1
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
2
|
Fu S, Qian M, Yuan Z, Su S, Ma F, Li F, Xu Z. A new perspective on selenium's impact on renal function: European population-based analysis of plasma proteome-mediated Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1410463. [PMID: 39329105 PMCID: PMC11424436 DOI: 10.3389/fendo.2024.1410463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Background The relationship between selenium and renal function has always attracted widespread attention. Increased selenium level has been found to cause impaired renal function in our previous study, but the mechanism is not clear. In this study, we evaluate the potential mediating effects of plasma proteome in the association of selenium level and renal function to understand the mechanisms of selenium's effect on renal function. Methods Utilizing two-sample two-step mediating mendelian randomization (MR) methodology to investigate the genetically causal relationship between selenium level and renal function as well as the role of the plasma proteome in mediating them. Additionally, the mediating proteins were enriched and analyzed through bioinformatics to understand the potential mechanisms of selenium effects on renal function. Results In the MR analysis, an increase in selenium level was found to decrease estimated glomerular filtration rate (eGFR). Specifically, for each standard deviation (SD) increase in selenium levels, eGFR levels are reduced by 0.003 SD [Beta (95% CI): -0.003 (-0.004 ~ -0.001), P=0.001, with no observed heterogeneity and pleiotropy]. Through mediation analysis, 35 proteins have been determined mediating the genetically causal effects of selenium on the levels of eGFR, including Fibroblast growth factor receptor 4 (FGFR4), Fibulin-1, Cilia- and flagella-associated protein 45, Mothers against decapentaplegic homolog 2 (SMAD2), and E3 ubiquitin-protein ligase ZNRF3, and the mediation effect rates of these proteins ranged from 1.59% to 23.70%. In the enrichment analysis, 13 signal transduction pathways, including FGFR4 mutant receptor activation and Defective SLC5A5 causing thyroid dyshormonogenesis 1, were involved in the effect of selenium on eGFR levels. Conclusion Our finding has revealed the underlying mechanism by which increased selenium level lead to deterioration of renal function, effectively guiding the prevention of chronic kidney disease and paving the way for future studies.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Man Qian
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zishu Yuan
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Sensen Su
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
4
|
Feng Y, Sun Z, Fu J, Zhong F, Zhang W, Wei C, Chen A, Liu BC, He JC, Lee K. Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury. Kidney Int 2024; 106:50-66. [PMID: 38697478 PMCID: PMC11193616 DOI: 10.1016/j.kint.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.
Collapse
Affiliation(s)
- Ye Feng
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Zeguo Sun
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Jia Fu
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Weijia Zhang
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Chengguo Wei
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Anqun Chen
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - John C He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA.
| |
Collapse
|
5
|
Liu M, Bai R, Zhang G, Liu X, Wang Z, He K, Gan X, Zhou X, Yin P, Zheng Y, Wang G. RARRES1 identified by comprehensive bioinformatic analysis and experimental validation as a promising biomarker in Skin Cutaneous Melanoma. Sci Rep 2024; 14:14113. [PMID: 38898266 PMCID: PMC11187141 DOI: 10.1038/s41598-024-65032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly malignant form of skin cancer, known for its unfavorable prognosis and elevated mortality rate. RARRES1, a gene responsive to retinoic acid receptors, displays varied functions in various cancer types. However, the specific role and underlying mechanisms of RARRES1 in SKCM are still unclear. GSE15605 was utilized to analyze the expression of RARRES1 in SKCM. Subsequently, the TCGA and GEO databases were employed to investigate the relationships between RARRES1 and clinicopathological parameters, as well as the prognostic implications and diagnostic efficacy of RARRES1 in SKCM. GO, KEGG, and GSEA analyses were conducted to explore the potential functions of RARRES1. Furthermore, the associations between RARRES1 and immune infiltration were examined. Genomic alterations and promoter methylation levels of RARRES1 in SKCM were assessed using cBioPortal, UALCAN, and the GEO database. Finally, RARRES1 expression in SKCM was validated through immunohistochemistry, and its functional role in SKCM progression was elucidated via in vivo and in vitro experiments. We found that RARRES1 was downregulated in SKCM compared with normal tissues, and this low expression was associated with worse clinicopathological features and poor prognosis of SKCM. The diagnostic efficacy of RARRES1, as determined by ROC analysis, was 0.732. Through GO, KEGG, and GSEA enrichment analysis, we identified 30 correlated genes and pathways that were mainly enriched in the tumor immune microenvironment, proliferation, apoptosis, and autophagy. Additionally, RARRES1 expression was found to be positively related to the infiltration of various immune cells in SKCM, particularly macrophages and T helper cells, among others. Analysis of genomic alterations and promoter methylation revealed that shallow deletion and hypermethylation of the RARRES1 promoter could lead to reduced RARRES1 expression. IHC validation confirmed the downregulation of RARRES1 in SKCM. Moreover, overexpression of RARRES1 inhibited the proliferation and migration of A375 cells, promoted apoptosis, and inhibited autophagic flux. In the mouse xenograft model, RARRES1 overexpression also suppressed SKCM tumor growth. Collectively, these findings suggest that RARRES1 may function as a suppressor and could potentially serve as a prognostic biomarker and therapeutic target for SKCM.
