1
|
Wu TJ, Wang CH, Lai YH, Kuo CH, Lin YL, Hsu BG. Serum Endocan Is a Risk Factor for Aortic Stiffness in Patients Undergoing Maintenance Hemodialysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:984. [PMID: 38929601 PMCID: PMC11205908 DOI: 10.3390/medicina60060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Endocan, secreted from the activated endothelium, is a key player in inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells, and angiogenesis. We aimed to investigate the link between endocan and aortic stiffness in maintenance hemodialysis (HD) patients. Materials and Methods: After recruiting HD patients from a medical center, their baseline characteristics, blood sample, and anthropometry were assessed and recorded. The serum endocan level was determined using an enzyme immunoassay kit, and carotid-femoral pulse wave velocity (cfPWV) measurement was used to evaluate aortic stiffness. Results: A total of 122 HD patients were enrolled. Aortic stiffness was diagnosed in 53 patients (43.4%), who were found to be older (p = 0.007) and have a higher prevalence of diabetes (p < 0.001) and hypertension (p = 0.030), higher systolic blood pressure (p = 0.011), and higher endocan levels (p < 0.001), when compared with their counterparts. On the multivariate logistic regression model, the development of aortic stiffness in patients on chronic HD was found to be associated with endocan [odds ratio (OR): 1.566, 95% confidence interval (CI): 1.224-2.002, p < 0.001], age (OR: 1.040, 95% CI: 1.001-1.080, p = 0.045), and diabetes (OR: 4.067, 95% CI: 1.532-10.798, p = 0.005), after proper adjustment for confounders (adopting diabetes, hypertension, age, systolic blood pressure, and endocan). The area under the receiver operating characteristic curve was 0.713 (95% CI: 0.620-0.806, p < 0.001) for predicting aortic stiffness by the serum endocan level, at an optimal cutoff value of 2.68 ng/mL (64.15% sensitivity, 69.57% specificity). Upon multivariate linear regression analysis, logarithmically transformed endocan was proven as an independent predictor of cfPWV (β = 0.405, adjusted R2 change = 0.152; p < 0.001). Conclusions: The serum endocan level positively correlated with cfPWV and was an independent predictor of aortic stiffness in chronic HD patients.
Collapse
Affiliation(s)
- Tsung-Jui Wu
- Division of Nephrology, Department of Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chih-Hsien Wang
- Divisions of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (C.-H.W.); (Y.-H.L.); (C.-H.K.); (Y.-L.L.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Hsien Lai
- Divisions of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (C.-H.W.); (Y.-H.L.); (C.-H.K.); (Y.-L.L.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chiu-Huang Kuo
- Divisions of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (C.-H.W.); (Y.-H.L.); (C.-H.K.); (Y.-L.L.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Li Lin
- Divisions of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (C.-H.W.); (Y.-H.L.); (C.-H.K.); (Y.-L.L.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Bang-Gee Hsu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Divisions of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (C.-H.W.); (Y.-H.L.); (C.-H.K.); (Y.-L.L.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Muhammad IF, Bao X, Nilsson PM, Zaigham S. Triglyceride-glucose (TyG) index is a predictor of arterial stiffness, incidence of diabetes, cardiovascular disease, and all-cause and cardiovascular mortality: A longitudinal two-cohort analysis. Front Cardiovasc Med 2023; 9:1035105. [PMID: 36684574 PMCID: PMC9846351 DOI: 10.3389/fcvm.2022.1035105] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Background Triglyceride-glucose (TyG) index is a useful low-cost marker of insulin resistance. We aimed to evaluate the association between TyG index and arterial stiffness, incidence of diabetes, adverse cardiovascular outcomes, and all-cause and cardiovascular mortality in two large prospective Swedish cohorts, the Malmö Diet and Cancer Study-Cardiovascular Cohort (MDCS-CV) and the Malmö Preventive Project (MPP). Methods Association between baseline TyG index and arterial stiffness, measured by carotid femoral pulse wave velocity (c-f PWV), was assessed using linear regression and general linear models, adjusting for covariates. Cox proportional hazard regression was used to assess the association between TyG index and incidence of diabetes, coronary events (CE), stroke, atrial fibrillation (AF), heart failure, and all-cause and cardiovascular mortality. Results After multivariable adjustment, baseline TyG index was significantly associated with increased arterial stiffness (β for c-f PWV = 0.61, p = 0.018). Participants in the highest quartile of TyG index vs. lowest quartile had an increased incidence of diabetes (HR: 3.30, 95% CI: 2.47-4.41), CE (HR: 1.53, 95% CI: 1.41-1.68), stroke (HR: 1.30, 95% CI: 1.18-1.44), all-cause mortality (HR: 1.22, 95% CI: 1.16-1.28), and cardiovascular mortality (HR: 1.37, 95% CI: 1.26-1.49) after adjustment for covariates. Per unit increase in TyG index was associated with increased heart failure risk. No significant association was observed for incident AF. Conclusion Elevated TyG index is positively associated with increased arterial stiffness and increased incidence of diabetes, CE, stroke, and all-cause and cardiovascular mortality. The results suggest that TyG index can potentially be useful in the identification of those at increased long-term risk of adverse health outcomes.
