1
|
Yufa M, Dongmei C, Wei L, Shuangxing L, Li S, Xingchao G. Peripheral serum iTRAQ-based proteomic characteristics of carbon tetrachloride-induced acute liver injury in Macaca fascicularis. Toxicol Rep 2024; 13:101689. [PMID: 39184831 PMCID: PMC11342196 DOI: 10.1016/j.toxrep.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 07/06/2024] [Indexed: 08/27/2024] Open
Abstract
Carbon tetrachloride (CCl4) is a potent chemical compound that can induce liver cells necrosis. The purpose of this study was to evaluate the hepatic toxicity of CCl4 exposure in Macaca fascicularis to explore the liver toxicity mechanism using a proteomic approach. One animal (no.F6) was intoxicated by oral gavage with 15 % CCl4 solution (10 mL/kg, dissolved in edible peanut oil), and was sacrificed at 48 h after CCl4 administration. Another blank control animal (no.F4) was sacrificed at the same time. The liver cells of the blank control animal showed normal hepatocyte morphology. However, the hepatocytes at 48 h time point after CCl4 administration showed necrosis and vacuolation histopathologically. The animal No.F7∼F12 and no.M7∼M12 were administrated by gavage with 15 % CCl4 solution (10 mL/kg, dissolved in edible peanut oil). Blood samples were collected before gavage administration, and served as the 0 h blank control samples. Then, blood samples were collected at 2 h, 48 h, 72 h and 168 h after CCl4 exposure, and served as the test samples. Routine biochemistry and immunical parameters were performed using biochemistry analyzer for all serum. Then the serum from male and female animals at 0 h, 2 h, 48 h, and 72 h was mixed, respectively. The peripheral serum proteins at 0 h, 2 h, 48 h, and 72 h were extracted, then the proteins were enzymatically hydrolyzed and the peptides were isotopic labeled by isobaric tags for relative and absolute quantification (iTRAQ). Finally, the UniProt Protein Sequence Library of Macaca fascicularis was queried to identify and compare the differential proteins between different time points. The results showed that, as traditional biomarkers of liver injury, alanine aminotransferases (ALT) and aspartate aminotransferases (AST) showed a typical time-effect curve. Compared with 0 h, there were totally 55, 323, and 158 differential proteins (P value <0.05, Ratio fold >1.5, FDR<0.05) at 2 h, 48 h and 72 h, respectively. GO enrichment analysis of differentially expressed proteins only at 48 h involved 3 cellular components (P adjust value <0.05), and differential proteins at other time points had no significant enrichment. Furthermore, KEGG enrichment analysis showed that the toxicity effect of CCl4 at different time points after administration was mediated through 22 pathways such as biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, peroxisome, cysteine and methionine metabolism, arginine biosynthesis, and complement and coagulation cascades (P adjust value <0.05). Among them, the counts of signaling pathway involved biosynthesis of antibiotics, carbon metabolism and biosynthesis of amino acids were more than 10 and the three pathways may play a greater role in toxicity progress after administration of CCl4. PPI network analysis showed that there were 3, 52, and 13 nodes in the interaction of differential proteins at 2 h, 48 h, and 72 h, respectively. In conclusion, many differential proteins in peripheral blood were detected after CCl4 administration, and the GO and KEGG enrichment analysis showed the toxicological mechanisms of CCl4-induced liver injury and potential protection reaction mechanism for CCl4 detoxication may be related with multi biological processes, signaling pathway and targets.
Collapse
Affiliation(s)
- Miao Yufa
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Chen Dongmei
- Beijing Red Cross Blood Center, Beijing 100088, China
| | - Li Wei
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Li Shuangxing
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Sun Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Geng Xingchao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Ge Y, Wu Z, Yue X, Li C, Liang X, Ma C, Wang P, Gao L. Tim-4 alleviates acute hepatic injury by modulating homeostasis and function of NKT cells. Clin Exp Immunol 2024; 218:101-110. [PMID: 39036980 PMCID: PMC11404119 DOI: 10.1093/cei/uxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is an immune checkpoint molecule, which involves in numerous inflammatory diseases. Tim-4 is mainly expressed on antigen-presenting cells. However, increasing evidence has shown that Tim-4 is also expressed on natural killer T (NKT) cells. The role of Tim-4 in maintaining NKT cell homeostasis and function remains unknown. In this study, we explored the effect of Tim-4 on NKT cells in acute liver injury. This study found that Tim-4 expression on hepatic NKT cells was elevated during acute liver injury. Tim-4 deficiency enhanced IFN-γ, TNF-α expression while impaired IL-4 production in NKT cells. Loss of Tim-4 drove NKT-cell effector lineages to be skewed to NKT1 subset. Furthermore, Tim-4 KO mice were more susceptible to α-Galactosylceramide (α-GalCer) challenge. In conclusion, our findings indicate that Tim-4 plays an important role in regulating homeostasis and function of NKT cells in acute liver injury. Therefore, Tim-4 might become a new regulator of NKT cells and a potential target for the therapy of acute hepatitis.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Pin Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University. Jinan, Shandong 250033, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
3
|
