1
|
Podestá D I, Blannin AK, Wallis GA. Effects of overnight-fasted versus fed-state exercise on the components of energy balance and interstitial glucose across four days in healthy adults. Appetite 2024; 203:107716. [PMID: 39426734 DOI: 10.1016/j.appet.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Exercise is an essential component of body mass management interventions. Overnight-fasted exercise (FASTex) acutely enhances fat oxidation compared with fed exercise (FEDex). However, consistent FASTex training does not typically further enhance body mass loss, suggesting the induction of energy compensation responses. The present study aimed to test the effects of FASTex or FEDex on the components of energy balance (i.e., energy intake (EI), energy expenditure (EE), and appetite) and interstitial glucose metrics across four days. METHODS Twelve (10 men, 2 women) healthy, physically active participants (age 22.6 + 1.2 years (mean ± SD); BMI 22.5 ± 2.8 kg ⋅ m-2) were studied twice, across four days, after a 75-min run either FASTex or FEDex. Daily EI was obtained after subtracting leftovers from the provided food. Daily fasting appetite was measured by visual analogue scales. Activity- and total- EE (AEE & TEE, respectively) were estimated by combining heart rate and accelerometry. Continuous glucose monitoring was used to capture daily interstitial glucose metrics and Likert scales were utilised to quantify fatigue, stress, sleep quality, and muscle soreness levels. RESULTS No differences between conditions were observed for EI (FASTex = 15.0 ± 0.1 vs FEDex = 15.0 ± 0.4 MJ⋅day-1; p = 0.865), AEE (FASTex = 7.6 ± 1.1 vs FEDex 7.8 ± 1.3 MJ⋅day-1; p = 0.223) and TEE (FASTex = 15.9 ± 3.4 vs 14.9 ± 4.5 MJ⋅day-1; p = 0.136). Additionally, no condition effects for appetite (p > 0.05) and interstitial glucose (p = 0.074) were observed. CONCLUSION FASTex did not differ from FEDex in the response of components of energy balance or interstitial glucose across four days, suggesting that both exercise approaches could be used interchangeably.
Collapse
Affiliation(s)
- I Podestá D
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK
| | - A K Blannin
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK
| | - G A Wallis
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK.
| |
Collapse
|
2
|
Ayres LR, Vogt ÉL, Schroeder HT, Russo MKB, Von Dentz MC, Rocha DS, Model JFA, Kowalewski LS, de Souza SK, de Oliveira Girelli V, da Rosa Coelho J, de Souza Vargas N, Reischak-Oliveira A, de Bittencourt PIH, Wilhelm EN, Vinagre AS, Krause M. Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats. Nutrients 2024; 16:3529. [PMID: 39458523 PMCID: PMC11510003 DOI: 10.3390/nu16203529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Physical inactivity induces insulin resistance (IR) and metabolic imbalances before any significant changes in adiposity. Recent studies suggest that the beneficial effects of exercise can be potentiated if performed while fasting. This work aimed to compare the subacute effects of fed- and fasted-state single-bout exercise on biochemical parameters and cellular signaling in the metabolism. Methods: The animals were allocated into fed rest (FER), fasting rest (FAR), fed exercise (FEE), and fasting exercise (FAE) groups. The exercise protocol was a 30 min treadmill session at 60% of V˙O2max. The fasting groups fasted for 8 h before exercise and were killed after 12 h post-exercise. Results: Soleus glycogen concentration increased only in the fasting groups, whereas the triglyceride (TGL) content increased in brown adipose tissue (BAT) and liver in the FAE. The FAE showed decreased plasma total cholesterol concentration compared withthe FAR group. Immunocontent of HSP70, SIRT1, UCP-1, and PGC1-α did not change in any tissue investigated. Conclusions: Our results indicate that physical exercise while fasting can have beneficial metabolic effects on sedentary animals. Remarkably, in the FAE group, there was a reduction in total plasma cholesterol and an increase in the capacity of BAT to metabolize and store nutrients in the form of TGLs.
