1
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Pariente A, Pérez-Sala Á, Ochoa R, Bobadilla M, Villanueva-Martínez Á, Peláez R, Larráyoz IM. Identification of 7-Ketocholesterol-Modulated Pathways and Sterculic Acid Protective Effect in Retinal Pigmented Epithelium Cells by Using Genome-Wide Transcriptomic Analysis. Int J Mol Sci 2023; 24:ijms24087459. [PMID: 37108627 PMCID: PMC10144535 DOI: 10.3390/ijms24087459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. AMD is characterized by the formation of lipidic deposits between the retinal pigment epithelium (RPE) and the choroid called drusen. 7-Ketocholesterol (7KCh), an oxidized-cholesterol derivative, is closely related to AMD as it is one of the main molecules accumulated in drusen. 7KCh induces inflammatory and cytotoxic responses in different cell types, and a better knowledge of the signaling pathways involved in its response would provide a new perspective on the molecular mechanisms that lead to the development of AMD. Furthermore, currently used therapies for AMD are not efficient enough. Sterculic acid (SA) attenuates the 7KCh response in RPE cells and is presented as an alternative to improve these therapies. By using genome-wide transcriptomic analysis in monkey RPE cells, we have provided new insight into 7KCh-induced signaling in RPE cells, as well as the protective capacity of SA. 7KCh modulates the expression of several genes associated with lipid metabolism, endoplasmic reticulum stress, inflammation and cell death and induces a complex response in RPE cells. The addition of SA successfully attenuates the deleterious effect of 7KCh and highlights its potential for the treatment of AMD.
Collapse
Affiliation(s)
- Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Rodrigo Ochoa
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
- Proteomics Research Core Facility, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Miriam Bobadilla
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Ángela Villanueva-Martínez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
| | - Ignacio M Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006 Logroño, Spain
- Biomarkers, Artificial Intelligence and Signaling (BIAS), Department of Nursing, University of La Rioja, Duquesa de la Victoria 88, 26006 Logroño, Spain
| |
Collapse
|
3
|
Jeong S, Shin EC, Lee JH, Ha JH. Particulate Matter Elevates Ocular Inflammation and Endoplasmic Reticulum Stress in Human Retinal Pigmented Epithelium Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4766. [PMID: 36981676 PMCID: PMC10049273 DOI: 10.3390/ijerph20064766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Because of their exposure to air, eyes can come into contact with air pollutants such as particulate matter (PM), which may cause severe ocular pathologies. Prolonged ocular PM exposure may increase inflammation and endoplasmic reticulum stress in the retina. Herein, we investigated whether PM exposure induces ocular inflammation and endoplasmic reticulum (ER) stress-related cellular responses in human retinal epithelium-19 (ARPE-19) cells. To understand how PM promotes ocular inflammation, we monitored the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NFκB) axis and the expression of key inflammatory mRNAs. We also measured the upregulation of signature components for the ER-related unfolded protein response (UPR) pathways, as well as intracellular calcium ([Ca2+]i) levels, as readouts for ER stress induction following PM exposure. Ocular PM exposure significantly elevated the expression of multiple cytokine mRNAs and increased phosphorylation levels of NFκB-MAPK axis in a PM dose-dependent manner. Moreover, incubation with PM significantly increased [Ca2+]i levels and the expression of UPR-related proteins, which indicated ER stress resulting from cell hypoxia, and upregulation of hypoxic adaptation mechanisms such as the ER-associated UPR pathways. Our study demonstrated that ocular PM exposure increased inflammation in ARPE-19 cells, by activating the MAPK/NFκB axis and cytokine mRNA expression, while also inducing ER stress and stress adaptation responses. These findings may provide helpful insight into clinical and non-clinical research examining the role of PM exposure in ocular pathophysiology and delineating its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
4
|
Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023; 19:388-400. [PMID: 35468037 PMCID: PMC9851256 DOI: 10.1080/15548627.2022.2069437] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with limited understanding of its pathogenesis and a lack of effective treatment. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to geographic atrophy and/or choroidal neovascularization and fibrosis. The role of macroautophagy/autophagy in AMD pathology is steadily emerging. This review describes selective and secretory autophagy and their role in drusen biogenesis, senescence-associated secretory phenotype, inflammation and epithelial-mesenchymal transition in the pathogenesis of AMD.Abbreviations: Aβ: amyloid-beta; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ATF6: activating transcription factor 6; ATG: autophagy related; BACE1: beta-secretase 1; BHLHE40: basic helix-loop-helix family member e40; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; C: complement; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CFB: complement factor B; DELEC1/Dec1; deleted in esophageal cancer 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; IL: interleukin; KEAP1: kelch like ECH associated protein 1; LAP: LC3-associated phagocytosis; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NFE2L2: NFE2 like bZIP transcription factor 2; NLRP3; NLR family pyrin domain containing 3; NFKB/NFκB: nuclear factor kappa B; OPTN: optineurin; PARL: presenilin associated rhomboid like; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PINK1: PTEN induced kinase 1; POS: photoreceptor outer segment; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; PYCARD/ASC: PYD and CARD domain containing; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SA: secretory autophagy; SASP: senescence-associated secretory phenotype; SEC22B: SEC22 homolog B, vesicle trafficking protein; SNAP: synaptosome associated protein; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX: syntaxin; TGFB2: transforming growth factor beta 2; TRIM16: tripartite motif containing 16; TWIST: twist family bHLH transcription factor; Ub: ubiquitin; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; V-ATPase: vacuolar-type H+-translocating ATPase; VIM: vimentin.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Paloma Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Michael Boulton
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, AL, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Debasish Sinha
- University of Pittsburgh School of Medicine, Departments of Ophthalmology, Cell Biology, and Developmental Biology, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Askari S, Azizi F, Javadpour P, Karimi N, Ghasemi R. Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sahar Askari
- Neuroscience Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Karimi
- Eye and Skull Base Research Centers, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran5Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sun X, Chen C, Liu H, Tang S. High glucose induces HSP47 expression and promotes the secretion of inflammatory factors through the IRE1α/XBP1/HIF-1α pathway in retinal Müller cells. Exp Ther Med 2021; 22:1411. [PMID: 34676004 DOI: 10.3892/etm.2021.10847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy, a common complication of diabetes, is the leading cause of blindness globally. Müller cells are key players in diabetes-associated retinal inflammation and dysfunction. However, the pathological changes of Müller cells in response to high glucose (HG) and the underlying mechanism remain unclear. The aim of the present study was to investigate the key role of heat shock protein 47 (HSP47) in HG-induced unfolded protein and inflammatory responses. Primary mouse Müller cells were starved in serum-free DMEM overnight and then treated with HG (30 mM) for 0, 6, 12 or 24 h. It was observed that HG (30 mM) significantly induced the protein expression of HSP47, inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α) and spliced X-box-binding protein 1 (XBP1s) in primary mouse Müller cells compared with the untreated group. In addition, the immunoprecipitation results revealed that HSP47 directly interacted with IRE1α, and this interaction was significantly enhanced by HG exposure for 12 or 24 h compared with the untreated group. Furthermore, small interfering RNA-mediated silencing of HSP47 significantly suppressed HG-induced activation of the IRE1α/XBP1s/hypoxia inducible factor-1 subunit α (HIF-1α) pathway and upregulation of the mRNA expression levels of the inflammatory cytokines vascular endothelial growth factor, platelet-derived growth factor subunit B, inducible nitric oxide synthase and angiopoietin-2 in Müller cells. Furthermore, overexpression of IRE1α or HIF-1α partially attenuated HSP47-siRNA-mediated inhibition of inflammatory cytokine expression in Müller cells. Collectively, these results indicated that HG may induce HSP47 expression and promote the inflammatory response through enhancing the interaction between HSP47 and IRE1α, and activating the IRE1α/XBP1s/HIF-1α pathway in retinal Müller cells.