Ezhilarasan D, Shree Harini K, Karthick M, Lavanya P. Boldine protects against carbon tetrachloride-induced chronic liver injury by regulating NF-κB signaling pathway. J Biochem Mol Toxicol 2024; 38:e23691. [PMID: 38500399 DOI: 10.1002/jbt.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sustained liver injuries predominantly promote oxidative stress and inflammation that lead to the progression of chronic liver disease (CLD), including fibrosis, cirrhosis, and hepatocellular carcinoma. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects. Currently, there is no definitive treatment option available for CLD. Therefore, we investigated the hepatoprotective effect of boldine against carbon tetrachloride (CCl4 )-induced chronic liver injury in rats. CCl4 (2 mL/kg., b.w., i.p.) was administered twice weekly for 5 weeks to induce chronic liver injury in rats. Separate groups of rats were given boldine (20 mg/kg b.w., and 40 mg/kg b.w.) and silymarin (100 mg/kg b.w.) orally, daily. Serum transaminases, lipid peroxidation, and antioxidant levels were measured, and nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (cox-2), interleukin-1 β (IL-1β), and α-smooth muscle actin (α-SMA) gene and protein expressions were evaluated. CCl4 administration increased liver marker enzymes of hepatotoxicity in serum and oxidative stress markers, inflammatory genes and α-smooth muscle actin expression in liver tissue. Boldine concurrent treatment suppressed CCl4 -induced elevation of transaminase levels in serum, restored enzymic and non-enzymic antioxidants, and downregulated NF-κB, TNF-α, Cox-2 and IL-1β expressions, thereby suppressing hepatic inflammation. Boldine administration also repressed α-SMA expression. The results of this study demonstrate the antioxidant, anti-inflammatory, and antifibrotic properties of boldine, and it can be a potential therapeutic candidate in the treatment of CLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prathap Lavanya
- Department of Anatomy, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Lee GH, Jeong YJ. Synergistic Effects of Vitis vinifera L. and Centella asiatica against CCl 4-Induced Liver Injury in Mice. Int J Mol Sci 2023; 24:11255. [PMID: 37511015 PMCID: PMC10379123 DOI: 10.3390/ijms241411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver injury can be acute or chronic, resulting from a variety of factors, including viral hepatitis, drug overdose, idiosyncratic drug reaction, or toxins, while the progression of pathogenesis in the liver rises due to the involvement of numerous cytokines and growth factor mediators. Thus, the identification of more effective biomarker-based active phytochemicals isolated from medicinal plants is a promising strategy to protect against CCl4-induced liver injury. Vitis vinifera L. (VE) and Centella asiatica (CE) are well-known medicinal plants that possess anti-inflammatory and antioxidant properties. However, synergism between the two has not previously been studied. Here, we investigated the synergistic effects of a V. vinifera L. (VE) leaf, C. asiatica (CE) extract combination (VCEC) against CCl4-induced liver injury. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 mL/kg). VCEC was administered orally for three consecutive days at various concentrations (100 and 200 mg/kg) prior to CCl4 injection. The extent of liver injury and the protective effects of VCEC were evaluated by biochemical analysis and histopathological studies. Oxidative stress was evaluated by measuring malondialdehyde (MDA) and glutathione (GSH) levels and Western blotting. VCEC treatment significantly reduced serum transaminase levels (AST and ALT), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by VCEC treatment by reducing cleaved caspase-3 and Bcl2-associated X protein (Bax). VCEC-treated mice significantly restored cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in CCl4-treated mice. In addition, VCEC downregulated overexpression of proinflammatory cytokines and hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4-mediated apoptosis. Collectively, VCEC exhibited synergistic protective effects against liver injury through its antioxidant, anti-inflammatory, and antiapoptotic ability against oxidative stress, inflammation, and apoptosis. Therefore, VCEC appears promising as a potential therapeutic agent for CCl4-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Jeonbuk National Hospital, Jeonju 54907, Republic of Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
5
|
Park JE, Ahn CH, Lee HJ, Sim DY, Park SY, Kim B, Shim BS, Lee DY, Kim SH. Antioxidant-Based Preventive Effect of Phytochemicals on Anticancer Drug-Induced Hepatotoxicity. Antioxid Redox Signal 2023; 38:1101-1121. [PMID: 36242510 DOI: 10.1089/ars.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Drug-induced liver injury (DILI) or hepatotoxicity has been a hot issue to overcome on the safety and physiological function of the liver, since it is known to have biochemical, cellular, immunological, and molecular alterations in the liver mainly induced by alcohol, chemicals, drugs, heavy metals, and genetic factors. Recently efficient therapeutic and preventive strategies by some phytochemicals are of interest, targeting oxidative stress-mediated hepatotoxicity alone or in combination with anticancer drugs. Recent Advances: To assess DILI, the variety of in vitro and in vivo animal models has been developed mainly by using carbon tetrachloride, d-galactosamine, acetaminophen, and lipopolysaccharide. Also, the mechanisms on hepatotoxicity by several drugs and herbs have been explored in detail. Recent studies reveal that antioxidants including vitamins and some phytochemicals were reported to prevent against DILI. Critical Issues: Antioxidant therapy with some phytochemicals is noteworthy, since oxidative stress is critically involved in DILI via production of chemically reactive oxygen species or metabolites, impairment of mitochondrial respiratory chain, and induction of redox cycling. Future Directions: For efficient antioxidant therapy, DILI susceptibility, Human Leukocyte Antigen genetic factors, biomarkers, and pathogenesis implicated in hepatotoxicity should be further explored in association with oxidative stress-mediated signaling, while more randomized preclinical and clinical trials are required with optimal safe doses of drugs and/or phytochemicals alone or in combination for efficient clinical practice along with the development of advanced DILI diagnostic tools.