Collapse
Affiliation(s)
- Meng Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ruimin Bai
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Guanfei Zhang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ziyang Wang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ke He
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xinyi Gan
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaolin Zhou
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Pan Yin
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Guorong Wang
- Department of General Surgery, ShaanXi Provincial People's Hospital, Xi'an, 710004, China.
| |
Collapse
|
6
|
Guo Y, Chai B, Zhang H, Chai X, Chen Y, Xu J, Qin L, Chai Y. RARRES1 inhibits hepatocellular carcinoma progression and increases its sensitivity to lenvatinib through interaction with SPINK2. Biol Direct 2024; 19:15. [PMID: 38388961 PMCID: PMC10885466 DOI: 10.1186/s13062-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Lenvatinib is an oral small molecule inhibitor approved for treating patients with unresectable hepatocellular carcinoma (HCC) worldwide. Increasing cell sensitivity to lenvatinib would be an effective method of improving therapeutic efficacy. METHODS High throughput methods was used to scan the differentially expressed genes (DEGs) related to lenvatinib sensitivity in HCC cells. Gain- and loss-function experiments were used to explore the functions of these DEGs in HCC and lenvatinib sensitivity. CO-IP assay and rescue experiments were utilized to investigate the mechanism. RESULTS We identified that RAR responder protein 1 (RARRES1), a podocyte-specific growth arrest gene, was among significantly upregulated DEGs in HCC cells following lenvatinib treatment. Functional analysis showed that ectopic RARRES1 expression decreased HCC progression in vitro and in vivo, as well as improving tumor sensitivity to lenvatinib, while RARRES1 silencing increased HCC cell proliferation and migration. Mechanistically, co-immunoprecipitation assays demonstrated that RARRES1 interacted with serine protease inhibitor Kazal-type 2 (SPINK2) in HCC cells. Further, SPINK2 overexpression suppressed HCC cell proliferation and migration, as well as increasing sensitivity to lenvatinib whereas SPINK2 knockdown promoted cell progression and decreased lenvatinib sensitivity. The mRNA and protein levels of RARRES1 and SPINK2 were low in HCC tissue samples, relative to those in normal liver tissue. CONCLUSIONS Our findings highlighted that RARRES1 can inhibit HCC progression and regulate HCC sensitivity to lenvatinib by interacting SPINK2, representing a new tumor suppressor RARRES1/SPINK2 axis in HCC that modulates sensitivity to lenvatinib.