Collapse
Affiliation(s)
- Layane Ramos Ayres
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90690-200, RS, Brazil;
| | - Éverton Lopes Vogt
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Helena Trevisan Schroeder
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
| | - Mariana Kras Borges Russo
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
| | - Maiza Cristina Von Dentz
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Débora Santos Rocha
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Jorge Felipe Argenta Model
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Lucas Stahlhöfer Kowalewski
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
| | - Samir Khal de Souza
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Vitória de Oliveira Girelli
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Jerônimo da Rosa Coelho
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90690-200, RS, Brazil;
| | - Nathalia de Souza Vargas
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90690-200, RS, Brazil;
| | - Alvaro Reischak-Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90690-200, RS, Brazil;
| | - Paulo Ivo Homem de Bittencourt
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
| | - Eurico Nestor Wilhelm
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Anapaula Sommer Vinagre
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Mauricio Krause
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (L.R.A.); (H.T.S.); (M.K.B.R.); (L.S.K.); (J.d.R.C.); (N.d.S.V.); (P.I.H.d.B.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90690-200, RS, Brazil;
| |
Collapse
|
3
|
Phillips LA, More KR, Russell D, Kim HS. Evaluating the impact of individuals' morningness-eveningness on the effectiveness of a habit-formation intervention for a simple and a complex behavior. J Behav Med 2024; 47:804-818. [PMID: 39014034 DOI: 10.1007/s10865-024-00503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Planning-based interventions are often used to help individuals form habits. Existing literature suggests a one-size-fits all approach to habit formation, but planning interventions may be optimized if tailored to individual differences and/or behavioral complexity. We test the hypothesis that planning to do a relatively complex behaviour (exercise) at a time that matches an individuals' diurnal preference will facilitate behavioral engagement; whereas for a simpler behaviour (calcium supplementation), the optimal time-of-day for a new behavior will occur in the morning. Young, women volunteers (N = 317) were randomly assigned to take calcium supplements or to exercise for 4 weeks and to control (no planning) or to one of three planning interventions (morning plan; evening plan; unassigned-time plan). Participants reported diurnal preference at baseline and habit strength and behavioral frequency weekly. Fitbit Zips and Medication Event Monitoring System Caps (MEMS) were used to objectively assess behavioral engagement. Multilevel modelling found that calcium-supplementation was greatest for morning-types in the morning-cue condition, whereas exercise was greatest for morning-types with morning cues and evening-types with evening cues. Habit-formation strategies may depend on diurnal preference and behavioral complexity. Future research can evaluate the role of other individual differences.
Collapse
Affiliation(s)
| | | | - Daniel Russell
- Department of Human Development and Family Studies, Iowa State University, Ames, USA
| | - Hyun Seon Kim
- Department of Psychology, Iowa State University, Ames, USA
| |
Collapse
|
4
|
Kang J, Ratamess NA, Faigenbaum AD, Bush JA, Finnerty C, DiFiore M, Garcia A, Beller N. Time-of-Day Effects of Exercise on Cardiorespiratory Responses and Endurance Performance-A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:2080-2090. [PMID: 37026733 DOI: 10.1519/jsc.0000000000004497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Kang, J, Ratamess, NA, Faigenbaum, AD, Bush, JA, Finnerty, C, DiFiore, M, Garcia, A, and Beller, N. Time-of-day effects of exercise on cardiorespiratory responses and endurance performance-A systematic review and meta-analysis. J Strength Cond Res 37(10): 2080-2090, 2023-The time-of-day effect of exercise on human function remains largely equivocal. Hence, this study aimed to further analyze the existing evidence concerning diurnal variations in cardiorespiratory responses and endurance performance using a meta-analytic approach. Literature search was conducted through databases, including PubMed, CINAHL, and Google Scholar. Article selection was made based on inclusion criteria concerning subjects' characteristics, exercise protocols, times of testing, and targeted dependent variables. Results on oxygen uptake (V̇ o2 ), heart rate (HR), respiratory exchange ratio, and endurance performance in the morning (AM) and late afternoon or evening (PM) were extracted from the chosen studies. Meta-analysis was conducted with the random-effects model. Thirty-one original research studies that met the inclusion criteria were selected. Meta-analysis revealed higher resting V̇ o2 (Hedges' g = -0.574; p = 0.040) and resting HR (Hedges' g = -1.058; p = 0.002) in PM than in AM. During exercise, although V̇ o2 remained indifferent between AM and PM, HR was higher in PM at submaximal (Hedges' g = -0.199; p = 0.046) and maximal (Hedges' g = -0.298; p = 0.001) levels. Endurance performance as measured by time-to-exhaustion or the total work accomplished was higher in PM than in AM (Hedges' g = -0.654; p = 0.001). Diurnal variations in V̇ o2 appear less detectable during aerobic exercise. The finding that exercising HR and endurance performance were greater in PM than in AM emphasizes the need to consider the effect of circadian rhythm when evaluating athletic performance or using HR as a criterion to assess fitness or monitor training.