Collapse
Affiliation(s)
- Iram Faqir Muhammad
- Department of Clinical Sciences, Lund University, Malmö, Sweden,*Correspondence: Iram Faqir Muhammad,
| | - Xue Bao
- Department of Clinical Sciences, Lund University, Malmö, Sweden,Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Suneela Zaigham
- Department of Clinical Sciences, Lund University, Malmö, Sweden,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Jin S, Reesink KD, Kroon AA, de Galan B, van der Kallen CJH, Wesselius A, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Complement factors D and C3 cross-sectionally associate with arterial stiffness, but not independently of metabolic risk factors: The Maastricht Study. J Hypertens 2022; 40:2161-2170. [PMID: 35881455 DOI: 10.1097/hjh.0000000000003237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Arterial stiffness predicts cardiovascular outcomes. The complement system, particularly the alternative complement pathway, has been implicated in cardiovascular diseases. We herein investigated the associations of factor D, the rate-limiting protease of the alternative pathway, and C3, the central complement component, with arterial stiffness. METHODS In 3019 population-based participants (51.9% men, 60.1 ± 8.2 years, 27.7% type 2 diabetes [T2D], oversampled]), we measured carotid-femoral pulse wave velocity (cfPWV), carotid distensibility coefficient (DC) and carotid Young's elastic modulus (YEM), and plasma concentrations of factors D and C3. We conducted multiple linear regression to investigate the association of factors D and C3 (main independent variables, standardized) with cfPWV (primary outcome) and DC and YEM (secondary outcomes), adjusted for potential confounders. RESULTS Per SD higher factors D and C3, cfPWV was 0.41 m/s [95% confidence interval: 0.34; 0.49] and 0.33 m/s [0.25; 0.41] greater, respectively. These associations were substantially attenuated when adjusted for age, sex, education, mean arterial pressure, and heart rate (0.08 m/s [0.02; 0.15] and 0.11 m/s [0.05; 0.18], respectively), and were not significant when additionally adjusted for T2D, waist circumference and additional cardiovascular risk factors (0.06 m/s [-0.01; 0.13] and 0.01 m/s [-0.06; 0.09], respectively). Results were comparable for carotid YEM and DC. In persons with T2D, but not in those without, the association between factors D and cfPWV was significant in the fully adjusted model (0.14 m/s, [0.01; 0.27], P = 0.038, Pinteraction < 0.05). CONCLUSION The strong association of plasma factors D and C3 with arterial stiffness in this population-based cohort was not independent of T2D and other metabolic risk factors. Our data suggest that a possible causal pathway starting from alternative complement activation may via hypertension and T2D contribute to greater arterial stiffness.
