower sensitivity than ESAT-6&CFP-10&Rv3615c (44.4% Vs. 94.4%) contained in a commercial kit for distinguishing TB patients from healthy donors. In immunized BALB/c mice, Rv1566c-444 elicited stronger T-helper 1 (Th1) cellular immune response over Rv1566c with higher levels of Th1 cytokine IFN-γ and IFN-γ/IL-4 expression ratio by ELISA; more importantly, with a higher proliferation of CD4+ T cells and a higher proportion of CD4+ TNF-α+ T cells with flow cytometry. Rv1566c-444 also induced a higher level of IL-6 by ELISA and a higher proportion of Rv1566c-444-specific CD8+ T cells and a lower proportion of CD8+ IL-4+ T cells by flow cytometry compared with the Rv1566c group. Moreover, the Rv1566c-444 group showed a high IgG secretion level and the same type of CD4+ Th cell immune response (both IgG1/IgG2a >1) as its parental protein group. Our results showed the potential of the recombinant protein Rv1566c-444 enriched with T-Cell epitopes from Rv1566c as a host T cell response measuring biomarker for TB diagnosis and support further evaluation of Rv1566c-444 as vaccine antigen against MTB challenge in animal models in the form of protein mixture or fusion protein.
Collapse
Affiliation(s)
- Xiuli Luan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueting Fan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunli Deng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Community Health Management Service Center, Longgang District Peoples Hospital of Shenzhen, Shenzhen, China
| | - Zixin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Infection Control, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Na Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhan Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyan Li
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Novel serological biomarker panel using protein microarray can distinguish active TB from latent TB infection. Microbes Infect 2022; 24:105002. [DOI: 10.1016/j.micinf.2022.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
11
|
Melkie ST, Arias L, Farroni C, Jankovic Makek M, Goletti D, Vilaplana C. The role of antibodies in tuberculosis diagnosis, prophylaxis and therapy: a review from the ESGMYC study group. Eur Respir Rev 2022; 31:31/163/210218. [PMID: 35264411 DOI: 10.1183/16000617.0218-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) is still responsible for the deaths of >1 million people yearly worldwide, and therefore its correct diagnosis is one of the key components of any TB eradication programme. However, current TB diagnostic tests have many limitations, and improved diagnostic accuracy is urgently needed. To improve the diagnostic performance of traditional serology, a combination of different Mycobacterium tuberculosis (MTB) antigens and different antibody isotypes has been suggested, with some showing promising performance for the diagnosis of active TB. Given the incomplete protection conferred by bacille Calmette-Guérin (BCG) vaccination against adult pulmonary TB, efforts to discover novel TB vaccines are ongoing. Efficacy studies from advanced TB vaccines designed to stimulate cell-mediated immunity failed to show protection, suggesting that they may not be sufficient and warranting the need for other types of immunity. The role of antibodies as tools for TB therapy, TB diagnosis and TB vaccine design is discussed. Finally, we propose that the inclusion of antibody-based TB vaccines in current clinical trials may be advisable to improve protection.
Collapse
Affiliation(s)
- Solomon Tibebu Melkie
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Lilibeth Arias
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| | - Mateja Jankovic Makek
- Dept for Respiratory Diseases, University Clinical Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| |
Collapse
|
12
|
Vaezipour N, Fritschi N, Brasier N, Bélard S, Domínguez J, Tebruegge M, Portevin D, Ritz N. Towards Accurate Point-of-Care Tests for Tuberculosis in Children. Pathogens 2022; 11:pathogens11030327. [PMID: 35335651 PMCID: PMC8949489 DOI: 10.3390/pathogens11030327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
In childhood tuberculosis (TB), with an estimated 69% of missed cases in children under 5 years of age, the case detection gap is larger than in other age groups, mainly due to its paucibacillary nature and children’s difficulties in delivering sputum specimens. Accurate and accessible point-of-care tests (POCTs) are needed to detect TB disease in children and, in turn, reduce TB-related morbidity and mortality in this vulnerable population. In recent years, several POCTs for TB have been developed. These include new tools to improve the detection of TB in respiratory and gastric samples, such as molecular detection of Mycobacterium tuberculosis using loop-mediated isothermal amplification (LAMP) and portable polymerase chain reaction (PCR)-based GeneXpert. In addition, the urine-based detection of lipoarabinomannan (LAM), as well as imaging modalities through point-of-care ultrasonography (POCUS), are currently the POCTs in use. Further to this, artificial intelligence-based interpretation of ultrasound imaging and radiography is now integrated into computer-aided detection products. In the future, portable radiography may become more widely available, and robotics-supported ultrasound imaging is currently being trialed. Finally, novel blood-based tests evaluating the immune response using “omic-“techniques are underway. This approach, including transcriptomics, metabolomic, proteomics, lipidomics and genomics, is still distant from being translated into POCT formats, but the digital development may rapidly enhance innovation in this field. Despite these significant advances, TB-POCT development and implementation remains challenged by the lack of standard ways to access non-sputum-based samples, the need to differentiate TB infection from disease and to gain acceptance for novel testing strategies specific to the conditions and settings of use.