Collapse
Affiliation(s)
- Yarong Guo
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, Shanxi, China
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Bao Chai
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, Shanxi, China
| | - Hezhao Zhang
- Department of Surgery, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Xinhao Chai
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yan Chen
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Jun Xu
- Department of Surgery, The First Affiliated Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi, China.
| | - Liwei Qin
- Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yuting Chai
- Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
8
|
Proteomic changes of aqueous humor in proliferative diabetic retinopathy patients treated with different intravitreal anti-VEGF agents. Exp Eye Res 2022; 216:108942. [PMID: 35032522 DOI: 10.1016/j.exer.2022.108942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
Anti-VEGF-based treatment have been regularly used in recent years in proliferative diabetic retinopathy (PDR) patients. However, some of these patients fail to respond effectively to anti-VEGF. Given that VEGF is not the sole factor influencing PDR pathogenesis and that different anti-VEGF pharmaceuticals are likely to differentially impact these underlying pathophysiological processes, we performed a prospective analysis of the protein profiles of the aqueous humor (AH) in PDR patients before and after treatment with three intravitreal anti-VEGF drugs (ranibizumab, aflibercept, and conbercept) to assess and compare the short-term impacts of these agents. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic methods were used to evaluate the AH protein profiles of PDR patients using paired pre- and 7 days post-anti-VEGF treatment samples (ranibizumab [IVR]: n = 10; conbercept [IVC]: n = 10; aflibercept [IVA]: n = 5). Gene ontology (GO) annotation, KEGG pathway analyses, and protein-protein interaction (PPI) networks were then used to explore the functional relevance of proteins that were differentially expressed between groups. Here, a total of 874 proteins from 25 patients (50 AH samples) were identified in the three patient groups. Different and common clusters of regulated proteins for each group were identified. We identified RARRES1, ALDH3A1, and RBP4 as being specifically regulated following treatment with all three tested anti-VEGF agents. We further found that VEGFR1, VEGFR2, APOM, hornerin, and HSP90B1 were differentially expressed in different anti-VEGF agent groups. In summary, we discovered that ALDH3A1 was a previously unreported protein that was related to angiogenesis and was differentially expressed in the three anti-VEGF treatment groups, suggesting that it may be a new target for PDR therapy. The described proteomic changes in the AH of PDR patients treated with different anti-VEGF agents provide novel targets which may explain the heterogeneity of anti-VEGF treatment responses in these patients, providing a robust foundation for future studies of PDR pathogenesis.
Collapse
|
9
|
Zou D, Wang Y, Wang M, Zhao B, Hu F, Li Y, Zhang B. Bioinformatics analysis reveals the competing endogenous RNA (ceRNA) coexpression network in the tumor microenvironment and prognostic biomarkers in soft tissue sarcomas. Bioengineered 2021; 12:496-506. [PMID: 33587010 PMCID: PMC8806339 DOI: 10.1080/21655979.2021.1879566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STSs) are rare, heterogeneous mesenchymal neoplasias. Understanding the tumor microenvironment (TME) and identifying potential biomarkers for prognosis associated with the TME of STS might provide effective clues for immune therapy. We evaluated the immune scores and stromal scores of STS patients by using the RNA sequencing dataset from The Cancer Genome Atlas (TCGA) database and the ESTIMATE algorithm. Then, the differentially expressed mRNAs (DEGs), miRNAs (DEMs) and lncRNAs (DELs) were identified after comparing the high- and low-score groups. Next, we established a competing endogenous RNA (ceRNA) network and explored the prognostic values of biomarkers involved in the network with the help of bioinformatics analysis. High immune score was significantly associated with favorable overall survival in STS patients. A total of 328 DEGs, 18 DEMs and 67 DELs commonly regulated in the immune and stromal score groups were obtained. A ceRNA network and protein-protein interaction (PPI) network identified some hub nodes with considerable importance in the network. Kaplan-Meier survival analysis demonstrated that nine mRNAs, two miRNAs and three lncRNAs were closely associated with overall survival of STS patients. Gene set enrichment analysis (GSEA) suggested that these three lncRNAs were mainly involved in immune response-associated pathways in STS patients. Finally, the expression levels of five mRNAs (APOL1, EFEMP1, LYZ, RARRES1 and TNFAIP2) were verified, which were consistent with the results of the TCGA cohort. The results of our study confirmed the prognostic value of immune scores for STS patients. We also identified several TME-related biomarkers that might contribute to prognostic prediction and immune therapy.