Collapse
Affiliation(s)
- Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Yeon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Shen XL, Guo YN, Lu MH, Ding KN, Liang SS, Mou RW, Yuan S, He YM, Tang LP. Acetaminophen-induced hepatotoxicity predominantly via inhibiting Nrf2 antioxidative pathway and activating TLR4-NF-κB-MAPK inflammatory response in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114590. [PMID: 36738614 DOI: 10.1016/j.ecoenv.2023.114590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (P<0.05). The histopathological alterations and proinflammatory cytokines (IL-1β, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (P<0.05), and enhancing malondialdehyde (MDA) content (P<0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1β and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
7
|
Dai W, Pang X, Peng W, Zhan X, Chen C, Zhao W, Zeng C, Mei Q, Chen Q, Kuang W, Gou Z, Hu X. Liver Protection of a Low-Polarity Fraction from Ficus pandurata Hance, Prepared by Supercritical CO 2 Fluid Extraction, on CCl 4-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Ferroptosis Mediated by Strengthened Antioxidation. Molecules 2023; 28:molecules28052078. [PMID: 36903326 PMCID: PMC10004706 DOI: 10.3390/molecules28052078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Ficus pandurata Hance (FPH) is a Chinese herbal medicine widely used for health care. This study was designed to investigate the alleviation efficacy of the low-polarity ingredients of FPH (FPHLP), prepared by supercritical CO2 fluid extraction technology, against CCl4-induced acute liver injury (ALI) in mice and uncover its underlying mechanism. The results showed that FPHLP had a good antioxidative effect determined by the DPPH free radical scavenging activity test and T-AOC assay. The in vivo study showed that FPHLP dose-dependently protected against liver damage via detection of ALT, AST, and LDH levels and changes in liver histopathology. The antioxidative stress properties of FPHLP suppressed ALI by increasing levels of GSH, Nrf2, HO-1, and Trx-1 and reducing levels of ROS and MDA and the expression of Keap1. FPHLP significantly reduced the level of Fe2+ and expression of TfR1, xCT/SLC7A11, and Bcl2, while increasing the expression of GPX4, FTH1, cleaved PARP, Bax, and cleaved caspase 3. The results demonstrated that FPHLP protected mouse liver from injury induced by CCl4 via suppression of apoptosis and ferroptosis. This study suggests that FPHLP can be used for liver damage protection in humans, which strongly supports its traditional use as a herbal medicine.
Collapse
Affiliation(s)
- Weibo Dai
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Xiaoyan Pang
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Weiwen Peng
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Xinyi Zhan
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Chang Chen
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Wenchang Zhao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Congyan Zeng
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Quanxi Mei
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (W.K.); (X.H.)
| | - Zhanping Gou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, China
- Correspondence: (W.K.); (X.H.)
| |
Collapse
|
8
|
Gao F, Liu H, Han H, Wang X, Qu L, Liu C, Tian X, Hou R. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Front Pharmacol 2022; 13:1058480. [PMID: 36438830 PMCID: PMC9682150 DOI: 10.3389/fphar.2022.1058480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 10/03/2023] Open
Abstract
Berberidis radix polysaccharide (BRP) extracted as capping agents was applied to prepare BRP-selenium nanoparticles (BRP-SeNPs) in the redox reaction system of sodium selenite and ascorbic acid. The stability and characterization of BRP-SeNPs were investigated by physical analysis method. The results revealed that BRP were tightly wrapped on the surface of SeNPs by forming C-O⋯Se bonds or hydrogen bonding interaction (O-H⋯Se). BRP-SeNPs presented irregular, fragmented and smooth surface morphology and polycrystalline nanoring structure, and its particle size was 89.4 nm in the optimal preparation condition. The pharmacologic functions of BRP-SeNPs were explored in vitro and in vivo. The results showed that BRP-SeNPs could heighten the cell viabilities and the enzyme activity of GSH-Px and decrease the content of MDA on H2O2-induced AML-12 cells injury model. In vivo tests, the results displayed that BRP-SeNPs could increase the body weight of mice, promote the enzyme activity like SOD and GSH-Px, decrease the liver organ index and the hepatic function index such as ALT, AST, CYP2E1, reduce the content of MDA, and relieve the proinflammation factors of NO, IL-1β and TNF-α in CCl4-induced mice injury model. Liver tissue histopathological studies corroborated the improvement of BRP-SeNPs on liver of CCl4-induced mice. The results of Western blot showed that BRP-SeNPs could attenuate oxidant stress by the Nrf2/Keap1/MKP1/JNK pathways, and downregulate the proinflammatory factors by TLR4/MAPK pathway. These findings suggested that BRP-SeNPs possess the hepatoprotection and have the potential to be a green liver-protecting and auxiliary liver inflammation drugs.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huimin Liu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hao Han
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lihua Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Kryl'skii ED, Sinitsyna DA, Popova TN, Shikhaliev KS, Medvedeva SM, Matasova LV, Mittova VO. The new antioxidant 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline has a protective effect against carbon tetrachloride-induced hepatic injury in rats. J Biomed Res 2022; 36:423-434. [PMID: 36320149 PMCID: PMC9724163 DOI: 10.7555/jbr.36.20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver diseases with the central pathogenetic mechanism of oxidative stress are one of the main causes of mortality worldwide. Therefore, dihydroquinoline derivatives, which are precursors of hepatoprotectors and have antioxidant activity, are of interest. We have previously found that some compounds in this class have the ability to normalize redox homeostasis under experimental conditions. Here, we initially analyzed the hepatoprotective potential of the dihydroquinoline derivative 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) for carbon tetrachloride (CCl 4)-induced liver injury in rats. Results suggested that BHDQ normalized the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in serum. We also observed an improvement in liver tissue morphology related to BHDQ. Animals with CCl 4-induced liver injuries treated with BHDQ had less oxidative stress compared to animals with CCl 4-induced liver injury. BHDQ promoted activation changes in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase on control values in animals with CCl 4-induced liver injury. BHDQ also activated gene transcription in Sod1 and Gpx1 via nuclear factor erythroid 2-related factor 2 and forkhead box protein O1 factors. Therefore, the compound of concern has a hepatoprotective effect by inhibiting the development of necrotic processes in the liver tissue, through antioxidation.