Collapse
Affiliation(s)
- Nina Vaezipour
- Mycobacterial and Migrant Health Research Group, University Children’s Hospital Basel, Department for Clinical Research, University of Basel, 4056 Basel, Switzerland; (N.V.); (N.F.)
- Infectious Disease and Vaccinology Unit, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, University Children’s Hospital Basel, Department for Clinical Research, University of Basel, 4056 Basel, Switzerland; (N.V.); (N.F.)
| | - Noé Brasier
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zurich, 8093 Zurich, Switzerland;
- Department of Digitalization & ICT, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Bélard
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Institute of Tropical Medicine and International Health, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - José Domínguez
- Institute for Health Science Research Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain;
| | - Marc Tebruegge
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WCN1 1EH, UK;
- Department of Pediatrics, The Royal Children’s Hospital Melbourne, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Damien Portevin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland;
- University of Basel, 4001 Basel, Switzerland
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, University Children’s Hospital Basel, Department for Clinical Research, University of Basel, 4056 Basel, Switzerland; (N.V.); (N.F.)
- Department of Pediatrics, The Royal Children’s Hospital Melbourne, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Paediatrics and Paediatric Infectious Diseases, Children’s Hospital, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
- Correspondence: ; Tel.: +41-61-704-1212
| |
Collapse
|
13
|
Nakayama H, Oshima E, Hotta T, Hanafusa K, Nakamura K, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Identification of anti-lipoarabinomannan antibodies against mannan core and their effects on phagocytosis of mycobacteria by human neutrophils. Tuberculosis (Edinb) 2022; 132:102165. [PMID: 35045376 DOI: 10.1016/j.tube.2022.102165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis (MTB) and M. avium-intracellulare complex (MAC) enter host phagocytes, such as neutrophils through lipoarabinomannan (LAM) binding to pattern-recognition receptors, inducing innate immune responses including phagocytosis. Phagocytosis of mycobacteria by human neutrophils depends on the binding of α(1 → 2)-monomannose branching α(1 → 6)-mannan core of LAM/lipomannan (LM), a common component among mycobacterial species, to lactosylceramide (LacCer)-enriched lipid microdomains. We investigated the binding specificities of several anti-LAM antibodies (Abs) to LAMs/LM and found anti-LAM monoclonal IgMs TMDU3 and LA066 were directed against mannan core. Each IgM showed different binding specificity to mannan core. Confocal and stimulated emission depletion microscopy revealed TMDU3 and LA066 strongly bind to MTB and MAC, respectively. Flow cytometric analysis revealed human neutrophils do not express Dectin-2, DC-SIGN or mannose receptor. Furthermore, neutrophil phagocytosis of mycobacteria was markedly inhibited by TMDU3 and LA066, respectively. Similarly, treatment of each mAb with neutrophils reduced the numbers of intracellular MAC. Together, our results suggest that the interaction of LacCer-enriched lipid microdomains with mannan core and its blocking are therapeutic or diagnostic targets for both TB and non-tuberculous mycobacteria infection.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kota Nakamura
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Noriko Yokoyama
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| |
Collapse
|
14
|
Namuganga AR, Chegou NN, Mayanja-Kizza H. Past and Present Approaches to Diagnosis of Active Pulmonary Tuberculosis. Front Med (Lausanne) 2021; 8:709793. [PMID: 34631731 PMCID: PMC8495065 DOI: 10.3389/fmed.2021.709793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis disease continues to contribute to the mortality burden globally. Due to the several shortcomings of the available diagnostic methods, tuberculosis disease continues to spread. The difficulty to obtain sputum among the very ill patients and the children also affects the quick diagnosis of tuberculosis disease. These challenges warrant investigating different sample types that can provide results in a short time. Highlighted in this review are the approved pulmonary tuberculosis diagnostic methods and ongoing research to improve its diagnosis. We used the PRISMA guidelines for systematic reviews to search for studies that met the selection criteria for this review. In this review we found out that enormous biosignature research is ongoing to identify host biomarkers that can be used as predictors of active PTB disease. On top of this, more research was also being done to improve already existing diagnostic tests. Host markers required more optimization for use in different settings given their varying sensitivity and specificity in PTB endemic and non-endemic settings.