Collapse
Affiliation(s)
- Dandan Zou
- Department of Radiology, The First Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| | - Yang Wang
- Department of MRI, The Third Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| | - Meng Wang
- Department of Clinical Laboratory, The First Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| | - Bo Zhao
- Department of Radiology, The First Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| | - Fei Hu
- Department of Radiology, The First Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| | - Yanguo Li
- Department of Radiology, The First Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| | - Bingming Zhang
- Department of Radiology, The First Hospital of Qinhuangdao , Qinhuangdao, Hebei, China
| |
Collapse
|
10
|
Wu L, Quan W, Yue G, Luo Q, Peng D, Pan Y, Zhang G. Identification of a novel six autophagy-related genes signature for the prognostic and a miRNA-related autophagy predictor for anti-PD-1 therapy responses in prostate cancer. BMC Cancer 2021; 21:15. [PMID: 33402116 PMCID: PMC7786978 DOI: 10.1186/s12885-020-07725-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Autophagy is a highly conserved homeostatic process in the human body that is responsible for the elimination of aggregated proteins and damaged organelles. Several autophagy-related genes (ARGs) contribute to the process of tumorigenesis and metastasis of prostate cancer (PCa). Also, miRNAs have been proven to modulate autophagy by targeting some ARGs. However, their potential role in PCa still remains unclear. Methods An univariate Cox proportional regression model was used to identify 17 ARGs associated with the overall survival (OS) of PCa. Then, a multivariate Cox proportional regression model was used to construct a 6 autophagy-related prognostic genes signature. Patients were divided into low-risk group and high-risk group using the median risk score as a cutoff value. High-risk patients had shorter OS than low-risk patients. Furthermore, the signature was validated by ROC curves. Regarding mRNA and miRNA, 12 differentially expressed miRNAs (DEMs) and 1073 differentially expressed genes (DEGs) were detected via the GEO database. We found that miR-205, one of the DEMs, was negatively regulated the expression of ARG (NKX2–3). Based on STRING analysis results, we found that the NKX2–3 was moderately related to the part of genes among the 6 autophagy-related genes prognostic signature. Further, NKX 2–3 was significantly correlated with OS and some clinical parameters of PCa by cBioProtal. By gene set enrichment analysis (GSEA). Lastly, we demonstrated that the association between NKX2–3 and tumor mutation burden (TMB) and PDCD1 (programmed cell death 1) of PCa. Results We identified that the six ARGs expression patterns are independent predictors of OS in PCa patients. Furthermore, our results suggest that ARGs and miRNAs are inter-related. MiR-205 was negatively regulated the expression of ARG (NKX2–3). Further analysis demonstrated that NKX2–3 may be a potential biomarker for predicting the efficacy of anti-PD-1 therapy in PCa. Conclusions The current study may offer a novel autophagy-related prognostic signature and may identify a promising miRNA-ARG pathway for predicting the efficacy of anti-PD-1 therapy in PCa.
Collapse
Affiliation(s)
- Lei Wu
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Wen Quan
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Guojun Yue
- Zunyi Medical University, Zunyi, Guizhou Province, P. R. China
| | - Qiong Luo
- Department of Oncology, Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai, Guangdong Province, P. R. China
| | - Dongxu Peng
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Ying Pan
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China.
| | - Guihai Zhang
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China. .,Zunyi Medical University, Zunyi, Guizhou Province, P. R. China.