Collapse
Affiliation(s)
- Jie Kang
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ma T, Bennett T, Lee CD, Wicklow M. The diurnal pattern of moderate-to-vigorous physical activity and obesity: a cross-sectional analysis. Obesity (Silver Spring) 2023; 31:2638-2647. [PMID: 37661938 DOI: 10.1002/oby.23851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Moderate-to-vigorous physical activity (MVPA) is obesity-protective. However, the optimal time of the day to engage in MVPA for weight management is controversial. This study is designed to investigate the influence of the diurnal pattern of MVPA on the association between MVPA and obesity. METHODS A total of 5285 participants in the 2003 to 2006 National Health and Nutrition Examination Survey (NHANES) were cross-sectionally analyzed. The diurnal pattern of objectively measured MVPA was classified into three clusters by K-means clustering analysis: morning (n = 642); midday (n = 2456); and evening (n = 2187). The associations of MVPA level and the diurnal pattern with obesity were tested. RESULTS A strong linear association between MVPA and obesity was found in the morning group, whereas a weaker curvilinear association between MVPA and obesity was observed in the midday and evening groups, respectively. Among those who met the physical activity guidelines, the adjusted means for BMI were 25.9 (95% CI: 25.2-26.6), 27.6 (95% CI: 27.1-28.1), and 27.2 (95% CI: 26.8-27.7) kg/m2 in the morning, midday, and evening groups, respectively, and for waist circumference were 91.5 (95% CI: 89.4-93.6), 95.8 (95% CI: 94.7-96.9), and 95.0 (95% CI: 93.9-96.1) cm, respectively. CONCLUSIONS The diurnal pattern of MVPA influences the association between MVPA and obesity. The promising role of morning MVPA for weight management warrants further investigation.
Collapse
Affiliation(s)
- Tongyu Ma
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
- Health Sciences Department, Franklin Pierce University, Rindge, New Hampshire, USA
| | - Thomas Bennett
- Health Sciences Department, Franklin Pierce University, Rindge, New Hampshire, USA
| | - Chong-Do Lee
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Mairead Wicklow
- Health Sciences Department, Franklin Pierce University, Rindge, New Hampshire, USA
| |
Collapse
|
6
|
Iwayama K, Seol J, Tokuyama K. Exercise Timing Matters for Glycogen Metabolism and Accumulated Fat Oxidation over 24 h. Nutrients 2023; 15:1109. [PMID: 36904109 PMCID: PMC10005671 DOI: 10.3390/nu15051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Due to increasingly diverse lifestyles, exercise timings vary between individuals: before breakfast, in the afternoon, or in the evening. The endocrine and autonomic nervous systems, which are associated with metabolic responses to exercise, show diurnal variations. Moreover, physiological responses to exercise differ depending on the timing of the exercise. The postabsorptive state is associated with greater fat oxidation during exercise compared to the postprandial state. The increase in energy expenditure persists during the post-exercise period, known as "Excess Post-exercise Oxygen Consumption". A 24 h evaluation of accumulated energy expenditure and substrate oxidation is required to discuss the role of exercise in weight control. Using a whole-room indirect calorimeter, researchers revealed that exercise performed during the postabsorptive state, but not during the postprandial state, increased accumulated fat oxidation over 24 h. The time course of the carbohydrate pool, as estimated by indirect calorimetry, suggests that glycogen depletion after postabsorptive exercise underlies an increase in accumulated fat oxidation over 24 h. Subsequent studies using 13C magnetic resonance spectroscopy confirmed that the variations in muscle and liver glycogen caused by postabsorptive or postprandial exercise were consistent with indirect calorimetry data. These findings suggest that postabsorptive exercise alone effectively increases 24 h fat oxidation.
Collapse
Affiliation(s)
- Kaito Iwayama
- Faculty of Budo and Sport Studies, Tenri University, Nara 632-0071, Japan
| | - Jaehoon Seol
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
7
|
Erickson ML, Allen JM, Beavers DP, Collins LM, Davidson KW, Erickson KI, Esser KA, Hesselink MKC, Moreau KL, Laber EB, Peterson CA, Peterson CM, Reusch JE, Thyfault JP, Youngstedt SD, Zierath JR, Goodpaster BH, LeBrasseur NK, Buford TW, Sparks LM. Understanding heterogeneity of responses to, and optimizing clinical efficacy of, exercise training in older adults: NIH NIA Workshop summary. GeroScience 2022; 45:569-589. [PMID: 36242693 PMCID: PMC9886780 DOI: 10.1007/s11357-022-00668-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023] Open
Abstract
Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.
Collapse
Affiliation(s)
- Melissa L Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel P Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Linda M Collins
- Department of Social and Behavioral Sciences, New York University, New York, NY, USA
| | - Karina W Davidson
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY, USA
| | - Kirk I Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric B Laber
- Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Courtney M Peterson
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane E Reusch
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KN, USA
| | - Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, 1313 13th St. S., Birmingham, AL, 35244, USA.
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL, USA.
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA.
| |
Collapse
|
8
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
9
|
Abstract
Known as metabolic flexibility, oxidized substrate is selected in response to changes in the nutritional state. Sleep imposes an extended duration of fasting, and oxidized substrates during sleep were assumed to progressively shift from carbohydrate to fat, thereby gradually decreasing the respiratory quotient (RQ). Contrary to this assumption, whole-room indirect calorimetry with improved time resolution revealed that RQ re-ascended prior to awakening, and nadir of RQ in non-obese young adults occurred earlier in women than men after bedtime. The transient decrease in RQ during sleep was blunted in metabolically inflexible men with smaller amplitude of diurnal rhythm in RQ. Similarly, the effect of 10 years difference in age on RQ became significant during sleep; the decrease in RQ during sleep was blunted in older subjects. Inter-individual difference in RQ become apparent during sleep, and it might serve as a window to gain insight into the early-stage pathogenesis of metabolic inflexibility.