Collapse
Affiliation(s)
- Xincheng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Ophthalmology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Chen Chen
- Department of Ophthalmology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
7
|
Bilbao-Malavé V, González-Zamora J, de la Puente M, Recalde S, Fernandez-Robredo P, Hernandez M, Layana AG, Saenz de Viteri M. Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Age Related Macular Degeneration, Role in Pathophysiology, and Possible New Therapeutic Strategies. Antioxidants (Basel) 2021; 10:1170. [PMID: 34439418 PMCID: PMC8388889 DOI: 10.3390/antiox10081170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Age related macular degeneration (AMD) is the main cause of legal blindness in developed countries. It is a multifactorial disease in which a combination of genetic and environmental factors contributes to increased risk of developing this vision-incapacitating condition. Oxidative stress plays a central role in the pathophysiology of AMD and recent publications have highlighted the importance of mitochondrial dysfunction and endoplasmic reticulum stress in this disease. Although treatment with vascular endothelium growth factor inhibitors have decreased the risk of blindness in patients with the exudative form of AMD, the search for new therapeutic options continues to prevent the loss of photoreceptors and retinal pigment epithelium cells, characteristic of late stage AMD. In this review, we explain how mitochondrial dysfunction and endoplasmic reticulum stress participate in AMD pathogenesis. We also discuss a role of several antioxidants (bile acids, resveratrol, melatonin, humanin, and coenzyme Q10) in amelioration of AMD pathology.
Collapse
Affiliation(s)
- Valentina Bilbao-Malavé
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Jorge González-Zamora
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Miriam de la Puente
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfredo Garcia Layana
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Saenz de Viteri
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Ma RH, Ni ZJ, Thakur K, Zhang F, Zhang YY, Zhang JG, Wei ZJ. Natural Compounds Play Therapeutic Roles in Various Human Pathologies via Regulating Endoplasmic Reticulum Pathway. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Hernández-Rodríguez EW, Escorcia AM, van der Kamp MW, Montero-Alejo AL, Caballero J. Multi-scale simulation reveals that an amino acid substitution increases photosensitizing reaction inputs in Rhodopsins. J Comput Chem 2020; 41:2278-2295. [PMID: 32757375 DOI: 10.1002/jcc.26392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 11/11/2022]
Abstract
Evaluating the availability of molecular oxygen (O2 ) and energy of excited states in the retinal binding site of rhodopsin is a crucial challenging first step to understand photosensitizing reactions in wild-type (WT) and mutant rhodopsins by absorbing visible light. In the present work, energies of the ground and excited states related to 11-cis-retinal and the O2 accessibility to the β-ionone ring are evaluated inside WT and human M207R mutant rhodopsins. Putative O2 pathways within rhodopsins are identified by using molecular dynamics simulations, Voronoi-diagram analysis, and implicit ligand sampling while retinal energetic properties are investigated through density functional theory, and quantum mechanical/molecular mechanical methods. Here, the predictions reveal that an amino acid substitution can lead to enough energy and O2 accessibility in the core hosting retinal of mutant rhodopsins to favor the photosensitized singlet oxygen generation, which can be useful in understanding retinal degeneration mechanisms and in designing blue-lighting-absorbing proteic photosensitizers.
Collapse
Affiliation(s)
- Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Andrés M Escorcia
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | | | - Ana L Montero-Alejo
- Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente (FCNMM), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Julio Caballero
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
10
|
Song JY, Fan B, Che L, Pan YR, Zhang SM, Wang Y, Bunik V, Li GY. Suppressing endoplasmic reticulum stress-related autophagy attenuates retinal light injury. Aging (Albany NY) 2020; 12:16579-16596. [PMID: 32858529 PMCID: PMC7485697 DOI: 10.18632/aging.103846] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
Excessive light exposure is a principal environmental factor, which can cause damage to photoreceptors and retinal pigment epithelium (RPE) cells and may accelerate the progression of age-related macular degeneration (AMD). In this study, oxidative stress, endoplasmic reticulum (ER) stress and autophagy caused by light exposure were evaluated in vitro and in vivo. Light exposure caused severe photo-oxidative stress and ER stress in photoreceptors (661W cells) and RPE cells (ARPE-19 cells). Suppressing either oxidative stress or ER stress was protective against light damage in 661W and ARPE-19 cells and N-acetyl-L-cysteine treatment markedly inhibited the activation of ER stress caused by light exposure. Moreover, suppressing autophagy with 3-methyladenine significantly attenuated light-induced cell death. Additionally, inhibiting ER stress either by knocking down PERK signals or with GSK2606414 treatment remarkably suppressed prolonged autophagy and protected the cells against light injury. In vivo experiments verified neuroprotection via inhibiting ER stress-related autophagy in light-damaged retinas of mice. In conclusion, the above results suggest that light-induced photo-oxidative stress may trigger subsequent activation of ER stress and prolonged autophagy in photoreceptors and RPE cells. Suppressing ER stress may abrogate over-activated autophagy and protect the retina against light injury.