| |
Collapse
|
11
|
Fane ME, Ecker BL, Kaur A, Marino GE, Alicea GM, Douglass SM, Chhabra Y, Webster MR, Marshall A, Colling R, Espinosa O, Coupe N, Maroo N, Campo L, Middleton MR, Corrie P, Xu X, Karakousis GC, Weeraratna AT. sFRP2 Supersedes VEGF as an Age-related Driver of Angiogenesis in Melanoma, Affecting Response to Anti-VEGF Therapy in Older Patients. Clin Cancer Res 2020; 26:5709-5719. [PMID: 33097493 PMCID: PMC7642114 DOI: 10.1158/1078-0432.ccr-20-0446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Angiogenesis is thought to be critical for tumor metastasis. However, inhibiting angiogenesis using antibodies such as bevacizumab (Avastin), has had little impact on melanoma patient survival. We have demonstrated that both angiogenesis and metastasis are increased in older individuals, and therefore sought to investigate whether there was an age-related difference in response to bevacizumab, and if so, what the underlying mechanism could be. EXPERIMENTAL DESIGN We analyzed data from the AVAST-M trial of 1,343 patients with melanoma treated with bevacizumab to determine whether there is an age-dependent response to bevacizumab. We also examined the age-dependent expression of VEGF and its cognate receptors in patients with melanoma, while using syngeneic melanoma animal models to target VEGF in young versus old mice. We also examined the age-related proangiogenic factor secreted frizzled-related protein 2 (sFRP2) and whether it could modulate response to anti-VEGF therapy. RESULTS We show that older patients respond poorly to bevacizumab, whereas younger patients show improvement in both disease-free survival and overall survival. We find that targeting VEGF does not ablate angiogenesis in an aged mouse model, while sFRP2 promotes angiogenesis in vitro and in young mice. Targeting sFRP2 in aged mice successfully ablates angiogenesis, while the effects of targeting VEGF in young mice can be overcome by increasing sFRP2. CONCLUSIONS VEGF is decreased during aging, thereby reducing response to bevacizumab. Despite the decrease in VEGF, angiogenesis is increased because of an increase in sFRP2 in the aged tumor microenvironment. These results stress the importance of considering age as a factor for designing targeted therapies.
Collapse
Affiliation(s)
- Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brett L Ecker
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanpreet Kaur
- Department of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gloria E Marino
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gretchen M Alicea
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen M Douglass
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie R Webster
- The Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
| | - Richard Colling
- Department of Cellular Pathology, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom
| | - Olivia Espinosa
- Department of Cellular Pathology, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom
| | - Nicholas Coupe
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Neera Maroo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Pippa Corrie
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Chowdhury A, Loaiza S, Yebra-Fernandez E, Nadal-Melsio E, Apperley JF, Khorashad JS. An ex vivo investigation of interactions between primary acute myeloid leukaemia and mesenchymal stromal cells yields novel therapeutic targets. Br J Haematol 2020; 190:e236-e239. [PMID: 32519342 DOI: 10.1111/bjh.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Avirup Chowdhury
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Sandra Loaiza
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Eva Yebra-Fernandez
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Elisabet Nadal-Melsio
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Jane F Apperley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
13
|
Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. Br J Cancer 2020; 122:1818-1824. [PMID: 32307444 PMCID: PMC7283229 DOI: 10.1038/s41416-020-0798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 15% of clinically localised conventional renal cell carcinoma (RCC) will develop metastasis within 5 years of follow-up. The aim of this study was to identify biomarkers predicting the postoperative tumour relapse. METHODS Tissue microarrays of conventional RCC from a cohort of 691 patients without metastasis at the time of operation were analysed by immunohistochemistry for the expression of carboxypeptase inhibitor RARRES1 and its substrate carboxypeptidase AGBL2. Univariate and multivariate Cox regression models were addressed to postoperative tumour relapse and the metastasis-free survival time was estimated by Kaplan-Meier analysis. RESULTS In multivariate analysis, the lack of staining or cytoplasmic staining of RARRES1 was a significant risk factor indicating five times higher risk of cancer relapse. Combining its co-expression with AGBL2, we found that RARRES1 cytoplasmic/negative and AGBL2-positive/negative staining is a significant risk factor for tumour progression indicating 11-15 times higher risk of cancer relapse, whereas the membranous RARRES1 expression, especially its co-expression with AGBL2, associated with excellent disease outcome. CONCLUSIONS RARRES1 and AGBL2 expression defines groups of patients at low and high risk of tumour progression and may direct an active surveillance to detect metastasis as early as possible and to apply adjuvant therapy.