Collapse
|
10
|
Vogt ÉL, Von Dentz MC, Rocha DS, Argenta Model JF, Kowalewski LS, de Souza SK, Girelli VDO, de Bittencourt PIH, Friedman R, Krause M, Vinagre AS. Metabolic and Molecular Subacute Effects of a Single Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147543. [PMID: 34299993 PMCID: PMC8307452 DOI: 10.3390/ijerph18147543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Introduction and objectives: Obesity represents a major global public health problem. Its etiology is multifactorial and includes poor dietary habits, such as hypercaloric and hyperlipidic diets (HFDs), physical inactivity, and genetic factors. Regular exercise is, per se, a tool for the treatment and prevention of obesity, and recent studies suggest that the beneficial effects of exercise can be potentiated by the fasting state, thus potentially promoting additional effects. Despite the significant number of studies showing results that corroborate such hypothesis, very few have evaluated the effects of fasted-state exercise in overweight/obese populations. Therefore, the aim of this study was to evaluate the subacute effects (12 h after conclusion) of a single moderate-intensity exercise bout, performed in either a fed or an 8 h fasted state, on serum profile, substrate-content and heat shock pathway–related muscle protein immunocontent in obese male rats. Methods: Male Wistar rats received a modified high-fat diet for 12 weeks to induce obesity and insulin resistance. The animals were allocated to four groups: fed rest (FER), fed exercise (FEE), fasted rest (FAR) and fasted exercise (FAE). The exercise protocol was a 30 min session on a treadmill, with an intensity of 60% of VO2max. The duration of the fasting period was 8 h prior to the exercise session. After a 12 h recovery, the animals were killed and metabolic parameters of blood, liver, heart, gastrocnemius and soleus muscles were evaluated, as well as SIRT1 and HSP70 immunocontent in the muscles. Results: HFD induced obesity and insulin resistance. Soleus glycogen concentration decreased in the fasted groups and hepatic glycogen decreased in the fed exercise group. The combination of exercise and fasting promoted a decreased concentration of serum total cholesterol and triglycerides. In the heart, combination fasting plus exercise was able to decrease triglycerides to control levels. In the soleus muscle, both fasting and fasting plus exercise were able to decrease triglyceride concentrations. In addition, heat shock protein 70 and sirtuin 1 immunocontent increased after exercise in the gastrocnemius and soleus muscles. Conclusions: An acute bout of moderate intensity aerobic exercise, when realized in fasting, may induce, in obese rats with metabolic dysfunctions, beneficial adaptations to their health, such as better biochemical and molecular adaptations that last for at least 12 h. Considering the fact that overweight/obese populations present an increased risk of cardiovascular events/diseases, significant reductions in such plasma markers of lipid metabolism are an important achievement for these populations.
Collapse
Affiliation(s)
- Éverton Lopes Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Maiza Cristina Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Débora Santos Rocha
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Jorge Felipe Argenta Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
| | - Samir Khal de Souza
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Vitória de Oliveira Girelli
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
| | - Rogério Friedman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil;
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
- Correspondence: ; Tel.: +55-51-33083623
| | - Anapaula Sommer Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| |
Collapse
|
11
|
Abstract
Sleep is essential for healthy being and healthy functioning of human body as a whole, as well as each organ and system. Sleep disorders, such as sleep-disordered breathing, insomnia, sleep fragmentation, and sleep deprivation are associated with the deterioration in human body functioning and increased cardiovascular risks. However, owing to the complex regulation and heterogeneous state sleep per se can be associated with cardiovascular dysfunction in susceptible subjects. The understanding of sleep as a multidimensional concept is important for better prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia.
