1
|
Dai D, Sari EM, Si J, Ashari H, Dagong MIA, Pauciullo A, Lenstra JA, Han J, Zhang Y. Genomic analysis reveals the association of KIT and MITF variants with the white spotting in swamp buffaloes. BMC Genomics 2024; 25:713. [PMID: 39048931 PMCID: PMC11267946 DOI: 10.1186/s12864-024-10634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Swamp-type buffaloes with varying degrees of white spotting are found exclusively in Tana Toraja, South Sulawesi, Indonesia, where spotted buffalo bulls are highly valued in accordance with the Torajan customs. The white spotting depigmentation is caused by the absence of melanocytes. However, the genetic variants that cause this phenotype have not been fully characterized. The objective of this study was to identify the genomic regions and variants responsible for this unique coat-color pattern. RESULTS Genome-wide association study (GWAS) and selection signature analysis identified MITF as a key gene based on the whole-genome sequencing data of 28 solid and 39 spotted buffaloes, while KIT was also found to be involved in the development of this phenotype by a candidate gene approach. Alternative candidate mutations included, in addition to the previously reported nonsense mutation c.649 C > T (p.Arg217*) and splice donor mutation c.1179 + 2T > A in MITF, a nonsense mutation c.2028T > A (p.Tyr676*) in KIT. All these three mutations were located in the genomic regions that were highly conserved exclusively in Indonesian swamp buffaloes and they accounted largely (95%) for the manifestation of white spotting. Last but not the least, ADAMTS20 and TWIST2 may also contribute to the diversification of this coat-color pattern. CONCLUSIONS The alternative mutations identified in this study affect, at least partially and independently, the development of melanocytes. The presence and persistence of such mutations may be explained by significant financial and social value of spotted buffaloes used in historical Rambu Solo ceremony in Tana Toraja, Indonesia. Several de novo spontaneous mutations have therefore been favored by traditional breeding for the spotted buffaloes.
Collapse
Affiliation(s)
- Dongmei Dai
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Eka Meutia Sari
- Department of Animal Science, Agriculture Faculty, Universitas Syiah Kuala (USK), Banda Aceh, 23111, Indonesia.
| | - Jingfang Si
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hidayat Ashari
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Muhammad Ihsan Andi Dagong
- Animal Production Department, Faculty of Animal Science, Hasanuddin University, Makassar, 90245, Indonesia
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), 10095, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Yi Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Delledonne A, Punturiero C, Ferrari C, Bernini F, Milanesi R, Bagnato A, Strillacci MG. Copy number variant scan in more than four thousand Holstein cows bred in Lombardy, Italy. PLoS One 2024; 19:e0303044. [PMID: 38771855 PMCID: PMC11108207 DOI: 10.1371/journal.pone.0303044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.
Collapse
Affiliation(s)
- Andrea Delledonne
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Maria G. Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
3
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
4
|
Talenti A, Powell J, Wragg D, Chepkwony M, Fisch A, Ferreira BR, Mercadante MEZ, Santos IM, Ezeasor CK, Obishakin ET, Muhanguzi D, Amanyire W, Silwamba I, Muma JB, Mainda G, Kelly RF, Toye P, Connelley T, Prendergast J. Optical mapping compendium of structural variants across global cattle breeds. Sci Data 2022; 9:618. [PMID: 36229544 PMCID: PMC9561109 DOI: 10.1038/s41597-022-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Structural variants (SV) have been linked to important bovine disease phenotypes, but due to the difficulty of their accurate detection with standard sequencing approaches, their role in shaping important traits across cattle breeds is largely unexplored. Optical mapping is an alternative approach for mapping SVs that has been shown to have higher sensitivity than DNA sequencing approaches. The aim of this project was to use optical mapping to develop a high-quality database of structural variation across cattle breeds from different geographical regions, to enable further study of SVs in cattle. To do this we generated 100X Bionano optical mapping data for 18 cattle of nine different ancestries, three continents and both cattle sub-species. In total we identified 13,457 SVs, of which 1,200 putatively overlap coding regions. This resource provides a high-quality set of optical mapping-based SV calls that can be used across studies, from validating DNA sequencing-based SV calls to prioritising candidate functional variants in genetic association studies and expanding our understanding of the role of SVs in cattle evolution. Measurement(s) | Optical Mapping | Technology Type(s) | Optical Mapping | Factor Type(s) | Structural variants | Sample Characteristic - Organism | Bos taurus | Sample Characteristic - Location | United Kingdom • Kenya • Zambia • Uganda • Brazil • Nigeria |
Collapse
Affiliation(s)
- A Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.