Collapse
Affiliation(s)
- Anna Ritah Namuganga
- Uganda–Case Western Research Collaboration-Mulago, Kampala, Uganda
- Joint Clinical Research Centre, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Harriet Mayanja-Kizza
- Uganda–Case Western Research Collaboration-Mulago, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
15
|
Ravindran R, McReynolds C, Yang J, Hammock BD, Ikram A, Ali A, Bashir A, Zohra T, Chang WLW, Hartigan-O’Connor DJ, Rashidi HH, Khan IH. Immune response dynamics in COVID-19 patients to SARS-CoV-2 and other human coronaviruses. PLoS One 2021; 16:e0254367. [PMID: 34242356 PMCID: PMC8270414 DOI: 10.1371/journal.pone.0254367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
COVID-19 serological test must have high sensitivity as well as specificity to rule out cross-reactivity with common coronaviruses (HCoVs). We have developed a quantitative multiplex test, measuring antibodies against spike (S) proteins of SARS-CoV-2, SARS-CoV, MERS-CoV, and common human coronavirus strains (229E, NL63, OC43, HKU1), and nucleocapsid (N) protein of SARS-CoV viruses. Receptor binding domain of S protein of SARS-CoV-2 (S-RBD), and N protein, demonstrated sensitivity (94% and 92.5%, respectively) in COVID-19 patients (n = 53), with 98% specificity in non-COVID-19 respiratory-disease (n = 98), and healthy-controls (n = 129). Anti S-RBD and N antibodies appeared five to ten days post-onset of symptoms, peaking at approximately four weeks. The appearance of IgG and IgM coincided while IgG subtypes, IgG1 and IgG3 appeared soon after the total IgG; IgG2 and IgG4 remained undetectable. Several inflammatory cytokines/chemokines were found to be elevated in many COVID-19 patients (e.g., Eotaxin, Gro-α, CXCL-10 (IP-10), RANTES (CCL5), IL-2Rα, MCP-1, and SCGF-b); CXCL-10 was elevated in all. In contrast to antibody titers, levels of CXCL-10 decreased with the improvement in patient health suggesting it as a candidate for disease resolution. Importantly, anti-N antibodies appear before S-RBD and differentiate between vaccinated and infected people-current vaccines (and several in the pipeline) are S protein-based.