Collapse
Affiliation(s)
- Shunxin Jin
- CARIM School for Cardiovascular Diseases
- Department of Internal Medicine
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases
- Department of Biomedical Technology
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases
- Department of Internal Medicine
| | | | | | - Anke Wesselius
- Department of Genetics
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
4
|
Pini L, Giordani J, Ciarfaglia M, Pini A, Arici M, Tantucci C. Alpha1-antitrypsin deficiency and cardiovascular disease: questions and issues of a debated relation. J Cardiovasc Med (Hagerstown) 2022; 23:637-645. [PMID: 36099070 DOI: 10.2459/jcm.0000000000001369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alpha1-antitrypsin (AAT) is one of the major inhibitors involved in protease/antiprotease homeostasis, and it is mainly produced by hepatocytes and pulmonary epithelial cells. Its deficiency, called alpha1-antitrypsin deficit (AATD), leads to severe hepatic and respiratory issues. Also, AAT is released into the bloodstream providing systemic anti-inflammatory effects. Apart from acting as an acute-phase anti-inflammatory protein, it can be a biomarker for monitoring disease evolution. A reduced or defective production leads to a loss of anti-inflammatory function, protease-antiprotease imbalance and cellular engorgement due to polymers deposition, with system-wide repercussions. This review aims to evaluate AATD condition in the major vessels of the head and neck, thoracic and abdominal districts. Also, a dedicated focus on autoimmune vascular diseases will be provided. A critical revision of the main literature findings starting from the 1980s until now has been performed. Studies conducted over the years have provided several contradictory pieces of evidence. Most authors acknowledge the protective and anti-inflammatory AAT role on the vascular endothelium. However, correlations between AATD and major arteries, cerebral and cardiovascular conditions, and autoimmune diseases remain unclear. Most studies recognize the role of AATD in vascular diseases but only as a cofactor inducing cellular and tissue structure impairments. However, this condition alone is not enough to determine new disease onset. Due to the opposing results reported over the years, there is still a considerable lack of knowledge on the role covered by AATD in vascular diseases. A renewed interest in this research field should be encouraged to grant new solid evidence and validate the putative role of AATD screening and replacement therapy as useful diagnostic and treatment tools.
Collapse
Affiliation(s)
- Laura Pini
- Department of Clinical and Experimental Sciences, University of Brescia, Italy.,Respiratory Medicine Unit, ASST - Spedali Civili di Brescia, Brescia, Italy
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Manuela Ciarfaglia
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Alessandro Pini
- Departement de épidemiologie d'Intervention et Formation, Epicentre, Paris, France
| | - Marianna Arici
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Claudio Tantucci
- Department of Clinical and Experimental Sciences, University of Brescia, Italy.,Respiratory Medicine Unit, ASST - Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
5
|
Thomas AM, Chaban V, Pischke SE, Orrem HL, Bosnes V, Sunde K, Seljeflot I, Lundqvist C, Nakstad ER, Andersen GØ, Schjalm C, Mollnes TE, Barratt-Due A. Complement ratios C3bc/C3 and sC5b-9/C5 do not increase the sensitivity of detecting acute complement activation systemically. Mol Immunol 2021; 141:273-279. [PMID: 34906905 DOI: 10.1016/j.molimm.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Complement activation plays an important pathogenic role in numerous diseases. The ratio between an activation product and its parent protein is suggested to be more sensitive to detect complement activation than the activation product itself. In the present study we explored whether the ratio between the activation product and the parent protein for C3 (C3bc/C3) and for C5 (sC5b-9/C5) increased the sensitivity to detect complement activation in acute clinical settings compared to the activation product alone. MATERIALS AND METHODS Samples from patients with acute heart failure following ST-elevated myocardial infarction (STEMI) and from patients with out-of-hospital cardiac arrest (OHCA) were used. C3, C3bc and C5, sC5b-9 were analysed in 629 and 672 patient samples, respectively. Healthy controls (n = 20) served to determine reference cut-off values for activation products and ratios, defined as two SD above the mean. RESULTS Increased C3bc/C3- and sC5b-9/C5 ratios were vastly dependent on C3bc and sC5b-9. Thus, 99.5 % and 98.1 % of the increased C3bc/C3- and sC5b-9/C5 ratios were solely dependent on increased C3bc and sC5b-9, respectively. Significantly decreased C3 and C5 caused increased ratios in only 3/600 (0.5 %) and 4/319 (1.3 %) samples, respectively. Strong correlations between C3bc and C3bc/C3-ratio and between sC5b-9 and sC5b-9/C5-ratio were found in the STEMI- (r = 0.926 and r = 0.786, respectively) and the OHCA-population (r = 0.908 and r = 0.843, respectively; p < 0.0001 for all). Importantly, sC5b-9 identified worse outcome groups better than sC5b-9/C5-ratio. CONCLUSION C3bc and sC5b-9 were sensitive markers of complement activation. The ratios of C3bc/C3 and sC5b-9/C5 did not improve detection of complement activation systemically.