Collapse
Affiliation(s)
- Evgenii Dmitrievich Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia,Evgenii Dmitrievich Kryl'skii, Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, Voronezh, Voronezh region 394018, Russia. Tel: +7-473-2281160 ext. 1111, E-mail:
| | - Darya Andreevna Sinitsyna
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia
| | - Tatyana Nikolaevna Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia
| | | | | | - Larisa Vladimirovna Matasova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia
| | - Valentina Olegovna Mittova
- Department of Clinical Laboratory Diagnostics, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Voronezh region 394036, Russia
| |
Collapse
|
10
|
Wang T, Hu L, Lu J, Xiao M, Liu J, Xia H, Lu H. Functional metabolomics revealed functional metabolic-characteristics of chronic hepatitis that is significantly differentiated from acute hepatitis in mice. Pharmacol Res 2022; 180:106248. [DOI: 10.1016/j.phrs.2022.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
|
11
|
Jiang YC, Han X, Dou JY, Yuan MH, Zhou MJ, Cui ZY, Lian LH, Nan JX, Zhang X, Wu YL. Protective role of Siberian onions against toxin-induced liver dysfunction: an insight into health-promoting effects. Food Funct 2022; 13:4678-4690. [PMID: 35377371 DOI: 10.1039/d1fo04404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Xin Han
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Chinese Medicine Processing Centre, College of pharmacy, Zhejiang Chinese Medical University, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133002, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
12
|
Aramjoo H, Mohammadparast-Tabas P, Farkhondeh T, Zardast M, Makhdoumi M, Samarghandian S, Kiani Z. Protective effect of Sophora pachycarpa seed extract on carbon tetrachloride-induced toxicity in rats. BMC Complement Med Ther 2022; 22:76. [PMID: 35300676 PMCID: PMC8932233 DOI: 10.1186/s12906-022-03554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of the Sophora pachycarpa (S. pachycarpa) seed extract against carbon tetrachloride-induced toxicity on body organs, blood, and biochemical factors. In this investigation, 40 male Wistar rats weighing 200–250 g were randomly divided into 5 groups: group I was used as control, group II received carbon tetrachloride (CCl4) (IP, 1 mL/kg) on day 21, group III and group IV received S. pachycarpa seed extract at doses of 150 mg/kg and 300 mg/kg, respectively for 21 days by oral gavage and CCl4 on day 21, group V received silymarin (300 mg/kg) for 21 days by oral gavage and CCl4 on day 21. CCl4 showed an increase of serum renal and hepatic markers creatinine, urea, blood urea nitrogen (BUN), and uric acid, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Also, it significantly increased MDA level, and decreased CAT, FRAP, GSH, and SOD in the liver and kidney tissues. These changes and also hematological and histopathological alterations were significantly ameliorated by S. pachycarpa seed extract before CCl4 administration. In conclusion, the data obtained in our investigation confirm the protective effect of S. pachycarpa against acute exposure to CCl4-induced organ toxicity in rats.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Marzieh Makhdoumi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zahra Kiani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran. .,Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
13
|
The Potential Hepatoprotective Effect of Paeoniae Radix Alba in Thioacetamide-Induced Acute Liver Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7904845. [PMID: 35126604 PMCID: PMC8816603 DOI: 10.1155/2022/7904845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Aim Acute liver injury (ALI) can occur for various reasons by induced inflammation and apoptosis of liver cells including hepatocytes, Kupffer cells, and hepatic stellate cells. Thioacetamide (TAA), which is a classic hepatotoxin, causes oxidative stress, membrane damage, and accumulation of lipid droplets and subsequently provokes consecutive liver injury. In the current study, we tested whether Paeoniae Radix Alba (PR) could alleviate TAA-induced ALI. Methods Thirty-five male rats were equally separated into five groups. The first group was the normal group, which received distilled water only. The remaining four groups received intraperitoneal TAA (200 mg/kg) for 3 days to induce ALI. The four groups were divided into the control group (no treatment), silymarin-treated, 100 mg/kg PR-treated, and 200 mg/kg PR-treated. The efficacy of PR against hepatotoxicity was evaluated in terms of the serum biochemical index and protein expression associated with inflammation and apoptosis. Moreover, the dissected livers were analyzed by hematoxylin and eosin stain. Results PR alleviated liver dysfunction as evidenced by decreased levels of aspartate aminotransferase, alanine aminotransferase, and ammonia. Phosphorylated AMP-activated protein kinase (AMPK) and Sirtuin 1 (Sirt1) levels were obviously decreased in the TAA control group, whereas PR reversed these changes. PR also prevented deteriorative effects through inhibition of inflammation and apoptosis via nuclear transcription factor-kappa Bp65 (NF-κBp65) inactivation. Moreover, we found that the hepatoprotective effect of PR pretreatment was mediated by restoration of histopathological changes. Conclusion PR efficiently blocked both the inflammatory response and apoptosis through activating the AMPK/Sirt1/NF-κBp65 pathway. Therefore, PR is considered a potential therapeutic agent against ALI.