Collapse
Affiliation(s)
- Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States of America
| | - Cindy McReynolds
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Aamer Ikram
- National Institutes of Health, Rawalpindi, Pakistan
| | - Amna Ali
- National Institutes of Health, Rawalpindi, Pakistan
| | - Adnan Bashir
- National Institutes of Health, Rawalpindi, Pakistan
| | | | - W. L. William Chang
- California National Primate Research Center, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, United States of America
| | | | - Hooman H. Rashidi
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States of America
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States of America
| |
Collapse
|
16
|
Byrum JR, Waltari E, Janson O, Guo SM, Folkesson J, Chhun BB, Vinden J, Ivanov IE, Forst ML, Li H, Larson AG, Wu W, Tato CM, McCutcheon KM, Peluso MJ, Henrich TJ, Deeks SG, Prakash M, Greenhouse B, Pak JE, Mehta SB. multiSero: open multiplex-ELISA platform for analyzing antibody responses to SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34013298 PMCID: PMC8132273 DOI: 10.1101/2021.05.07.21249238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Serology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format. The platform consists of three components: ELISA-array of printed proteins, a commercial or home-built plate reader, and modular python software for automated analysis (pysero). We validate the platform by comparing antibody titers against the SARS-CoV-2 Spike, receptor binding domain (RBD), and nucleocapsid (N) in 114 sera from COVID-19 positive individuals and 87 pre-pandemic COVID-19 negative sera. We report data with both a commercial plate reader and an inexpensive, open plate reader (nautilus). Receiver operating characteristic (ROC) analysis of classification with single antigens shows that Spike and RBD classify positive and negative sera with the highest sensitivity at a given specificity. The platform distinguished positive sera from negative sera when the reactivity of the sera was equivalent to the binding of 1 ng mL−1 RBD-specific monoclonal antibody. We developed normalization and classification methods to pool antibody responses from multiple antigens and multiple experiments. Our results demonstrate a performant and accessible pipeline for multiplexed ELISA ready for multiple applications, including serosurveillance, identification of viral proteins that elicit antibody responses, differential diagnosis of circulating pathogens, and immune responses to vaccines.
Collapse
|
17
|
Watson A, Li H, Ma B, Weiss R, Bendayan D, Abramovitz L, Ben-Shalom N, Mor M, Pinko E, Bar Oz M, Wang Z, Du F, Lu Y, Rybniker J, Dahan R, Huang H, Barkan D, Xiang Y, Javid B, Freund NT. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat Commun 2021; 12:602. [PMID: 33504803 PMCID: PMC7840946 DOI: 10.1038/s41467-021-20930-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exposure drives antibody responses, but whether patients with active tuberculosis elicit protective antibodies, and against which antigens, is still unclear. Here we generate monoclonal antibodies from memory B cells of one patient to investigate the B cell responses during active infection. The antibodies, members of four distinct B cell clones, are directed against the Mtb phosphate transporter subunit PstS1. Antibodies p4-36 and p4-163 reduce Mycobacterium bovis-BCG and Mtb levels in an ex vivo human whole blood growth inhibition assay in an FcR-dependent manner; meanwhile, germline versions of p4-36 and p4-163 do not bind Mtb. Crystal structures of p4-36 and p4-170, complexed to PstS1, are determined at 2.1 Å and 2.4 Å resolution, respectively, to reveal two distinctive PstS1 epitopes. Lastly, a prophylactic p4-36 and p4-163 treatment in Mtb-infected Balb/c mice reduces bacterial lung burden by 50%. Our study shows that inhibitory anti-PstS1 B cell responses arise during active tuberculosis.
Collapse
Affiliation(s)
- Avia Watson
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Hao Li
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingting Ma
- Advanced Innovation Center for Structural Biology & Beijing Frontier Research Center for Biological Structure, Tsinghua University School of Medicine, Beijing, China
| | - Ronen Weiss
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Daniele Bendayan
- Pulmonary and Tuberculosis Department, Shmuel Harofe Hospital, Be'er Ya'akov, Israel
| | - Lilach Abramovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Noam Ben-Shalom
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Michael Mor
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Erica Pinko
- Pulmonary and Tuberculosis Department, Shmuel Harofe Hospital, Be'er Ya'akov, Israel
| | - Michal Bar Oz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zhenqi Wang
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Fengjiao Du
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jan Rybniker
- Department of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Daniel Barkan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ye Xiang
- Advanced Innovation Center for Structural Biology & Beijing Frontier Research Center for Biological Structure, Tsinghua University School of Medicine, Beijing, China.
| | - Babak Javid
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China.
- Division of Experimental Medicine, University of California, San Francisco, CA, USA.