| | - J Powell
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - D Wragg
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - M Chepkwony
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - A Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - B R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - M E Z Mercadante
- Institute of Animal Science, Agriculture Department of São Paulo Government, Sertãozinho, SP, 14.174-000, Brazil
| | - I M Santos
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - C K Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - E T Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria.,Biomedical Research Centre, Ghent University Global Campus, Songdo, Incheon, South Korea
| | - D Muhanguzi
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - W Amanyire
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - I Silwamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O BOX 32379, Lusaka, Zambia.,Department of Laboratory and Diagnostics, Livestock Services Cooperative Society, P.O. BOX 32025, Lusaka, Zambia
| | - J B Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O BOX 32379, Lusaka, Zambia
| | - G Mainda
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Central Veterinary Research Institute, P.O. Box 33980, Lusaka, Zambia
| | - R F Kelly
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - P Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - T Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom. .,Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| | - J Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom. .,Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
5
|
Lee YL, Takeda H, Costa Monteiro Moreira G, Karim L, Mullaart E, Coppieters W, Appeltant R, Veerkamp RF, Groenen MAM, Georges M, Bosse M, Druet T, Bouwman AC, Charlier C. A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genet 2021; 17:e1009331. [PMID: 34288907 PMCID: PMC8328317 DOI: 10.1371/journal.pgen.1009331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.
Collapse
Affiliation(s)
- Young-Lim Lee
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Latifa Karim
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Ruth Appeltant
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Roel F. Veerkamp
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Aniek C. Bouwman
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Lamb HJ, Hayes BJ, Nguyen LT, Ross EM. The Future of Livestock Management: A Review of Real-Time Portable Sequencing Applied to Livestock. Genes (Basel) 2020; 11:E1478. [PMID: 33317066 PMCID: PMC7763041 DOI: 10.3390/genes11121478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Oxford Nanopore Technologies' MinION has proven to be a valuable tool within human and microbial genetics. Its capacity to produce long reads in real time has opened up unique applications for portable sequencing. Examples include tracking the recent African swine fever outbreak in China and providing a diagnostic tool for disease in the cassava plant in Eastern Africa. Here we review the current applications of Oxford Nanopore sequencing in livestock, then focus on proposed applications in livestock agriculture for rapid diagnostics, base modification detection, reference genome assembly and genomic prediction. In particular, we propose a future application: 'crush-side genotyping' for real-time on-farm genotyping for extensive industries such as northern Australian beef production. An initial in silico experiment to assess the feasibility of crush-side genotyping demonstrated promising results. SNPs were called from simulated Nanopore data, that included the relatively high base call error rate that is characteristic of the data, and calling parameters were varied to understand the feasibility of SNP calling at low coverages in a heterozygous population. With optimised genotype calling parameters, over 85% of the 10,000 simulated SNPs were able to be correctly called with coverages as low as 6×. These results provide preliminary evidence that Oxford Nanopore sequencing has potential to be used for real-time SNP genotyping in extensive livestock operations.