Collapse
|
14
|
Zhang F, Xu H, Yuan Y, Huang H, Wu X, Zhang J, Fu J. Lyophyllum decastes fruiting body polysaccharide alleviates acute liver injury by activating the Nrf2 signaling pathway. Food Funct 2022; 13:2057-2067. [PMID: 35107114 DOI: 10.1039/d1fo01701b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polysaccharides have high antioxidant, hypoglycemic, hypolipidemic, hepatoprotective, anti-tumor, and anticancer activities. In this study, the ability of the Lyophyllum decastes fruiting body polysaccharide (LDFP) to protect against CCl4-induced acute liver injury in mice by activating the Nrf2 pathway was studied. LDFP can inhibit the activity of ALT, AST, TC, TG, tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in serum; significantly improve the inflammatory state of the liver; increase the activity of superoxide dismutase (SOD) and the glutathione (GSH) content; decrease the malondialdehyde (MDA) content; alleviate the toxicity caused by reactive oxygen species; and alleviate liver injury. Immunohistochemistry and western blot showed that LDFP can activate the Nrf2 pathway, up-regulate the expression of Nrf2, down-regulate the expression of Keap1, and increase the expression of the anti-oxidation factors HO-1 and CuZn-SOD. At the same time, it was found that the expression of the transcription factors TLR-4 and NF-κB were decreased in the NF-κB signaling pathway, the synthesis and secretion of the pro-inflammatory factors IL-6 and TNF-α were decreased consequently. These results suggest that LDFP protects the liver by activating the Nrf2 pathway and reducing the inflammatory response. Generally, the results of this study could be used to aid the development of hepatoprotective products and their application.
Collapse
Affiliation(s)
- Fengpei Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Hui Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yuan Yuan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Haichen Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xiaoping Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Junli Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850000, People's Republic of China.
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China. .,Mycological Research Canter, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
15
|
OUP accepted manuscript. J AOAC Int 2022; 105:1447-1459. [DOI: 10.1093/jaoacint/qsac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/12/2022]
|
16
|
Zhang D, Xiong L, Fang L, Li H, Zhao X, Luan R, Zhao P, Zhang X. Systematic characterization of the absorbed components of Ligustri Lucidi Fructus and their metabolic pathways in rat plasma by ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry combined with network pharmacology. J Sep Sci 2021; 44:4343-4367. [PMID: 34687589 DOI: 10.1002/jssc.202100484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Ligustri Lucidi Fructus is a dried and mature fruit of Ligustrum lucidum Ait., which has the effects of nourishing liver and kidney. Herein, an accurate and sensitive method was established for the separation and identification of the absorbed constituents and metabolites of Ligustri Lucidi Fructus in rat plasma based on ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry. A total of 73 prototype constituents and 148 metabolites were identified or characterized in administered plasma, and the possible metabolic pathways of constituents mainly involved hydroxylation, sulfation, demethylation, and glucuronidation. Besides, the network pharmacology was further investigated to illuminate its potential mechanism of treatment for liver injury by the biological targets regulating related pathways. Network pharmacological analysis showed that target components through 399 targets regulate 220 pathways. The docking results showed that 36 key target components were closely related to liver injury. Overall, the study clearly presented the metabolic processes of Ligustri Lucidi Fructus and gave a comprehensive metabolic profile of Ligustri Lucidi Fructus in vivo first. Combining with network pharmacology and molecular docking discovered potential drug targets and disclose the biological processes of Ligustri Lucidi Fructus, which will be a viable step toward uncovering the secret mask of study for traditional Chinese medicine.