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
18
|
Jaganath D, Rajan J, Yoon C, Ravindran R, Andama A, Asege L, Mwebe SZ, Katende J, Nakaye M, Semitala FC, Khan IH, Cattamanchi A. Evaluation of multi-antigen serological screening for active tuberculosis among people living with HIV. PLoS One 2020; 15:e0234130. [PMID: 32497095 PMCID: PMC7272080 DOI: 10.1371/journal.pone.0234130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022] Open
Abstract
Better triage tests for screening tuberculosis (TB) disease are needed for people living with HIV (PLHIV). We performed the first evaluation of a previously-validated 8-antigen serological panel to screen PLHIV for pulmonary TB in Kampala, Uganda. We selected a random 1:1 sample with and without TB (defined by sputum culture) from a cohort of PLHIV initiating antiretroviral therapy. We used a multiplex microbead immunoassay and an ensemble machine learning classifier to determine the area under the receiver operating characteristic curve (AUC) for Ag85A, Ag85B, Ag85C, Rv0934-P38, Rv3881, Rv3841-BfrB, Rv3873, and Rv2878c. We then assessed the performance with the addition of four TB-specific antigens ESAT-6, CFP-10, Rv1980-MPT64, and Rv2031-HSPX, and every antigen combination. Of 262 participants (median CD4 cell-count 152 cells/μL [IQR 65-279]), 138 (53%) had culture-confirmed TB. The 8-antigen panel had an AUC of 0.53 (95% CI 0.40-0.66), and the additional 4 antigens did not improve performance (AUC 0.51, 95% CI 0.39-0.64). When sensitivity was restricted to ≥90% for the 8- and 12-antigen panel, specificity was 2.2% (95% CI 0-17.7%) and 8.1% (95% CI 0-23.9%), respectively. A three-antigen combination (Rv0934-P38, Ag85A, and Rv2031-HSPX) outperformed both panels, with an AUC of 0.60 (95% CI 0.48-0.73), 90% sensitivity (95% CI 78.2-96.7%) and 29.7% specificity (95% CI 15.9-47%). The multi-antigen panels did not achieve the target accuracy for a TB triage test among PLHIV. We identified a new combination that improved performance for TB screening in an HIV-positive sample compared to an existing serological panel in Uganda, and suggests an approach to identify novel antigen combinations specifically for screening TB in PLHIV.
Collapse
Affiliation(s)
- Devan Jaganath
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of California, San Francisco, CA, United States of America
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, United States of America
- Department of Medicine, Center for Tuberculosis, University of California, San Francisco, CA, United States of America
| | - Jayant Rajan
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, CA, United States of America
| | - Christina Yoon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, United States of America
- Department of Medicine, Center for Tuberculosis, University of California, San Francisco, CA, United States of America
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States of America
| | - Alfred Andama
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lucy Asege
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Jane Katende
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Martha Nakaye
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Fred C. Semitala
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Makerere University Joint AIDS Program (MJAP), Kampala, Uganda
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States of America
| | - Adithya Cattamanchi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, United States of America
- Department of Medicine, Center for Tuberculosis, University of California, San Francisco, CA, United States of America
- Department of Medicine, Center for Vulnerable Populations, University of California, San Francisco, CA, United States of America
- Curry International Tuberculosis Center, University of California, San Francisco, CA, United States of America
| |
Collapse
|
19
|
Correia-Neves M, Sundling C, Cooper A, Källenius G. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front Immunol 2019; 10:1968. [PMID: 31572351 PMCID: PMC6749014 DOI: 10.3389/fimmu.2019.01968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Glycolipids of the cell wall of Mycobacterium tuberculosis (Mtb) are important immunomodulators in tuberculosis. In particular, lipoarabinomannan (LAM) has a profound effect on the innate immune response. LAM and its structural variants can be recognized by and activate human CD1b-restricted T cells, and emerging evidence indicates that B cells and antibodies against LAM can modulate the immune response to Mtb. Anti-LAM antibodies are induced during Mtb infection and after bacille Calmette-Guerin (BCG) vaccination, and monoclonal antibodies against LAM have been shown to confer protection by passive administration in mice and guinea pigs. In this review, we describe the immune response against LAM and the potential use of the mannose-capped arabinan moiety of LAM in the construction of vaccine candidates against tuberculosis.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cooper