Collapse
|
14
|
Mocker A, Schmidt M, Huebner H, Wachtveitl R, Cordasic N, Menendez-Castro C, Hartner A, Fahlbusch FB. Expression of Retinoid Acid Receptor-Responsive Genes in Rodent Models of Placental Pathology. Int J Mol Sci 2019; 21:ijms21010242. [PMID: 31905805 PMCID: PMC6981780 DOI: 10.3390/ijms21010242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023] Open
Abstract
In humans, retinoic acid receptor responders (RARRES) have been shown to be altered in third trimester placentas complicated by the pathologies preeclampsia (PE) and PE with intrauterine growth restriction (IUGR). Currently, little is known about the role of placental Rarres in rodents. Therefore, we examined the localization and expression of Rarres1 and 2 in placentas obtained from a Wistar rat model of isocaloric maternal protein restriction (E18.5, IUGR-like features) and from an eNOS-knockout mouse model (E15 and E18.5, PE-like features). In both rodent models, Rarres1 and 2 were mainly localized in the placental spongiotrophoblast and giant cells. Their placental expression, as well as the expression of the Rarres2 receptor chemokine-like receptor 1 (CmklR1), was largely unaltered at the examined gestational ages in both animal models. Our results have shown that RARRES1 and 2 may have different expression and roles in human and rodent placentas, thereby underlining immanent limitations of comparative interspecies placentology. Further functional studies are required to elucidate the potential involvement of these proteins in early placentogenesis.
Collapse
Affiliation(s)
- Alexander Mocker
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Rainer Wachtveitl
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (R.W.); (N.C.)
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (R.W.); (N.C.)
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
- Correspondence: ; Tel.: +49-9131-853-3118; Fax: +49-9131-853-3714
| |
Collapse
|
15
|
Maimouni S, Lee MH, Sung YM, Hall M, Roy A, Ouaari C, Hwang YS, Spivak J, Glasgow E, Swift M, Patel J, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1 links tubulin deglutamylation to mitochondrial metabolism and cell survival. Oncotarget 2019; 10:1606-1624. [PMID: 30899431 PMCID: PMC6422194 DOI: 10.18632/oncotarget.26600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
RARRES1, a retinoic acid regulated carboxypeptidase inhibitor associated with fatty acid metabolism, stem cell differentiation and tumorigenesis is among the most commonly methylated loci in multiple cancers but has no known mechanism of action. Here we show that RARRES1 interaction with cytoplasmic carboxypeptidase 2 (CCP2) inhibits tubulin deglutamylation, which in turn regulates the mitochondrial voltage dependent anion channel (VDAC1), mitochondrial membrane potential, AMPK activation, energy balance and metabolically reprograms cells and zebrafish to a more energetic and anabolic phenotype. Depletion of RARRES1 also increases expression of stem cell markers, promotes anoikis, anchorage independent growth and insensitivity to multiple apoptotic stimuli. As depletion of CCP2 or inhibition of VDAC1 reverses the effects of RARRES1 depletion on energy balance and cell survival we conclude that RARRES1 modulation of CCP2-modulated tubulin-mitochondrial VDAC1 interactions is a fundamental regulator of cancer and stem cell metabolism and survival.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Mi-Hye Lee
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - You-Me Sung
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Michael Hall
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Arpita Roy
- University of the District of Columbia, Washington, DC, USA
| | - Chokri Ouaari
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,University of the District of Columbia, Washington, DC, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Justin Spivak
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Matthew Swift
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jay Patel
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Deepak Kumar
- University of the District of Columbia, Washington, DC, USA
| | - Stephen Byers
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
16
|
Maimouni S, Issa N, Cheng S, Ouaari C, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells. PLoS One 2018; 13:e0208756. [PMID: 30557378 PMCID: PMC6296515 DOI: 10.1371/journal.pone.0208756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is differentially expressed in metabolism associated diseases, such as hepatic steatosis, hyperinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic reprogramming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1 depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75, reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted normal breast and prostate epithelial cells proved advantageous to the cells during starvation, as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-regulated transcription factors. Pathway enrichment analysis led us to determine that RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling. These findings open up a new avenue for metabolic reprogramming and identify RARRES1 as a potential target for cancers and other diseases with impaired fatty acid metabolism.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
| | - Naiem Issa
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Selina Cheng
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Chokri Ouaari
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
- University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Amrita Cheema
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, United States of America
| | - Stephen Byers
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States of America
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
17
|
Salinomycin-induced autophagy blocks apoptosis via the ATG3/AKT/mTOR signaling axis in PC-3 cells. Life Sci 2018; 207:451-460. [DOI: 10.1016/j.lfs.2018.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/19/2022]
|