1
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
2
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Singh W, Kushwaha P. Potassium: A Frontier in Osteoporosis. Horm Metab Res 2024; 56:329-340. [PMID: 38346690 DOI: 10.1055/a-2254-8533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Osteoporosis is a significant public health concern, particularly in aging populations, leading to fractures, decreased mobility, and reduced quality of life. While calcium and vitamin D have long been recognized as essential for bone health, emerging research suggests that potassium may play a crucial role in maintaining bone density and preventing osteoporosis. This manuscript explores the relationship between potassium and osteoporosis, delving into the mechanisms, epidemiological evidence, and potential therapeutic implications of potassium in bone health. Furthermore, the manuscript discusses the sources of dietary potassium, its impact on bone metabolism, and the future directions in research and clinical practice regarding potassium's role in osteoporosis management.
Collapse
|
4
|
Lin W, Hu S, Li K, Shi Y, Pan C, Xu Z, Li D, Wang H, Li B, Chen H. Breaking Osteoclast-Acid Vicious Cycle to Rescue Osteoporosis via an Acid Responsive Organic Framework-Based Neutralizing and Gene Editing Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307595. [PMID: 38126648 DOI: 10.1002/smll.202307595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Indexed: 12/23/2023]
Abstract
In the osteoporotic microenvironment, the acidic microenvironment generated by excessive osteoclasts not only causes irreversible bone mineral dissolution, but also promotes reactive oxygen species (ROS) production to induce osteoblast senescence and excessive receptor activator of nuclear factor kappa-B ligand (RANKL) production, which help to generate more osteoclasts. Hence, targeting the acidic microenvironment and RANKL production may break this vicious cycle to rescue osteoporosis. To achieve this, an acid-responsive and neutralizing system with high in vivo gene editing capacity is developed by loading sodium bicarbonate (NaHCO3) and RANKL-CRISPR/Cas9 (RC) plasmid in a metal-organic framework. This results showed ZIF8-NaHCO3@Cas9 (ZNC) effective neutralized acidic microenvironment and inhibited ROS production . Surprisingly, nanoparticles loaded with NaHCO3 and plasmids show higher transfection efficiency in the acidic environments as compared to the ones loaded with plasmid only. Finally, micro-CT proves complete reversal of bone volume in ovariectomized mice after ZNC injection into the bone remodeling site. Overall, the newly developed nanoparticles show strong effect in neutralizing the acidic microenvironment to achieve bone protection through promoting osteogenesis and inhibiting osteolysis in a bidirectional manner. This study provides new insights into the treatment of osteoporosis for biomedical and clinical therapies.
Collapse
Affiliation(s)
- Wenzheng Lin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Sihan Hu
- Orthopedic Institute, Department of Orthopedic Surgery, First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, P. R. China
| | - Ke Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yu Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225009, P. R. China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, P. R. China
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| |
Collapse
|
5
|
Gruber R. How to explain the beneficial effects of platelet-rich plasma. Periodontol 2000 2024. [PMID: 38600634 DOI: 10.1111/prd.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024]
Abstract
Platelet-rich plasma (PRP) is the platelet and leukocyte-containing plasmatic fraction of anticoagulated autologous blood. While evidence supporting the clinical use of PRP in dentistry is low, PRP is widely used in sports medicine, orthopedics, and dermatology. Its beneficial activity is commonly attributed to the growth factors released from platelets accumulating in PRP; however, evidence is indirect and not comprehensive. There is thus a demand to revisit PRP with respect to basic and translational science. This review is to (i) recapitulate protocols and tools to prepare PRP; (ii) to discuss the cellular and molecular composition of PRP with a focus on platelets, leukocytes, and the fibrin-rich extracellular matrix of coagulated plasma; and finally (iii) to discuss potential beneficial effects of PRP on a cellular and molecular level with an outlook on its current use in dentistry and other medical fields.