- Leicester Tuberculosis Research Group (LTBRG), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Tu Phan LM, Tufa LT, Kim HJ, Lee J, Park TJ. Trends in Diagnosis for Active Tuberculosis Using Nanomaterials. Curr Med Chem 2019; 26:1946-1959. [DOI: 10.2174/0929867325666180912105617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
Abstract
Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Lemma Teshome Tufa
- Department of Nano Fusion and Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa- ro, Jung-gu, Daejeon 35015, Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
21
|
Younis H, Kerschbaumer I, Moon JY, Kim RS, Blanc CJ, Chen T, Wood R, Lawn S, Achkar JM. Combining urine lipoarabinomannan with antibody detection as a simple non-sputum-based screening method for HIV-associated tuberculosis. PLoS One 2019; 14:e0218606. [PMID: 31237915 PMCID: PMC6592524 DOI: 10.1371/journal.pone.0218606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
Background Simple methods for the accurate triaging and screening of HIV-associated tuberculosis (TB) are urgently needed. We hypothesized that combining serum antibody with urine lipoarabinomannan (U-LAM) detection can improve the detection of HIV-associated TB. Methods We performed a case-control study with sampling from a prospective study of South African HIV-infected subjects who were screened for TB prior to initiating antiretroviral therapy. Sera from all available TB cases (n = 74) and randomly selected non-TB controls (n = 30), all tested for U-LAM, sputum microscopy, GeneXpert, and cultures, were evaluated for antibodies to LAM and arabinomannan (AM). Diagnostic logistic regression models for TB were developed based on the primary test results and the additive effect of antibodies with leave-one-out cross-validation. Results Antibody responses to LAM and AM correlated strongly (p<0.0001), and IgG and IgM reactivities were significantly higher in TB than non-TB patients (p<0.0001). At 80% specificity, the target specificity for a non-sputum-based simple triage/screening test determined by major TB stakeholders, combining U-LAM with IgG detection significantly increased the sensitivity for HIV-associated TB to 92% compared to 30% for U-LAM alone (p<0.001). Sputum microscopy combined with IgG detection increased sensitivity to 88% compared to 31% for microscopy alone, and Xpert with IgG increased sensitivity to 96% and 99% compared to 57% for testing one, and 70% for testing two sputa with Xpert alone, respectively. Conclusion Combining U-LAM with serum antibody detection could provide a simple low-cost method that meets the requirements for a non-sputum-based test for the screening of HIV-associated TB.
Collapse
Affiliation(s)
- Hiba Younis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Isabell Kerschbaumer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ryung S. Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Caroline J. Blanc
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robin Wood
- Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steven Lawn
- Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 2019; 4:748-758. [PMID: 30804546 DOI: 10.1038/s41564-019-0380-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Millions of cases of tuberculosis (TB) go undiagnosed each year. Better diagnostic tools are urgently needed. Biomarker-based or multiple marker biosignature-based tests, ideally performed on blood or urine, for the detection of active TB might help to meet target product profiles proposed by the World Health Organization for point-of-care testing. We conducted a systematic review to summarize evidence on proposed biomarkers and biosignatures and evaluate their quality and level of evidence. We screened the titles and abstracts of 7,631 citations and included 443 publications that fulfilled the inclusion criteria and were published in 2010-2017. The types of biomarkers identified included antibodies, cytokines, metabolic activity markers, mycobacterial antigens and volatile organic compounds. Only 47% of studies reported a culture-based reference standard and diagnostic sensitivity and specificity. Forty-four biomarkers (4%) were identified in high-quality studies and met the target product profile minimum criteria, of which two have been incorporated into commercial assays. Of the 44 highest-quality biomarkers, 24 (55%) were multiple marker biosignatures. No meta-analyses were performed owing to between-study heterogeneity. In conclusion, TB biomarker discovery studies are often poorly designed and findings are rarely confirmed in independent studies. Few markers progress to a further developmental stage. More validation studies that consider the intended diagnostic use cases and apply rigorous design are needed. The extracted data from this review are currently being used by FIND as the foundation of a dynamic database in which biomarker data and developmental status will be presented.