Collapse
Affiliation(s)
- Harrison J. Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4067, Australia; (B.J.H.); (L.T.N.); (E.M.R.)
| | | | | | | |
Collapse
|
7
|
Artesi M, Tamma N, Deckers M, Karim L, Coppieters W, Van den Broeke A, Georges M, Charlier C, Durkin K. Colour‐sidedness in Gloucester cattle is associated with a complex structural variant impacting regulatory elements downstream of KIT. Anim Genet 2020; 51:461-465. [DOI: 10.1111/age.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M. Artesi
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - N. Tamma
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - M. Deckers
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - L. Karim
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - W. Coppieters
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - A. Van den Broeke
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
- Laboratory of Experimental Hematology Institut Jules Bordet Université Libre de Bruxelles Boulevard de Waterloo 121 Brussels 1000 Belgium
| | - M. Georges
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - C. Charlier
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| | - K. Durkin
- Unit of Animal Genomics GIGA Institute University of Liège 1, avenue de l’hôpital Liège4000Belgium
| |
Collapse
|
8
|
Häfliger IM, Hirter N, Paris JM, Wolf Hofstetter S, Seefried FR, Drögemüller C. A de novo germline mutation of KIT in a white-spotted Brown Swiss cow. Anim Genet 2020; 51:449-452. [PMID: 32065668 DOI: 10.1111/age.12920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
White-spotting coat colour phenotypes in cattle are either fixed characteristics of specific cattle breeds or occur sporadically owing to germline genetic variation of solid-coloured parents. A Brown Swiss cow showing a piebald pattern resembling colour-sidedness was referred for genetic evaluation. Both parents were normal solid-brown-coloured cattle. The cow was tested negative for the three known DNA variants in KIT, MITF and TWIST2 associated with different depigmentation phenotypes in Brown Swiss cattle. Whole-genome sequencing of the cow was performed and a heterozygous variant affecting the coding sequence of the bovine KIT gene was identified on chromosome 6. The variant is a 40 bp deletion in exon 9, NM_001166484.1:c.1390_1429del, and leads to a frameshift that is predicted to produce a novel 50 amino acid-long C-terminus replacing almost 50% of the wt KIT protein, including the functionally important intracellular tyrosine kinase domain (NP_001159956.1:p.(Asn464AlafsTer50)). Interestingly, among three available offspring, two solid-coloured daughters were genotyped as homozygous wt whereas a single son showing a slightly milder but still obvious depigmentation phenotype inherited a copy of the novel variant allele. The genetic findings provide strong evidence that the identified loss-of-function KIT variant most likely represents a de novo germline mutation that is causative owing to haploinsufficiency.
Collapse
Affiliation(s)
- I M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - N Hirter
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - J M Paris
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - S Wolf Hofstetter
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | | | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
9
|
Küttel L, Letko A, Häfliger IM, Signer‐Hasler H, Joller S, Hirsbrunner G, Mészáros G, Sölkner J, Flury C, Leeb T, Drögemüller C. A complex structural variant at the
KIT
locus in cattle with the Pinzgauer spotting pattern. Anim Genet 2019; 50:423-429. [DOI: 10.1111/age.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Affiliation(s)
- L. Küttel
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - A. Letko
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - I. M. Häfliger
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - H. Signer‐Hasler
- School of Agricultural, Forest and Food Sciences HAFL Bern University of Applied Sciences 3052 Zollikofen Switzerland
| | - S. Joller
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - G. Hirsbrunner
- Clinic for Ruminants Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - G. Mészáros
- Division of Livestock Sciences University of Natural Resources and Life Sciences Vienna 1180Vienna Austria
| | - J. Sölkner
- Division of Livestock Sciences University of Natural Resources and Life Sciences Vienna 1180Vienna Austria
| | - C. Flury
- School of Agricultural, Forest and Food Sciences HAFL Bern University of Applied Sciences 3052 Zollikofen Switzerland
| | - T. Leeb
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - C. Drögemüller
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| |
Collapse
|
10
|
Hofstetter S, Seefried F, Häfliger IM, Jagannathan V, Leeb T, Drögemüller C. A non-coding regulatory variant in the 5'-region of the MITF gene is associated with white-spotted coat in Brown Swiss cattle. Anim Genet 2018; 50:27-32. [PMID: 30506810 DOI: 10.1111/age.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Abstract
Recently, the Swiss breeding association reported an increasing number of white-spotted cattle in the Brown Swiss breed, which is normally solid brown coloured. A total of 60 Brown Swiss cattle with variably sized white abdominal spots, facial markings and depigmented claws were collected for this study. A genome-wide association study using 40k SNP genotypes of 20 cases and 1619 controls enabled us to identify an associated genome region on chromosome 22 containing the MITF gene, encoding the melanogenesis associated transcription factor. Variants at the MITF locus have been reported before to be associated with white or white-spotted phenotypes in other species such as horses, dogs and mice. Whole-genome sequencing of a single white-spotted cow and subsequent genotyping of 172 Brown Swiss cattle revealed two significantly associated completely linked single nucleotide variants (rs722765315 and rs719139527). Both variants are located in the 5'-regulatory region of the bovine MITF gene, and comparative sequence analysis showed that the variant rs722765315, located 139 kb upstream of the transcription start site of the bovine melanocyte-specific MITF transcript, is situated in a multi-species conserved sequence element which is supposed to be regulatory important. Therefore, we hypothesize that rs722765315 represents the most likely causative variant for the white-spotting phenotype observed in Brown Swiss cattle. Presence of the mutant allele in a heterozygous or homozygous state supports a dominant mode of inheritance with incomplete penetrance and results in a variable extent of coat colour depigmentation.