| | - Mikhail Bochkarev
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| | - Yurii Sviryaev
- Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| |
Collapse
|
12
|
Tanaka Y, Ogata H, Park I, Ando A, Ishihara A, Kayaba M, Yajima K, Suzuki C, Araki A, Osumi H, Zhang S, Seol J, Takahashi K, Nabekura Y, Satoh M, Tokuyama K. Effect of a single bout of morning or afternoon exercise on glucose fluctuation in young healthy men. Physiol Rep 2021; 9:e14784. [PMID: 33904659 PMCID: PMC8077162 DOI: 10.14814/phy2.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
The timing of exercise plays an important role in the effect of the exercise on physiological functions, such as substrate oxidation and circadian rhythm. Exercise exerts different effects on the glycemic response to exercise and meal intake depending on when the exercise performed. Here, we comprehensively investigated the effects of the timing (morning or afternoon) of exercise on glucose fluctuation on the basis of several indices: glycemic variability over 24 h (24-h SD), J-index, mean amplitude of glucose excursions (MAGE), continuous overall net glycemic action (CONGA), and detrended fluctuation analysis (DFA). Eleven young men participated in 3 trials in a repeated measures design in which they performed a single bout of exercise at 60% of their maximal oxygen uptake for 1 h beginning either at 7:00 (morning exercise), 16:00 (afternoon exercise), or no exercise (control). Glucose levels were measured using a continuous glucose monitoring system (CGMs). Glucose fluctuation was slightly less stable when exercise was performed in the afternoon than in the morning, indicated by higher CONGA at 2 h and α2 in DFA in the afternoon exercise trial than in the control trial. Additionally, decreased stability in glucose fluctuation in the afternoon exercise trial was supported by the descending values of the other glucose fluctuation indices in order from the afternoon exercise, morning exercise, and control trials. Meal tolerance following exercise was decreased after both exercise trials. Glucose levels during exercise were decreased only in the afternoon exercise trial, resulting in less stable glucose fluctuations over 24 h.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Ogata
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Ando
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Asuka Ishihara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Momoko Kayaba
- Department of Somnology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Katsuhiko Yajima
- Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Chihiro Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akihiro Araki
- Faculty of Health Science, Tsukuba International University, Tsuchiura, Ibaraki, Japan
| | - Haruka Osumi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jaehoon Seol
- R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keigo Takahashi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Nabekura
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Effects of Combined Exercise and Low Carbohydrate Ketogenic Diet Interventions on Waist Circumference and Triglycerides in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020828. [PMID: 33478022 PMCID: PMC7835865 DOI: 10.3390/ijerph18020828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
(1) Background: The purpose of this meta-analysis was to investigate the effects of combined exercise and low carbohydrate ketogenic diet interventions (CELCKD) for overweight and obese individuals. (2) Methods: Relevant studies were searched by using the MEDLINE and EMBASE databases up to October 2020. Study Inclusion and Exclusion Criteria: Inclusion criteria were reporting effects of the CELCKD for overweight and obese individuals from randomized controlled trials. Studies that did not match the inclusion criteria were excluded. The methods for CELCKD and outcomes of selected studies were extracted. The effect sizes for interventions that included cardiorespiratory fitness, body composition, fasting glucose, and lipid profiles were calculated by using the standardized mean difference statistic. (3) Results: A total of seven studies and 278 overweight and obese individuals were included. The average intervention of selected studies consisted of moderate to vigorous intensity, 4 times per week for 9.2 weeks. Participating in CELCKD interventions was decreased triglycerides (d = −0.34, CI; −0.68–−0.01, p = 0.04) and waist circumference (d = −0.74, 95% confidence interval [CI]; −1.28–−1.20, p = 0.01), while cardiovascular fitness, body composition, fasting glucose, total cholesterol, high density lipoprotein (HDL) cholesterol, and low density lipoprotein (LDL) cholesterol were not statistically different after the interventions. No adverse side effects were reported. (4) Conclusions: Participation in interventions by overweight and obese individuals had beneficial effects including decreased waist circumference and triglycerides. Longer term intervention studies with homogenous control groups may be needed.
Collapse
|
14
|
Aoyama S, Shibata S. Time-of-Day-Dependent Physiological Responses to Meal and Exercise. Front Nutr 2020; 7:18. [PMID: 32181258 PMCID: PMC7059348 DOI: 10.3389/fnut.2020.00018] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
The mammalian circadian clock drives the temporal coordination in cellular homeostasis and it leads the day-night fluctuation of physiological functions, such as sleep/wake cycle, hormonal secretion, and body temperature. The mammalian circadian clock system in the body is classified hierarchically into two classes, the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and the peripheral clocks in peripheral tissues such as the intestine and liver, as well as other brain areas outside the SCN. The circadian rhythm of various tissue-specific functions is mainly controlled by each peripheral clock and partially by the central clock as well. The digestive, absorptive, and metabolic capacities of nutrients also show the day-night variations in several peripheral tissues such as small intestine and liver. It is therefore indicated that the bioavailability or metabolic capacity of nutrients depends on the time of day. In fact, the postprandial response of blood triacylglycerol to a specific diet and glucose tolerance exhibit clear time-of-day effects. Meal frequency and distribution within a day are highly related to metabolic functions, and optimal time-restricted feeding has the potential to prevent several metabolic dysfunctions. In this review, we summarize the time-of-day-dependent postprandial response of macronutrients to each meal and the involvement of circadian clock system in the time-of-day effect. Furthermore, the chronic beneficial and adverse effects of meal time and eating pattern on metabolism and its related diseases are discussed. Finally, we discuss the timing-dependent effects of exercise on the day-night variation of exercise performance and therapeutic potential of time-controlled-exercise for promoting general health.