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Niu Y, Yang Z, Yang Y, Wang X, Zhang P, Lv L, Wang S, Liu Y, Liu Y, Zhou Y. Alkaline shear-thinning micro-nanocomposite hydrogels initiate endogenous TGFβ signaling for in situ bone regeneration. NPJ Regen Med 2023; 8:56. [PMID: 37833374 PMCID: PMC10575889 DOI: 10.1038/s41536-023-00333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Recruiting endogenous stem cells to bone defects without stem cell transplantation and exogenous factor delivery represents a promising strategy for bone regeneration. Herein, we develop an alkaline shear-thinning micro-nanocomposite hydrogel (10-MmN), aiming to alkaline-activate endogenous TGFβ1 and achieve in situ bone regeneration. It contains polyethyleneimine (PEI)-modified gelatin, laponite nanoplatelets (LAP), a bicarbonate buffer with a pH of 10, and gelatin microspheres (MSs). PEI-modified gelatin plays a pivotal role in hydrogel fabrication. It endows the system with sufficient positive charges, and forms a shear-thinning nanocomposite matrix in the pH 10 buffer (10-mN) with negatively charged LAP via electrostatic gelation. For biological functions, the pH 10 buffer dominates alkaline activation of endogenous serum TGFβ1 to recruit rat bone marrow stem cells through the Smad pathway, followed by improved osteogenic differentiation. In addition, MSs are incorporated into 10-mN to form 10-MmN, and function as substrates to provide good attachment sites for the recruited stem cells and facilitate further their osteogenic differentiation. In a rat critical-sized calvarial defect model, 10-MmN exhibits excellent biocompatibility, biodegradability, hydrogel infusion and retention in bone defects with flexible shapes and active bleeding. Importantly, it repairs ~95% of the defect areas in 3 months by recruiting TGFβR2+ and CD90+CD146+ stem cells, and promoting cell proliferation, osteogenic differentiation and bone formation. The present study provides a biomaterial-based strategy to regulate alkalinity in bone defects for the initiation of endogenous TGFβ signaling, which can be extended to treat other diseases.
Collapse
Affiliation(s)
- Yuting Niu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Zhen Yang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yang Yang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xu Wang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Ping Zhang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Longwei Lv
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Sainan Wang
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| | - Yunsong Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| | - Yongsheng Zhou
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| |
Collapse
|
7
|
Tan X, Gerhard E, Wang Y, Tran RT, Xu H, Yan S, Rizk EB, Armstrong AD, Zhou Y, Du J, Bai X, Yang J. Development of Biodegradable Osteopromotive Citrate-Based Bone Putty. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203003. [PMID: 35717669 PMCID: PMC9463100 DOI: 10.1002/smll.202203003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 05/30/2023]
Abstract
The burden of bone fractures demands development of effective biomaterial solutions, while additional acute events such as noncompressible bleeding further motivate the search for multi-functional implants to avoid complications including osseous hemorrhage, infection, and nonunion. Bone wax has been widely used in orthopedic bleeding control due to its simplicity of use and conformation to irregular defects; however, its nondegradability results in impaired bone healing, risk of infection, and significant inflammatory responses. Herein, a class of intrinsically fluorescent, osteopromotive citrate-based polymer/hydroxyapatite (HA) composites (BPLP-Ser/HA) as a highly malleable press-fit putty is designed. BPLP-Ser/HA putty displays mechanics replicating early nonmineralized bone (initial moduli from ≈2-500 kPa), hydration induced mechanical strengthening in physiological conditions, tunable degradation rates (over 2 months), low swelling ratios (<10%), clotting and hemostatic sealing potential (resistant to blood pressure for >24 h) and significant adhesion to bone (≈350-550 kPa). Simultaneously, citrate's bioactive properties result in antimicrobial (≈100% and 55% inhibition of S. aureus and E. coli) and osteopromotive effects. Finally, BPLP-Ser/HA putty demonstrates in vivo regeneration in a critical-sized rat calvaria model equivalent to gold standard autograft. BPLP-Ser/HA putty represents a simple, off-the-shelf solution to the combined challenges of acute wound management and subsequent bone regeneration.