Collapse
Affiliation(s)
- Danjie Zhang
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Lewen Xiong
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Linlin Fang
- Pharmaceutical department, College of Pharmacy, Dalian Medical University, Dalian, P. R. China
| | - Huifei Li
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xin Zhao
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Ruqiao Luan
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Pan Zhao
- Pharmaceutical department, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xuelan Zhang
- Pharmaceutical department, Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, P. R. China
| |
Collapse
|
17
|
Serrya MS, Nader MA, Abdelmageed ME. Hepatoprotective effect of the tyrosine kinase inhibitor nilotinib against cyclosporine-A induced liver injury in rats through blocking the Bax/Cytochrome C/caspase-3 apoptotic signaling pathway. J Biochem Mol Toxicol 2021; 35:1-13. [PMID: 33710703 DOI: 10.1002/jbt.22764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Cyclosporine-A (CsA) is a powerful immunosuppressive agent and hepatotoxicity results from CsA treatment. This study aimed to elucidate the effectiveness of tyrosine kinase inhibitor nilotinib against CsA-induced hepatotoxicity and the underlying molecular mechanisms. Male Sprague-Dawley rats were allocated into four groups and received drugs for 28 days as follows: Control group: received vehicle, Nilotinib group: received nilotinib (20 mg/kg orally), CsA group: received CsA by subcutaneous injection (20 mg/kg daily), CsA-nilotinib: received nilotinib and CsA. Serum lactate dehydrogenase (LDH), liver function biomarkers, hepatic levels of oxidative stress biomarkers, nuclear factor erythroid-2 like-2 (Nrf2), total antioxidant capacity (TAC), interleukin-2 (IL-2), IL-1β, IL-6, and cytochrome-C were assessed. Additionally, the protein levels and mRNA expression of Bcl2 associated X protein (Bax), caspase-3, nuclear factor-κB (NF-κB), hemoxygenase-1 (HO-1) were measured. Moreover, liver tissues were assessed histopathologically using hematoxylin-eosin and Masson trichrome stain. Nilotinib treatment decreased serum LDH, alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltransferase (γ-GT), hepatic malondialdehyde, and cytochrome-C. It also increased superoxide dismutase, reduced glutathione, glutathione reductase, glutathione peroxidase, glutathione-S-transferase (GST), TAC, and Nrf2 compared to CsA-injected rats. In addition, nilotinib decreased NF-κB, IL-1β, IL-6, Bax, and caspase-3, while elevated IL-2 and immunoexpression of HO-1. Additionally, mRNA expression of Bax and caspase-3 was elevated and that of HO-1 and inhibitory protein κB-α was reduced in the nilotinib-treated group. Moreover, nilotinib significantly attenuated CsA-induced histopathological alterations. Nilotinib may have a promising role as a hepato-protective through its antiapoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Marwa S Serrya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun 2021; 12:1455. [PMID: 33674593 PMCID: PMC7935900 DOI: 10.1038/s41467-021-21804-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
T-cell exhaustion denotes a hypofunctional state of T lymphocytes commonly found in cancer, but how tumor cells drive T-cell exhaustion remains elusive. Here, we find T-cell exhaustion linked to overall survival in 675 hepatocellular carcinoma (HCC) patients with diverse ethnicities and etiologies. Integrative omics analyses uncover oncogenic reprograming of HCC methionine recycling with elevated 5-methylthioadenosine (MTA) and S-adenosylmethionine (SAM) to be tightly linked to T-cell exhaustion. SAM and MTA induce T-cell dysfunction in vitro. Moreover, CRISPR-Cas9-mediated deletion of MAT2A, a key SAM producing enzyme, results in an inhibition of T-cell dysfunction and HCC growth in mice. Thus, reprogramming of tumor methionine metabolism may be a viable therapeutic strategy to improve HCC immunity. Intratumoral CD8+ T cells commonly display a dysfunctional state, however it remains unclear whether tumor cell metabolism actively promotes T-cell exhaustion. Here, the authors show that the tumor methionine recycling pathway has a central role in promoting T-cell dysfunction in hepatocellular carcinoma, contributing to tumor immune evasion.
Collapse
|
19
|
Abstract
T-cell exhaustion denotes a hypofunctional state of T lymphocytes commonly found in cancer, but how tumor cells drive T-cell exhaustion remains elusive. Here, we find T-cell exhaustion linked to overall survival in 675 hepatocellular carcinoma (HCC) patients with diverse ethnicities and etiologies. Integrative omics analyses uncover oncogenic reprograming of HCC methionine recycling with elevated 5-methylthioadenosine (MTA) and S-adenosylmethionine (SAM) to be tightly linked to T-cell exhaustion. SAM and MTA induce T-cell dysfunction in vitro. Moreover, CRISPR-Cas9-mediated deletion of MAT2A, a key SAM producing enzyme, results in an inhibition of T-cell dysfunction and HCC growth in mice. Thus, reprogramming of tumor methionine metabolism may be a viable therapeutic strategy to improve HCC immunity.