Collapse
Affiliation(s)
- Shinya Aoyama
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Shigenobu Shibata
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
15
|
Diurnal influences of fasted and non-fasted brisk walking on gastric emptying rate, metabolic responses, and appetite in healthy males. Appetite 2019; 143:104411. [DOI: 10.1016/j.appet.2019.104411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
|
16
|
Schumacher LM, Thomas JG, Raynor HA, Rhodes RE, O'Leary KC, Wing RR, Bond DS. Relationship of Consistency in Timing of Exercise Performance and Exercise Levels Among Successful Weight Loss Maintainers. Obesity (Silver Spring) 2019; 27:1285-1291. [PMID: 31267674 DOI: 10.1002/oby.22535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/23/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE This study aimed to evaluate whether consistency in time of day that moderate- to vigorous-intensity physical activity (MVPA) is performed relates to MVPA levels among successful weight loss maintainers in the National Weight Control Registry. METHODS Participants (n = 375) reporting MVPA on ≥ 2 d/wk completed measures of temporal consistency in physical activity (PA) (> 50% of MVPA sessions per week occurring during the same time window: early/late morning, afternoon, or evening), PA levels, PA automaticity, and consistency in cues underlying PA habit formation (e.g., location). RESULTS Most (68.0%) participants reported temporally consistent MVPA. These individuals reported higher MVPA frequency (4.8 ± 1.6 vs. 4.4 ± 1.5 d/wk; P = 0.007) and duration (median [IQR]: 350.0 [200.0-510.0] vs. 285.0 [140.0-460.0] min/wk; P = 0.03), and they were more likely to achieve the national MVPA guideline (≥ 150 min/wk) than temporally inconsistent exercisers (86.3% vs. 74.2%, P = 0.004). Among temporally consistent exercisers, 47.8% were early-morning exercisers; MVPA levels did not differ by time of day of routine MVPA performance (P > 0.05). Greater automaticity and consistency in several cues were related to greater MVPA among all participants. CONCLUSIONS Most participants reported consistent timing of MVPA. Temporal consistency was associated with greater MVPA, regardless of the specific time of day of routine MVPA performance. Consistency in exercise timing and other cues might help explain characteristic high PA levels among successful maintainers.
Collapse
Affiliation(s)
- Leah M Schumacher
- Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, Rhode Island, USA
| | - J Graham Thomas
- Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, Rhode Island, USA
| | - Hollie A Raynor
- Department of Nutrition, The University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ryan E Rhodes
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Kevin C O'Leary
- Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, Rhode Island, USA
| | - Rena R Wing
- Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, Rhode Island, USA
| | - Dale S Bond
- Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Rhodewalt R, Saur B, Largent K, Astorino TA, Zenko Z, Schubert MM. Effect of Fed State on Self-selected Intensity and Affective Responses to Exercise Following Public Health Recommendations. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2019; 12:602-613. [PMID: 31156742 PMCID: PMC6533088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nutritional status has numerous effects on exercise metabolism and psychological responses. The effect of fed state on changes in affective valence; however, are unknown. Thus, the present study examined how fed state influenced self-selected exercise intensity, affective responses during exercise, and exercise enjoyment when exercise was completed following physical activity guidelines for public health. In a repeated-measures crossover design, 25 recreationally active men and women (age and BMI = 22.0 ± 2.0 yr and 24.3 ± 3.3 kg/m2) performed a single 30 min session of treadmill exercise at a Rating of Perceived Exertion (RPE) equal to 13 on the Borg 6-20 scale following an overnight fast (FAST) or 30 minutes after a small meal (FED). Affective valence was recorded every 3 minutes during exercise. Heart rate and gas exchange data were measured continuously using a metabolic cart, blood glucose and blood lactate concentration were measured pre/post-exercise, and enjoyment was measured 15 minutes post-exercise. There was no effect of condition on affective valence, enjoyment, or self-selected intensity (all p>0.05). However, pre-exercise blood glucose was higher in FED pre-exercise, but higher post-exercise in FAST (p<0.05). Blood lactate concentration was also higher in FAST (p<0.05). Our results reveal minimal effects of a small, high-carbohydrate pre-exercise meal on in-task and post-task affective responses, exercise enjoyment, and self-selected intensity. These data suggest that an overnight fast does not alter affective valence or reduce enjoyment of continuous exercise.