Collapse
Affiliation(s)
- Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Yi-Ran Pan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Si-Ming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Hemooncolog, Second Hospital of Jilin University, Changchun, China
| | - Victoria Bunik
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Abstract
Cartilage comprises a single cell type, the chondrocyte, embedded in a highly complex extracellular matrix. Disruption to the cartilage growth plate leads to reduced bone growth and results in a clinically diverse group of conditions known as genetic skeletal diseases (GSDs). Similarly, long-term degradation of articular cartilage can lead to osteoarthritis (OA), a disease characterised by joint pain and stiffness. As professionally secreting cells, chondrocytes are particularly susceptible to endoplasmic reticulum (ER) stress and this has been identified as a core disease mechanism in a group of clinically and pathologically related GSDs. If unresolved, ER stress can lead to chondrocyte cell death. Recent interest has focused on ER stress as a druggable target for GSDs and this has led to the first clinical trial for a GSD by repurposing an antiepileptic drug. Interestingly, ER stress markers have also been associated with OA in multiple cell and animal models and there is increasing interest in it as a possible therapeutic target for treatment. In summary, chondrocyte ER stress has been identified as a core disease mechanism in GSDs and as a contributory factor in OA. Thus, chondrocyte ER stress is a unifying factor for both common and rare cartilage-related diseases and holds promise as a novel therapeutic target.
Collapse
Affiliation(s)
- Michael D Briggs
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ella P Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Helen F Dietmar
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
12
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
13
|
Paraoan L, Sharif U, Carlsson E, Supharattanasitthi W, Mahmud NM, Kamalden TA, Hiscott P, Jackson M, Grierson I. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration. Prog Retin Eye Res 2020; 79:100859. [PMID: 32278708 DOI: 10.1016/j.preteyeres.2020.100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.
Collapse
Affiliation(s)
- Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Umar Sharif
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Emil Carlsson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Nur Musfirah Mahmud
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Tengku Ain Kamalden
- Eye Research Centre, Department of Ophthalmology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Hiscott
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Jackson
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ian Grierson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Afşar E, Kırımlıoglu E, Çeker T, Yılmaz Ç, Demir N, Aslan M. Effect of ER stress on sphingolipid levels and apoptotic pathways in retinal pigment epithelial cells. Redox Biol 2020; 30:101430. [PMID: 31978676 PMCID: PMC6976939 DOI: 10.1016/j.redox.2020.101430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Background We aimed to determine sphingolipid levels and examine apoptotic pathways in human retinal pigment epithelial cells (ARPE-19) undergoing endoplasmic reticulum (ER) stress. Methods Cells were treated with tunicamycin (TM) to induce ER stress and tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, was administered to decrease cytotoxicity. Cell viability was measured by MTT assay. Levels of C16–C24 sphingomyelins (SM) and C16–C24 ceramides (CERs) were determined by LC-MS/MS. Glucose-regulated protein 78-kd (GRP78) and nuclear factor kappa-b subunit 1 (NFκB1) gene expressions were evaluated by quantitative PCR analysis, while GRP 78, NF-κB p65, cleaved caspase-3 and caspase-12 protein levels were assesed by immunofluorescence. Ceramide-1-phosphate (C1P) levels were determined by immunoassay, while caspase −3 and −12 activity in cell lysates were measured via a fluorometric method. Results Induction of ER stress in TM treated groups were confirmed by significantly increased mRNA and protein levels of GRP78. TM significantly decreased cell viability compared to controls. Treatment with TUDCA along with TM significantly increased cell viability compared to the TM group. A significant increase was observed in C22–C24 CERs, C1P, caspase-3, caspase-12, NFκB1 mRNA and NF-κB p65 protein levels in cells treated with TM compared to controls. Administration of TUDCA lead to a partial decrease in GRP78 expression, NFκB1 mRNA, NF-κB p65 protein, C22–C24 CERs and C1P levels along with a decrease in caspase-3 and -12 activity. Conclusions The results of this study reveal the presence of increased long chain CERs, C1P and apoptotic markers in retinal cells undergoing ER stress.