Collapse
Affiliation(s)
- Xinyu Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, China
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuqi Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard T. Tran
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias B. Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - April D. Armstrong
- Department of Orthopaedics and Rehabilitation, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Du
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Di Pompo G, Kusuzaki K, Ponzetti M, Leone VF, Baldini N, Avnet S. Radiodynamic Therapy with Acridine Orange Is an Effective Treatment for Bone Metastases. Biomedicines 2022; 10:biomedicines10081904. [PMID: 36009451 PMCID: PMC9405350 DOI: 10.3390/biomedicines10081904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Current multimodal treatment of bone metastases is partially effective and often associated with side effects, and novel therapeutic options are needed. Acridine orange is a photosensitizing molecule that accumulates in acidic compartments. After photo- or radiodynamic activation (AO-PDT or AO-RDT), acridine orange can induce lysosomal-mediated cell death, and we explored AO-RDT as an acid-targeted anticancer therapy for bone metastases. We used osteotropic carcinoma cells and human osteoclasts to assess the extracellular acidification and invasiveness of cancer cells, acridine orange uptake and lysosomal pH/stability, and the AO-RDT cytotoxicity in vitro. We then used a xenograft model of bone metastasis to compare AO-RDT to another antiacid therapeutic strategy (omeprazole). Carcinoma cells showed extracellular acidification activity and tumor-derived acidosis enhanced cancer invasiveness. Furthermore, cancer cells accumulated acridine orange more than osteoclasts and were more sensitive to lysosomal death. In vivo, omeprazole did not reduce osteolysis, whereas AO-RDT promoted cancer cell necrosis and inhibited tumor-induced bone resorption, without affecting osteoclasts. In conclusion, AO-RDT was selectively toxic only for carcinoma cells and effective to impair both tumor expansion in bone and tumor-associated osteolysis. We therefore suggest the use of AO-RDT, in combination with the standard antiresorptive therapies, to reduce disease burden in bone metastasis.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Katsuyuki Kusuzaki
- Department of Musculoskeletal Oncology, Takai Hospital, Tenri 632-0372, Japan
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
9
|
Yamagata AS, Freire PP, Jones Villarinho N, Teles RHG, Francisco KJM, Jaeger RG, Freitas VM. Transcriptomic Response to Acidosis Reveals Its Contribution to Bone Metastasis in Breast Cancer Cells. Cells 2022; 11:cells11030544. [PMID: 35159353 PMCID: PMC8834614 DOI: 10.3390/cells11030544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Bone is the most common site of metastasis in breast cancer. Metastasis is promoted by acidosis, which is associated with osteoporosis. To investigate how acidosis could promote bone metastasis, we compared differentially expressed genes (DEGs) in MDA-MB-231 cancer cells in acidosis, bone metastasis, and bone metastatic tumors. The DEGs were identified using Biojupies and GEO2R. The expression profiles were assessed with Morpheus. The overlapping DEGs between acidosis and bone metastasis were compared to the bulk of the DEGs in terms of the most important genes and enriched terms using CytoHubba and STRING. The expression of the genes in this overlap filtered by secreted proteins was assessed in the osteoporosis secretome. The analysis revealed that acidosis-associated transcriptomic changes were more similar to bone metastasis than bone metastatic tumors. Extracellular matrix (ECM) organization would be the main biological process shared between acidosis and bone metastasis. The secretome genes upregulated in acidosis, bone metastasis, and osteoporosis-associated mesenchymal stem cells are enriched for ECM organization and angiogenesis. Therefore, acidosis may be more important in the metastatic niche than in the primary tumor. Acidosis may contribute to bone metastasis by promoting ECM organization. Untreated osteoporosis could favor bone metastasis through the increased secretion of ECM organization proteins.