Collapse
Affiliation(s)
- Ryan Rhodewalt
- California State University - San Marcos, Department of Kinesiology, San Marcos, CA USA
| | - Blaque Saur
- California State University - San Marcos, Department of Kinesiology, San Marcos, CA USA
| | - Katelyn Largent
- California State University - San Marcos, Department of Kinesiology, San Marcos, CA USA
| | - Todd A Astorino
- California State University - San Marcos, Department of Kinesiology, San Marcos, CA USA
| | - Zachary Zenko
- California State University - Bakersfield, Department of Kinesiology, Bakersfield, CA, USA
| | - Matthew M Schubert
- California State University - San Marcos, Department of Kinesiology, San Marcos, CA USA
| |
Collapse
|
18
|
Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men. Nutrients 2018; 10:nu10121914. [PMID: 30518095 PMCID: PMC6317154 DOI: 10.3390/nu10121914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
The objective of this research was to determine whether chronic (average 3.58 ± 1.56 years) deliberate adherence to low carbohydrate diets (LCDs) is associated with selected markers of metabolism, risk factors of cardiovascular disease (CVD), body mass and physical performance in apparently healthy middle-aged men (n = 12). The control group comprised age, body mass and height matched men using mixed diets (MDs). The diets used were registered for 7 days and analyzed in terms of the energy, carbohydrate, fat and protein contents. It was found that the diets used were isoenergetic, yet varied considerably in carbohydrate and fat content. The LCDs significantly intensified the ketogenesis process, increased resting blood total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and heart rate, (HR) and decreased respiratory exchange ratio (RER) in relation to MD subjects. An exercise trial revealed significant impairment of exercise in subjects following the LCDs. The results showed that in the case where the subjects of two investigated groups did not differ in their somatic variables, long-term adherence to the LCDs was associated with substantially reduced exercise performance in apparently healthy subjects, along with an association with a small unfavorable effect on their lipid profile.
Collapse
|
19
|
Gieske BT, Stecker RA, Smith CR, Witherbee KE, Harty PS, Wildman R, Kerksick CM. Metabolic impact of protein feeding prior to moderate-intensity treadmill exercise in a fasted state: a pilot study. J Int Soc Sports Nutr 2018; 15:56. [PMID: 30497484 PMCID: PMC6267781 DOI: 10.1186/s12970-018-0263-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Augmenting fat oxidation is a primary goal of fitness enthusiasts and individuals desiring to improve their body composition. Performing aerobic exercise while fasted continues to be a popular strategy to achieve this outcome, yet little research has examined how nutritional manipulations influence energy expenditure and/or fat oxidation during and after exercise. Initial research has indicated that pre-exercise protein feeding may facilitate fat oxidation while minimizing protein degradation during exercise, but more research is needed to determine if the source of protein further influences such outcomes. Methods Eleven healthy, college-aged males (23.5 ± 2.1 years, 86.0 ± 15.6 kg, 184 ± 10.3 cm, 19.7 ± 4.4%fat) completed four testing sessions in a randomized, counter-balanced, crossover fashion after observing an 8–10 h fast. During each visit, baseline substrate oxidation and resting energy expenditure (REE) were assessed via indirect calorimetry. Participants ingested isovolumetric, solutions containing 25 g of whey protein isolate (WPI), 25 g of casein protein (CAS), 25 g of maltodextrin (MAL), or non-caloric control (CON). After 30 min, participants performed 30 min of treadmill exercise at 55–60% heart rate reserve. Substrate oxidation and energy expenditure were re-assessed during exercise and 15 min after exercise. Results Delta scores comparing the change in REE were normalized to body mass and a significant group x time interaction (p = 0.002) was found. Post-hoc comparisons indicated the within-group changes in REE following consumption of WPI (3.41 ± 1.63 kcal/kg) and CAS (3.39 ± 0.82 kcal/kg) were significantly greater (p < 0.05) than following consumption of MAL (1.57 ± 0.99 kcal/kg) and tended to be greater than the non-caloric control group (2.00 ± 1.91 kcal/kg, p = 0.055 vs. WPI and p = 0.061 vs. CAS). Respiratory exchange ratio following consumption of WPI and CAS significantly decreased during the post exercise period while no change was observed for the other groups. Fat oxidation during exercise was calculated and increased in all groups throughout exercise. CAS was found to oxidize significantly more fat (p < 0.05) than WPI during minutes 10–15 (CAS: 2.28 ± 0.38 g; WPI: 1.7 ± 0.60 g) and 25–30 (CAS: 3.03 ± 0.55 g; WPI: 2.24 ± 0.50 g) of the exercise bout. Conclusions Protein consumption before fasted moderate-intensity treadmill exercise significantly increased post-exercise energy expenditure compared to maltodextrin ingestion and tended to be greater than control. Post-exercise fat oxidation was improved following protein ingestion. Throughout exercise, fasting (control) did not yield more fat oxidation versus carbohydrate or protein, while casein protein allowed for more fat oxidation than whey. These results indicate rates of energy expenditure and fat oxidation can be modulated after CAS protein consumption prior to moderate-intensity cardiovascular exercise and that fasting did not lead to more fat oxidation during or after exercise.