Collapse
|
20
|
Zhao Y, Zhang Y, Kong H, Zhang M, Cheng J, Wu J, Qu H, Zhao Y. Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect. Int J Nanomedicine 2020; 15:9049-9059. [PMID: 33235451 PMCID: PMC7680119 DOI: 10.2147/ijn.s281976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The charcoal processed product of Paeoniae Radix Alba (PRA), PRA Carbonisata (PRAC), has long been used for its hepatoprotective effects. However, the material basis and mechanism of action of PRAC remain unclear. AIM To explore the hepatoprotective effects of Paeoniae Radix Alba Carbonisata-derived carbon dots (PRAC-CDs). METHODS PRAC-CDs were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, ultraviolet, fluorescence, Fourier transform infrared and X-ray photoelectron spectroscopy, X-ray diffraction, and high-performance liquid chromatography. The hepatoprotective effect of PRAC-CDs was evaluated and confirmed using the classic carbon tetrachloride acute liver injury model. RESULTS PRAC-CDs averaged 1.0-2.4 nm in size and exhibited a quantum yield of 5.34% at a maximum excitation wavelength of 320 nm and emission at 411 nm. PRAC-CDs can reduce the ALT and AST levels of mice with carbon tetrachloride-induced acute liver injury and have a mitigating effect on the rise in TBA and TBIL. More interestingly, PRAC-CDs can significantly reduce MDA and increase SOD levels, demonstrating that PRAC-CDs can improve the body's ability to scavenge oxygen free radicals and inhibit free radical-induced liver cell lipid peroxidation, thereby preventing liver cell damage. CONCLUSION These results demonstrate the remarkable hepatoprotective effects of PRAC-CDs against carbon tetrachloride-induced acute liver injury, which provide new insights into potential biomedical and healthcare applications of CDs.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| |
Collapse
|
21
|
Li R, Zhang P, Li C, Yang W, Yin Y, Tao K. Tert-butylhydroquinone mitigates Carbon Tetrachloride induced Hepatic Injury in mice. Int J Med Sci 2020; 17:2095-2103. [PMID: 32922170 PMCID: PMC7484658 DOI: 10.7150/ijms.45842] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ) is an antioxidant compound that exhibits cytoprotective effect in many tissues under pathological condition. However, its role in carbon tetrachloride (CCL4) induced liver injury is still unclear. Here we established a carbon tetrachloride induced hepatic injury model in mice to determine whether tBHQ can mitigate CCL4 induced liver damage. In our study, we found tBHQ exhibited protective effects in CCL4 treated mice model. TBHQ markedly improved hepatic function and decreased hepatic histopathological damage in vivo. In addition, tBHQ reduced levels of pro-inflammatory cytokines in mice model. Moreover, tBHQ mitigated apoptosis of hepatocytes, oxidative stress and lipid peroxidation in vivo and in vitro. We also found the possible mechanism of protective effects of tBHQ was associated with activation of Nrf2/ heme oxygenase-1 (HO-1) pathway. In conclusion, our study revealed tBHQ can be a potential therapeutic drug in treatment of acute hepatic injury.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
22
|
Yousefi-Manesh H, Dehpour AR, Ansari-Nasab S, Hemmati S, Sadeghi MA, Shahraki RH, Shirooie S, Nabavi SM, Nkuimi Wandjou JG, Sut S, Caprioli G, Dall’Acqua S, Maggi F. Hepatoprotective Effects of Standardized Extracts from an Ancient Italian Apple Variety (Mela Rosa dei Monti Sibillini) against Carbon Tetrachloride (CCl 4)-Induced Hepatotoxicity in Rats. Molecules 2020; 25:E1816. [PMID: 32326503 PMCID: PMC7222006 DOI: 10.3390/molecules25081816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this research was to examine the effect of the hydroalcoholic extracts from the peel (APE) and pulp (APP) of a traditional apple cultivar from central Italy (Mela Rosa dei Monti Sibillini) on CCl4-induced hepatotoxicity in rats. Phytoconstituents were determined by liquid chromatography-mass spectrometry (LC-MS) analysis showing an abundance of proanthocyanidins and flavonol derivatives together with the presence of annurcoic acid in APE. Wistar rats received APE/APP (30 mg/kg oral administration) for three days before CCl4 injection (2 mL/kg intraperitoneal once on the third day). Treatment with both APE and APP prior to CCl4 injection significantly decreased the serum levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) compared to the CCl4 group. Besides, pretreatment with APE reversed the CCl4 effects on superoxide dismutase (SOD), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α) and interleukin-1beta (IL-1β) levels in liver tissue in rats and reduced tissue damage as shown in hematoxylin and eosin staining. These results showed that this ancient Italian apple is worthy of use in nutraceuticals and dietary supplements to prevent and/or protect against liver disorders.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Sedighe Ansari-Nasab
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Sara Hemmati
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
- Experimental medicine research center, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Mohammad Amin Sadeghi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran; (H.Y.-M.); (A.R.D.); (S.A.-N.); (S.H.); (M.A.S.)
| | - Reza Hashemi Shahraki
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 13145-784, Iran;
- Preclinical Core Facility, Tehran University of Medical Sciences, Tehran 13145-784, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran;
| | | | - Stefania Sut
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy;
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.G.N.W.); (G.C.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.G.N.W.); (G.C.)