Collapse
Affiliation(s)
- Ana Sayuri Yamagata
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
- Correspondence:
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Nícolas Jones Villarinho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ramon Handerson Gomes Teles
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Kelliton José Mendonça Francisco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| |
Collapse
|
10
|
Boneski PK, Madhu V, Tomlinson RE, Shapiro IM, van de Wetering K, Risbud MV. Abcc6 Null Mice-a Model for Mineralization Disorder PXE Shows Vertebral Osteopenia Without Enhanced Intervertebral Disc Calcification With Aging. Front Cell Dev Biol 2022; 10:823249. [PMID: 35186933 PMCID: PMC8850990 DOI: 10.3389/fcell.2022.823249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain is a highly prevalent health condition intricately linked to intervertebral disc degeneration. One of the prominent features of disc degeneration that is commonly observed with aging is dystrophic calcification. ATP-binding cassette sub-family C member 6 (ABCC6), a presumed ATP efflux transporter, is a key regulator of systemic levels of the mineralization inhibitor pyrophosphate (PPi). Mutations in ABCC6 result in pseudoxanthoma elasticum (PXE), a progressive human metabolic disorder characterized by mineralization of the skin and elastic tissues. The implications of ABCC6 loss-of-function on pathological mineralization of structures in the spine, however, are unknown. Using the Abcc6 -/- mouse model of PXE, we investigated age-dependent changes in the vertebral bone and intervertebral disc. Abcc6 -/- mice exhibited diminished trabecular bone quality parameters at 7 months, which remained significantly lower than the wild-type mice at 18 months of age. Abcc6 -/- vertebrae showed increased TRAP staining along with decreased TNAP staining, suggesting an enhanced bone resorption as well as decreased bone formation. Surprisingly, however, loss of ABCC6 resulted only in a mild, aging disc phenotype without evidence of dystrophic mineralization. Finally, we tested the utility of oral K3Citrate to treat the vertebral phenotype since it is shown to regulate hydroxyapatite mechanical behavior. The treatment resulted in inhibition of the osteoclastic response and an early improvement in mechanical properties of the bone underscoring the promise of potassium citrate as a therapeutic agent. Our data suggest that although ectopic mineralization is tightly regulated in the disc, loss of ABCC6 compromises vertebral bone quality and dysregulates osteoblast-osteoclast coupling.
Collapse
Affiliation(s)
- Paige K. Boneski
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vedavathi Madhu
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryan E. Tomlinson
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irving M. Shapiro
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
12
|
Gong S, Ma J, Tian A, Lang S, Luo Z, Ma X. Effects and mechanisms of microenvironmental acidosis on osteoclast biology. Biosci Trends 2021; 16:58-72. [PMID: 34732613 DOI: 10.5582/bst.2021.01357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to continuous bone remodeling, the bone tissue is dynamic and constantly being updated. Bone remodeling is precisely regulated by the balance between osteoblast-induced bone formation and osteoclast-induced bone resorption. As a giant multinucleated cell, formation and activities of osteoclasts are regulated by macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-kappaB ligand (RANKL), and by pathological destabilization of the extracellular microenvironment. Microenvironmental acidosis, as the prime candidate, is a driving force of multiple biological activities of osteoclast precursor and osteoclasts. The mechanisms involved in these processes, especially acid-sensitive receptors/channels, are of great precision and complicated. Recently, remarkable progress has been achieved in the field of acid-sensitive mechanisms of osteoclasts. It is important to elucidate the relationship between microenvironmental acidosis and excessive osteoclasts activity, which will help in understanding the pathophysiology of diseases that are associated with excess bone resorption. This review summarizes physiological consequences and in particular, potential mechanisms of osteoclast precursor or osteoclasts in the context of acidosis microenvironments.