Collapse
Affiliation(s)
- Ebru Afşar
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Esma Kırımlıoglu
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Necdet Demir
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
15
|
Abo El-khair SM, Ghoneim FM, Shabaan DA, Elsamanoudy AZ. Molecular and ultrastructure study of endoplasmic reticulum stress in hepatic steatosis: role of hepatocyte nuclear factor 4α and inflammatory mediators. Histochem Cell Biol 2019; 153:49-62. [PMID: 31637472 DOI: 10.1007/s00418-019-01823-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
|
16
|
George AK, Homme RP, Majumder A, Laha A, Metreveli N, Sandhu HS, Tyagi SC, Singh M. Hydrogen sulfide intervention in cystathionine-β-synthase mutant mouse helps restore ocular homeostasis. Int J Ophthalmol 2019; 12:754-764. [PMID: 31131233 DOI: 10.18240/ijo.2019.05.09] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/24/2019] [Indexed: 02/03/2023] Open
Abstract
AIM To investigate the applications of hydrogen sulfide (H2S) in eye-specific ailments in mice. METHODS Heterozygous cystathionine-β-synthase (CBS+/-) and wild-type C57BL/6J (WT) mice fed with or without high methionine diet (HMD) were administered either phosphate buffered saline (PBS) or the slow-release H2S donor: GYY4137. Several analyses were performed to study GYY4137 effects by examining retinal lysates for key protein expressions along with plasma glutamate and glutathione estimations. Intraocular pressure (IOP) was monitored during GYY4137 treatment; barium sulfate and bovine serum albumin conjugated fluorescein isothiocyanate (BSA-FITC) angiographies were performed for examining vasculature and its permeability post-treatment. Vision-guided behavior was also tested employing novel object recognition test (NORT) and light-dark box test (LDBT) recordings. RESULTS CBS deficiency (CBS+/-) coupled with HMD led disruption of methionine/homocysteine (Hcy) metabolism leading to hyperhomocysteinemia (HHcy) in CBS+/- mice as reflected by increased Hcy, and s-adenosylhomocysteine hydrolase (SAHH) levels. Unlike CBS, cystathionine-γ lyase (CSE), methylenetetrahydrofolate reductase (MTHFR) levels which were reduced but compensated by GYY4137 intervention. Heightened oxidative and endoplasmic reticulum (ER) stress responses were mitigated by GYY4137 effects along with enhanced glutathione (GSH) levels. Increased glutamate levels in CBS+/- strain were prominent than WT mice and these mice also exhibited higher IOP that was lowered by GYY4137 treatment. CBS deficiency also resulted in vision-guided behavioral impairment as revealed by NORT and LDBT findings. Interestingly, GYY4137 was able to improve CBS+/- mice behavior together with lowering their glutamate levels. Blood-retinal barrier (BRB) appeared compromised in CBS+/- with vessels' leakage that was mitigated in GYY4137 treated group. This corroborated the results for occludin (an integral plasma membrane protein of the cellular tight junctions) stabilization. CONCLUSION Findings reveal that HHcy-induced glutamate excitotoxicity, oxidative damage, ER-stress and vascular permeability alone or together can compromise ocular health and that GYY4137 could serve as a potential therapeutic agent for treating HHcy induced ocular disorders.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Avisek Majumder
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Naira Metreveli
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Harpal S Sandhu
- Department of Ophthalmology and Visual Sciences; Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|