Collapse
Affiliation(s)
- S Hofstetter
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | | | - I M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
11
|
Rothammer S, Kunz E, Krebs S, Bitzer F, Hauser A, Zinovieva N, Klymiuk N, Medugorac I. Remapping of the belted phenotype in cattle on BTA3 identifies a multiplication event as the candidate causal mutation. Genet Sel Evol 2018; 50:36. [PMID: 29980171 PMCID: PMC6035435 DOI: 10.1186/s12711-018-0407-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background It has been known for almost a century that the belted phenotype in cattle follows a pattern of dominant inheritance. In 2009, the approximate position of the belt locus in Brown Swiss cattle was mapped to a 922-kb interval on bovine chromosome 3 and, subsequently, assigned to a 336-kb haplotype block based on an animal set that included, Brown Swiss, Dutch Belted (Lakenvelder) and Belted Galloway individuals. A possible candidate gene in this region i.e. HES6 was investigated but the causal mutation remains unknown. Thus, to elucidate the causal mutation of this prominent coat color phenotype, we decided to remap the belted phenotype in an independent animal set of several European bovine breeds, i.e. Gurtenvieh (belted Brown Swiss), Dutch Belted and Belted Galloway and to systematically scan the candidate region. We also checked the presence of the detected causal mutation in the genome of belted individuals from a Siberian cattle breed. Results A combined linkage disequilibrium and linkage analysis based on 110 belted and non-belted animals identified a candidate interval of 2.5 Mb. Manual inspection of the haplotypes in this region identified four candidate haplotypes that consisted of five to eight consecutive SNPs. One of these haplotypes overlapped with the initial 922-kb interval, whereas two were positioned proximal and one was positioned distal to this region. Next-generation sequencing of one heterozygous and two homozygous belted animals identified only one private belted candidate allele, i.e. a multiplication event that is located between 118,608,000 and 118,614,000 bp. Targeted locus amplification and quantitative real-time PCR confirmed an increase in copy number of this region in the genomes of both European (Belted Galloway, Dutch Belted and Gurtenvieh) and Siberian (Yakutian cattle) breeds. Finally, using nanopore sequencing, the exact breakpoints were determined at 118,608,362 and 118,614,132 bp. The closest gene to the candidate causal mutation (16 kb distal) is TWIST2. Conclusions Based on our findings and those of a previously published study that identified the same multiplication event, a quadruplication on bovine chromosome 3 between positions 118,608,362 and 118,614,132 bp is the most likely candidate causal mutation for the belted phenotype in cattle. Electronic supplementary material The online version of this article (10.1186/s12711-018-0407-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Rothammer
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center Munich, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Fanny Bitzer
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center Munich, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Natalia Zinovieva
- The L.K. Ernst Institute of Animal Husbandry, Moscow Region, Russian Federation
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Hackerstr. 27, 85764, Oberschleissheim, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany.
| |
Collapse
|