Collapse
Affiliation(s)
- Shuwei Gong
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianxiong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Aixian Tian
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Shuang Lang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiheng Luo
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
13
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
14
|
Di Pompo G, Errani C, Gillies R, Mercatali L, Ibrahim T, Tamanti J, Baldini N, Avnet S. Acid-Induced Inflammatory Cytokines in Osteoblasts: A Guided Path to Osteolysis in Bone Metastasis. Front Cell Dev Biol 2021; 9:678532. [PMID: 34124067 PMCID: PMC8194084 DOI: 10.3389/fcell.2021.678532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis (BM) is a dismal complication of cancer that frequently occurs in patients with advanced carcinomas and that often manifests as an osteolytic lesion. In bone, tumor cells promote an imbalance in bone remodeling via the release of growth factors that, directly or indirectly, stimulate osteoclast resorption activity. However, carcinoma cells are also characterized by an altered metabolism responsible for a decrease of extracellular pH, which, in turn, directly intensifies osteoclast bone erosion. Here, we speculated that tumor-derived acidosis causes the osteoblast–osteoclast uncoupling in BM by modulating the pro-osteoclastogenic phenotype of osteoblasts. According to our results, a low pH recruits osteoclast precursors and promotes their differentiation through the secretome of acid-stressed osteoblasts that includes pro-osteoclastogenic factors and inflammatory mediators, such as RANKL, M-CSF, TNF, IL-6, and, above the others, IL-8. The treatment with the anti-IL-6R antibody tocilizumab or with an anti-IL-8 antibody reverted this effect. Finally, in a series of BM patients, circulating levels of the osteolytic marker TRACP5b significantly correlated with IL-8. Our findings brought out that tumor-derived acidosis promotes excessive osteolysis at least in part by inducing an inflammatory phenotype in osteoblasts, and these results strengthen the use of anti-IL-6 or anti-IL-8 strategies to treat osteolysis in BM.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jacopo Tamanti
- National Tumor Assistance (ANT) Foundation, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Li Y, Cai K, Hu G, Gu Q, Li P, Xu B, Chen C. Substitute salts influencing the formation of PAHs in sodium-reduced bacon relevant to Maillard reactions. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Perut F, Graziani G, Columbaro M, Caudarella R, Baldini N, Granchi D. Citrate Supplementation Restores the Impaired Mineralisation Resulting from the Acidic Microenvironment: An In Vitro Study. Nutrients 2020; 12:E3779. [PMID: 33317151 PMCID: PMC7763163 DOI: 10.3390/nu12123779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic metabolic acidosis leads to bone-remodelling disorders based on excessive mineral matrix resorption and inhibition of bone formation, but also affects the homeostasis of citrate, which is an essential player in maintaining the acid-base balance and in driving the mineralisation process. This study aimed to investigate the impact of acidosis on the osteogenic properties of bone-forming cells and the effects of citrate supplementation in restoring the osteogenic features impaired by the acidic milieu. For this purpose, human mesenchymal stromal cells were cultured in an osteogenic medium and the extracellular matrix mineralisation was analysed at the micro- and nano-level, both in neutral and acidic conditions and after treatment with calcium citrate and potassium citrate. The acidic milieu significantly decreased the citrate release and hindered the organisation of the extracellular matrix, but the citrate supplementation increased collagen production and, particularly calcium citrate, promoted the mineralisation process. Moreover, the positive effect of citrate supplementation was observed also in the physiological microenvironment. This in vitro study proves that the mineral matrix organisation is influenced by citrate availability in the microenvironment surrounding bone-forming cells, thus providing a biological basis for using citrate-based supplements in the management of bone-remodelling disorders related to chronic low-grade acidosis.
Collapse
Affiliation(s)
- Francesca Perut
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
| | - Gabriela Graziani
- Laboratory of Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Renata Caudarella
- Maria Cecilia Hospital, GVM Care and Research, Via Corriera 1, 48033 Cotignola (RA), Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, Via Pupilli 1, University of Bologna, 40136 Bologna, Italy
| | - Donatella Granchi
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
| |
Collapse
|
17
|
Taguchi K, Hamamoto S, Okada A, Tanaka Y, Sugino T, Unno R, Kato T, Ando R, Tozawa K, Yasui T. Low bone mineral density is a potential risk factor for symptom onset and related with hypocitraturia in urolithiasis patients: a single-center retrospective cohort study. BMC Urol 2020; 20:174. [PMID: 33121459 PMCID: PMC7596945 DOI: 10.1186/s12894-020-00749-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background Patients with urolithiasis have a lower bone mineral density (BMD) than those without stones, suggesting a potential correlation between calcium stone formation and bone resorption disorders, including osteopenia and osteoporosis. Methods To investigate the influence of BMD on clinical outcomes in urolithiasis, we performed a single-center retrospective cohort study to analyze patients with urolithiasis who underwent both BMD examination and 24-h urine collection between 2006 and 2015. Data from the national cross-sectional surveillance of the Japanese Society on Urolithiasis Research in 2015 were utilized, and additional data related to urinary tract stones were obtained from medical records. The primary outcome was the development of stone-related symptoms and recurrences during follow-up. A total of 370 patients were included in this 10-year study period. Results Half of the patients had recurrent stones, and the two-thirds were symptomatic stone formers. While only 9% of patients had hypercalciuria, 27% and 55% had hyperoxaluria and hypocitraturia, respectively. There was a positive correlation between T-scores and urinary citrate excretion. Both univariate and multivariate analyses demonstrated that female sex was associated with recurrences (odds ratio = 0.44, p = 0.007), whereas a T-score < − 2.5 and hyperoxaluria were associated with symptoms (odds ratio = 2.59, p = 0.037; odds ratio = 0.45, p = 0.01; respectively). Conclusion These results revealed that low T-scores might cause symptoms in patients with urolithiasis, suggesting the importance of BMD examination for high-risk Japanese patients with urolithiasis having hypocitraturia.