Collapse
Affiliation(s)
- Emily MacLean
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | | | | | | | - Madhukar Pai
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | | |
Collapse
|
23
|
Ramirez-Priego P, Martens D, Elamin AA, Soetaert P, Van Roy W, Vos R, Anton B, Bockstaele R, Becker H, Singh M, Bienstman P, Lechuga LM. Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform. ACS Sens 2018; 3:2079-2086. [PMID: 30269480 DOI: 10.1021/acssensors.8b00393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is the leading global cause of death from a single infectious agent. Registered incidence rates are low, especially in low-resource countries with weak health systems, due to the disadvantages of current diagnostic techniques. A major effort is directed to develop a point-of-care (POC) platform to reduce TB deaths with a prompt and reliable low-cost technique. In the frame of the European POCKET Project, a novel POC platform for the direct and noninvasive detection of TB in human urine was developed. The photonic sensor chip is integrated in a disposable cartridge and is based on a highly sensitive Mach-Zehnder Interferometer (MZI) transducer combined with an on-chip spectral filter. The required elements for the readout are integrated in an instrument prototype, which allows real-time monitoring and data processing. In this work, the novel POC platform has been employed for the direct detection of lipoarabinomannan (LAM), a lipopolysaccharide found in the mycobacterium cell wall. After the optimization of several parameters, a limit of detection of 475 pg/mL (27.14 pM) was achieved using a direct immunoassay in undiluted human urine in less than 15 min. A final validation of the technique was performed using 20 clinical samples from TB patients and healthy donors, allowing the detection of TB in people regardless of HIV coinfection. The results show excellent correlation to those obtained with standard techniques. These promising results demonstrate the high sensitivity, specificity and applicability of our novel POC platform, which could be used during routine check-ups in developing countries.
Collapse
Affiliation(s)
- Patricia Ramirez-Priego
- Nanobiosensors
and Bioanalytical Applications Group, Catalan Institute of Nanoscience
and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daan Martens
- Photonics Research Group, Ghent University/imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
| | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Str. 196, Building 1A, 38126 Braunschweig, Germany
| | | | | | - Rita Vos
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | - Birgit Anton
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | | | - Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Str. 196, Building 1A, 38126 Braunschweig, Germany
| | - Peter Bienstman
- Photonics Research Group, Ghent University/imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
| | - Laura M. Lechuga
- Nanobiosensors
and Bioanalytical Applications Group, Catalan Institute of Nanoscience
and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
24
|
Krishnan VV, Selvan SR, Parameswaran N, Venkateswaran N, Luciw PA, Venkateswaran KS. Proteomic profiles by multiplex microsphere suspension array. J Immunol Methods 2018; 461:1-14. [PMID: 30003895 DOI: 10.1016/j.jim.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Advances in high-throughput proteomic approaches have provided substantial momentum to novel disease-biomarker discovery research and have augmented the quality of clinical studies. Applications based on multiplexed microsphere suspension array technology are making strong in-roads into the clinical diagnostic/prognostic practice. Conventional proteomic approaches are designed to discover a broad set of proteins that are associated with a specific medical condition. In comparison, multiplex microsphere immunoassays use quantitative measurements of selected set(s) of specific/particular molecular markers such as cytokines, chemokines, pathway signaling or disease-specific markers for detection, metabolic disorders, cancer, and infectious agents causing human, plant and animal diseases. This article provides a foundation to the multiplexed microsphere suspension array technology, with an emphasis on the improvements in the technology, data analysis approaches, and applications to translational and clinical research with implications for personalized and precision medicine.
Collapse
Affiliation(s)
- Viswanathan V Krishnan
- Department of Chemistry, California State University, Fresno, CA 93750, United States; Department of Medical Pathology and Laboratory Medicine, University of California School of Medicine, Sacramento, CA 95817, United States.
| | | | | | | | - Paul A Luciw
- Center for Comparative Medicine, University of California Davis, Davis, CA 95616, United States; Department of Medical Pathology and Laboratory Medicine, University of California School of Medicine, Sacramento, CA 95817, United States
| | | |
Collapse
|