Collapse
Affiliation(s)
- Bradley T Gieske
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, 63301, USA
| | - Richard A Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, 63301, USA
| | - Charles R Smith
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Kyle E Witherbee
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, 63301, USA
| | - Patrick S Harty
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, 63301, USA
| | - Robert Wildman
- Department of Food and Nutrition Sciences, Texas Woman's University, Denton, TX, USA
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, 63301, USA.
| |
Collapse
|
20
|
Abstract
The objective of this review paper is to evaluate the impact of undertaking aerobic exercise in the overnight-fasted v. fed-state, in the context of optimising the health benefits of regular physical activity. Conducting a single bout of aerobic exercise in the overnight-fasted v. fed-state can differentially modulate the aspects of metabolism and energy balance behaviours. This includes, but is not limited to, increased utilisation of fat as a fuel source, improved plasma lipid profiles, enhanced activation of molecular signalling pathways related to fuel metabolism in skeletal muscle and adipose tissue, and reductions in energy intake over the course of a day. The impact of a single bout of overnight-fasted v. fed-state exercise on short-term glycaemic control is variable, being affected by the experimental conditions, the time frame of measurement and possibly the subject population studied. The health response to undertaking overnight-fasted v. fed-state exercise for a sustained period of time in the form of exercise training is less clear, due to a limited number of studies. From the extant literature, there is evidence that overnight-fasted exercise in young, healthy men can enhance training-induced adaptations in skeletal muscle metabolic profile, and mitigate against the negative consequences of short-term excess energy intake on glucose tolerance compared with exercising in the fed-state. Nonetheless, further long-term studies are required, particularly in populations at-risk or living with cardio-metabolic disease to elucidate if feeding status prior to exercise modulates metabolism or energy balance behaviours to an extent that could impact upon the health or therapeutic benefits of exercise.
Collapse
|
21
|
Ferreira GA, Felippe LC, Silva RLS, Bertuzzi R, De Oliveira FR, Pires FO, Lima-Silva AE. Effect of pre-exercise carbohydrate availability on fat oxidation and energy expenditure after a high-intensity exercise. ACTA ACUST UNITED AC 2018; 51:e6964. [PMID: 29590260 PMCID: PMC5886548 DOI: 10.1590/1414-431x20186964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/02/2018] [Indexed: 11/22/2022]
Abstract
The aim of this study was to test the hypothesis that reduced pre-exercise carbohydrate (CHO) availability potentiates fat oxidation after an exhaustive high-intensity exercise bout. Eight physically active men underwent a high-intensity exercise (∼95% V̇O2max) until exhaustion under low or high pre-exercise CHO availability. The protocol to manipulate pre-exercise CHO availability consisted of a 90-min cycling bout at ∼70% V̇O2max + 6 × 1-min at 125% V̇O2max with 1-min rest, followed by 48 h under a low- (10% CHO, low-CHO availability) or high-CHO diet (80% CHO, high-CHO availability). Time to exhaustion was shorter and energy expenditure (EE) lower during the high-intensity exercise in low- compared to high-CHO availability (8.6±0.8 and 11.4±1.6 min, and 499±209 and 677±343 kJ, respectively, P<0.05). Post-exercise EE was similar between low- and high-CHO availability (425±147 and 348±54 kJ, respectively, P>0.05), but post-exercise fat oxidation was significantly higher (P<0.05) in low- (7,830±1,864 mg) than in high-CHO availability (6,264±1,763 mg). The total EE (i.e., exercise EE plus post-exercise EE) was similar between low- and high-CHO availability (924±264 and 1,026±340 kJ, respectively, P>0.05). These results suggest that a single bout of high-intensity exercise performed under low-CHO availability increased post-exercise fat oxidation, and even with shorter exercise duration, both post-exercise EE and total EE were not impaired.
Collapse
Affiliation(s)
- G A Ferreira
- Grupo de Pesquisa em Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brasil
| | - L C Felippe
- Grupo de Pesquisa em Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brasil
| | - R L S Silva
- Grupo de Pesquisa em Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brasil
| | - R Bertuzzi
- Grupo de Estudos em Desempenho Aeróbio, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F R De Oliveira
- Núcleo de Estudos do Movimento Humano, Departamento de Educação Física, Universidade Federal de Lavras, Lavras, MG, Brasil
| | - F O Pires
- Grupo de Estudos em Psico-fisiologia do Exercício, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A E Lima-Silva
- Grupo de Pesquisa em Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brasil.,Grupo de Pesquisa Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
22
|
Travassos PB, Godoy G, De Souza HM, Curi R, Bazotte RB. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats. ACTA ACUST UNITED AC 2018; 51:e7057. [PMID: 29590261 PMCID: PMC5886545 DOI: 10.1590/1414-431x20187057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/02/2018] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3–7 min), low-intermediary performance (8–12 min), high-intermediary performance (13–17 min), and high performance (18–22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.
Collapse
Affiliation(s)
- P B Travassos
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - G Godoy
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - H M De Souza
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R B Bazotte
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|