Collapse
Affiliation(s)
- Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan.
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Yutaro Tanaka
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Teruaki Sugino
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Taiki Kato
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Ryosuke Ando
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Keiichi Tozawa
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 4678601, Japan
| |
Collapse
|
18
|
Gelli R, Di Pompo G, Graziani G, Avnet S, Baldini N, Baglioni P, Ridi F. Unravelling the Effect of Citrate on the Features and Biocompatibility of Magnesium Phosphate-Based Bone Cements. ACS Biomater Sci Eng 2020; 6:5538-5548. [PMID: 33320576 PMCID: PMC8011797 DOI: 10.1021/acsbiomaterials.0c00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
the framework of new materials for orthopedic applications,
Magnesium Phosphate-based Cements (MPCs) are currently the focus of
active research in biomedicine, given their promising features; in
this field, the loading of MPCs with active molecules to be released
in the proximity of newly forming bone could represent an innovative
approach to enhance the in vivo performances of the biomaterial. In
this work, we describe the preparation and characterization of MPCs
containing citrate, an ion naturally present in bone which presents
beneficial effects when released in the proximity of newly forming
bone tissue. The cements were characterized in terms of handling properties,
setting time, mechanical properties, crystallinity, and microstructure,
so as to unravel the effect of citrate concentration on the features
of the material. Upon incubation in aqueous media, we demonstrated
that citrate could be successfully released from the cements, while
contributing to the alkalinization of the surroundings. The cytotoxicity
of the materials toward human fibroblasts was also tested, revealing
the importance of a fine modulation of released citrate to guarantee
the biocompatibility of the material.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Gemma Di Pompo
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gabriela Graziani
- Laboratory of Nanobiotechnology (NaBi), IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Sofia Avnet
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Nicola Baldini
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Tiedemann K, Hussein O, Komarova SV. Role of Altered Metabolic Microenvironment in Osteolytic Metastasis. Front Cell Dev Biol 2020; 8:435. [PMID: 32582711 PMCID: PMC7290111 DOI: 10.3389/fcell.2020.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Metastatic bone disease is generally incurable and leads to pathological fractures, pain, hypercalcemia, spinal cord compression and decreased mobility. The skeleton is the major site of bone metastases from solid cancers, including breast and prostate carcinoma. Bone metastasis is facilitated by activation of bone-resorbing osteoclasts, terminally differentiated multinucleated cells formed by fusion from monocytic precursors. Cancer cells are known to produce specific factors that stimulate osteoclast differentiation and function. Of interest, cancer cells are also known to alter their own bioenergetics increasing the use of glycolysis for their survival and function. Such change in energy utilization by cancer cells would result in altered levels of cell-permeable metabolites, including glucose, lactate, and pyruvate. Osteoclast resorption is energy-expensive, and we have previously demonstrated that during differentiation osteoclasts actively adapt to their bioenergetics microenvironment. We hypothesize that altered bioenergetics state of cancer cells will also modify the bioenergetics substrate availability for the tissue-resident bone cells, potentially creating a favorable milieu for pathological osteolysis. The goals of this review are to analyze how metastasizing cancer cells change the availability of energy substrates in bone microenvironment; and to assess how the altered bioenergetics may affect osteoclast differentiation and activity.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospitals for Children - Canada, Montréal, QC, Canada