| |
Collapse
|
23
|
Huang XB, He YG, Zheng L, Feng H, Li YM, Li HY, Yang FX, Li J. Identification of hepatitis B virus and liver cancer bridge molecules based on functional module network. World J Gastroenterol 2019; 25:4921-4932. [PMID: 31543683 PMCID: PMC6737318 DOI: 10.3748/wjg.v25.i33.4921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The potential role of chronic inflammation in the development of cancer has been widely recognized. However, there has been little research fully and thoroughly exploring the molecular link between hepatitis B virus (HBV) and hepatocellular carcinoma (HCC). AIM To elucidate the molecular links between HBV and HCC through analyzing the molecular processes of HBV-HCC using a multidimensional approach. METHODS First, maladjusted genes shared between HBV and HCC were identified by disease-related differentially expressed genes. Second, the protein-protein interaction network based on dysfunctional genes identified a series of dysfunctional modules and significant crosstalk between modules based on the hypergeometric test. In addition, key regulators were detected by pivot analysis. Finally, targeted drugs that have regulatory effects on diseases were predicted by modular methods and drug target information. RESULTS The study found that 67 genes continued to increase in the HBV-HCC process. Moreover, 366 overlapping genes in the module network participated in multiple functional blocks. It could be presumed that these genes and their interactions play an important role in the relationship between inflammation and cancer. Correspondingly, significant crosstalk constructed a module level bridge for HBV-HCC molecular processes. On the other hand, a series of non-coding RNAs and transcription factors that have potential pivot regulatory effects on HBV and HCC were identified. Among them, some of the regulators also had persistent disorders in the process of HBV-HCC including microRNA-192, microRNA-215, and microRNA-874, and early growth response 2, FOS, and Kruppel-like factor 4. Therefore, the study concluded that these pivots are the key bridge molecules outside the module. Last but not least, a variety of drugs that may have some potential pharmacological or toxic side effects on HBV-induced HCC were predicted, but their mechanisms still need to be further explored. CONCLUSION The results suggest that the persistent inflammatory environment of HBV can be utilized as an important risk factor to induce the occurrence of HCC, which is supported by molecular evidence.
Collapse
Affiliation(s)
- Xiao-Bing Huang
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Yong-Gang He
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Huan Feng
- Division of Nursing, Second Hospital Affiliated to Third Military Medical University, Xinqiao Hospital, Chongqing 400037, China
| | - Yu-Ming Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Hong-Yan Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Feng-Xia Yang
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| |
Collapse
|
24
|
Nam SM, Maeng YS. Wound Healing and Mucin Gene Expression of Human Corneal Epithelial Cells Treated with Deproteinized Extract of Calf Blood. Curr Eye Res 2019; 44:1181-1188. [PMID: 31204524 DOI: 10.1080/02713683.2019.1633360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: The function of Solcoseryl in the corneal epithelium has not been fully examined. Here, we investigated the roles of Solcoseryl in the regulation of gene expression and corneal epithelial cell (CEC) activity.Materials and Methods: The effect of Solcoseryl on CEC activity was analyzed through cell migration, adhesion, proliferation, and wound healing assays. Analysis of gene expression was conducted via western blotting and quantitative reverse transcription polymerase chain reaction (PCR).Results: The results demonstrated that Solcoseryl increased the adhesion, migration, proliferation, and wound healing of CECs. Analysis of gene expression showed that Solcoseryl-stimulated CECs exhibited increased expression of mucin family genes, such as MUC1, -5AC, -7, and -16. Solcoseryl also increased the activities of the intracellular signaling molecules AKT, FAK, ERK, and Src in CECs. Using pharmacologic inhibitors of ERK and AKT, we showed that the expression of mucin genes by Solcoseryl is mediated by the activation of ERK and AKT signaling.Conclusions: Our findings demonstrate that Solcoseryl may contribute to the wound healing of CECs by enhancing their migration, adhesion, and proliferation. Additionally, our results suggest that Solcoseryl has a protective effect on ocular surfaces due to its induction of the expression of mucin genes in CECs. These findings suggest that Solcoseryl is a useful therapeutic target for patients with corneal wounds.
Collapse
Affiliation(s)
- Sang-Min Nam
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Improving Energy Metabolism of Deproteinized Extract of Calf Blood Through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9021-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Xu G, Xu J, Han X, Li H, Yuan G, An L, Du P. mRNA chip-based analysis on transcription factor regulatory network central nodes of protection targets of Deproteinized Extract of Calf Blood on acute liver injury in mice. Int Immunopharmacol 2018; 56:212-216. [PMID: 29414653 DOI: 10.1016/j.intimp.2018.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Our previous study found that Deproteinized Extract of Calf Blood (DECB) could protect the acute liver injury induced by carbon tetrachloride in mice, but the target-related transcription factors and their regulatory networks were not comprehensively studied. Based on the mRNA expression microarray data obtained in the previous study, the mRNA transcription factor regulatory networks were constructed by screening the transcription factors of differentially expressed genes and their corresponding target proteins, and the analysis on the functions and pathways of the regulatory network central nodes was performed. Eight genes Ltf, Tnf, Il6, Jun, Il12b, Stat3, Rel and Crem could regulate the inflammatory factors, and TNF signaling pathway and Jak-STAT signaling pathway might play an important role in the mechanism through which DECB protected the liver of mice. DECB can not only inhibit the apoptosis of hepatocytes, but also inhibit the inflammatory cytokines.
Collapse
Affiliation(s)
- Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Jinhe Xu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Xiao Han
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Hongyu Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Guangxin Yuan
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Liping An
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China.
| | - Peige Du
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, China.
| |
Collapse
|