| | - Osama Hussein
- Department of Surgery, Mansoura University Cancer Center, Mansoura, Egypt
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospitals for Children - Canada, Montréal, QC, Canada
| |
Collapse
|
20
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
21
|
Granchi D, Baldini N, Ulivieri FM, Caudarella R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019; 11:E2576. [PMID: 31731473 PMCID: PMC6893553 DOI: 10.3390/nu11112576] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Citrate is an intermediate in the "Tricarboxylic Acid Cycle" and is used by all aerobic organisms to produce usable chemical energy. It is a derivative of citric acid, a weak organic acid which can be introduced with diet since it naturally exists in a variety of fruits and vegetables, and can be consumed as a dietary supplement. The close association between this compound and bone was pointed out for the first time by Dickens in 1941, who showed that approximately 90% of the citrate bulk of the human body resides in mineralised tissues. Since then, the number of published articles has increased exponentially, and considerable progress in understanding how citrate is involved in bone metabolism has been made. This review summarises current knowledge regarding the role of citrate in the pathophysiology and medical management of bone disorders.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Via Pupilli 1, University of Bologna, 40136 Bologna, Italy
| | - Fabio Massimo Ulivieri
- Nuclear Medicine, Bone Metabolic Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F.Sforza 35, 20122 Milano, Italy;
| | - Renata Caudarella
- Maria Cecilia Hospital, GVM Care and Research, Via Corriera 1, 48033 Cotignola (RA), Italy;
| |
Collapse
|
22
|
Potassium Citrate Supplementation Decreases the Biochemical Markers of Bone Loss in a Group of Osteopenic Women: The Results of a Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2018; 10:nu10091293. [PMID: 30213095 PMCID: PMC6164684 DOI: 10.3390/nu10091293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
The relationship involving acid-base imbalance, mineral metabolism and bone health status has previously been reported but the efficacy of the alkalizing supplementation in targeting acid overload and preventing bone loss has not yet been fully elucidated. In this randomized, double-blind, placebo-controlled study, the hypothesis that potassium citrate (K citrate) modifies bone turnover in women with postmenopausal osteopenia was tested. Three hundred and ten women were screened; 40 women met the inclusion criteria and were randomly assigned to the treatment or the placebo group. They were treated with K citrate (30 mEq day−1) or a placebo in addition to calcium carbonate (500 mg day−1) and vitamin D (400 IU day−1). At baseline and time points of 3 and 6 months, serum indicators of renal function, electrolytes, calciotropic hormones, serum bone turnover markers (BTMs) (tartrate-resistant acid phosphatase 5b (TRACP5b), carboxy-terminal telopeptide of type I collagen (CTX), bone alkaline phosphatase (BAP), procollagen type 1 N terminal propeptide (PINP)), and urine pH, electrolytes, and citrate were measured. The follow-up was completed by 17/20 patients in the “K citrate” group and 18/20 patients in the “placebo” group. At baseline, 90% of the patients exhibited low potassium excretion in 24 h urine samples, and 85% of cases had at least one urine parameter associated with low-grade acidosis (low pH, low citrate excretion). After treatment, CTX and BAP decreased significantly in both groups, but subjects with evidence of low-grade acidosis gained significant benefits from the treatment compared to the placebo. In patients with low 24h-citrate excretion at baseline, a 30% mean decrease in BAP and CTX was observed at 6 months. A significant reduction was also evident when low citrate (BAP: −25%; CTX: −35%) and a low pH (BAP: −25%; CTX: −30%) were found in fasting-morning urine. In conclusion, our results suggested that K citrate supplementation improved the beneficial effects of calcium and vitamin D in osteopenic women with a documented potassium and citrate deficit, and a metabolic profile consistent with low-grade acidosis.
Collapse
|