Collapse
Affiliation(s)
- Anub Mathew Thomas
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Norway
| | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway
| | - Hilde Lang Orrem
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway
| | - Vidar Bosnes
- Department of Immunology, Section of Medical Immunology, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sunde
- Division of Emergencies and Critical Care, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Norway; Department of Cardiology, Oslo University Hospital, Norway
| | - Christofer Lundqvist
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Akershus University Hospital, Oslo, Norway; Health Services Research Unit, Akershus University Hospital, Oslo, Norway
| | - Espen Rostrup Nakstad
- Norwegian National Unit for CBRNE Medicine, Division of Medicine, Oslo University Hospital, Norway
| | | | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway.
| |
Collapse
|
6
|
Nilsson Wadström B, Persson M, Engström G, Nilsson PM. Aortic Stiffness, Inflammation, and Incidence of Cardiovascular Events in Elderly Participants From the General Population. Angiology 2021; 73:51-59. [PMID: 34013787 DOI: 10.1177/00033197211017406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Low-grade inflammation and arterial stiffness are key factors in the development of vascular aging. However, the interplay between arterial stiffness and inflammation for cardiovascular (CV) disease is unclear. Aortic pulse wave velocity (aPWV) and the inflammatory markers, high-sensitivity C-reactive protein (CRP) and orosomucoid, were measured in 2710 participants (median age: 72 years). These participants were followed up for a mean of 7.6 years for a composite CV disease end point. Per 1 interquartile range increment of CRP and orosomucoid, respectively, aPWV increased by 0.19 m/s (95% CI: 0.07-0.32) and 0.19 m/s (0.11-0.27), after multifactorial adjustment. Mediation analysis showed that aPWV, after multifactorial adjustment, mediated 8% (-4, 20) of the CV disease risk associated with CRP and 8% (-4, 18) of orosomucoid risk. The associated risk increased with combinations of high aPWV and high CRP or orosomucoid. We found no evidence that arterial PWV acted as an important mediator of the relationship between systemic inflammation and CV disease risk in this elderly population. The results instead indicate an additive effect. Our study supports the view that arterial stiffness and chronic inflammation affects CV risk mainly through separate causal pathways.
Collapse
Affiliation(s)
| | - Margaretha Persson
- Department of Clinical Sciences, 5193Lund University, Skåne University Hospital, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, 5193Lund University, Skåne University Hospital, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences, 5193Lund University, Skåne University Hospital, Malmö, Sweden.,Clinical Research Unit, Department of Internal medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Sun D, Liu Y, Zhang J, Liu J, Wu Z, Liu M, Li X, Guo X, Tao L. Long-term effects of fine particulate matter exposure on the progression of arterial stiffness. Environ Health 2021; 20:2. [PMID: 33407540 PMCID: PMC7789369 DOI: 10.1186/s12940-020-00688-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prior studies have investigated the association of PM2.5 exposure with arterial stiffness measured by ankle-brachial index (ABI) and brachial-ankle pulse wave velocity (baPWV), of which conclusions are inconsistent. Moreover, limited evidence is available on the contributory role of PM2.5 exposure on the arterial stiffness index. METHODS We used the population data from the Beijing Health Management Cohort and conducted a longitudinal analysis. The annual average concentration of PM2.5 for 35 air pollutant monitoring sites in Beijing from 2014 to 2018 was used to estimate individual exposure by different interpolation methods. Multivariate logistic regression and linear regression were conducted to assess the association of annual average PM2.5 concentration with the incidence of higher baPWV, the progression of ABI, and baPWV, respectively. RESULTS The association between PM2.5 exposure and incidence of higher baPWV was not significant (OR = 1.11, 95% CI: 0.82-1.50, P = 0.497). There was - 0.16% (95% CI: - 0.43-0.11%) decrease in ABI annually and 1.04% (95% CI: 0.72-1.37%) increase in baPWV annually with each increment of 10 μg/m3 average PM2.5 concentration. CONCLUSIONS Long-term exposure to PM2.5 was associated with the progression of arterial stiffness in Beijing. This study suggests that improvement of air quality may help to prevent arterial stiffness.
Collapse
Affiliation(s)
- Dianqin Sun
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yue Liu
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| | - Jie Zhang
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| | - Jia Liu
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| | - Zhiyuan Wu
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| | - Mengyang Liu
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Australia
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| | - Lixin Tao
- School of Public Health, Capital Medical University, Beijing, 100069 China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069 China
| |
Collapse
|
8
|
Burkhardt NB, Röll S, Staudt A, Elleder D, Härtle S, Costa T, Alber A, Stevens MP, Vervelde L, Schusser B, Kaspers B. The Long Pentraxin PTX3 Is of Major Importance Among Acute Phase Proteins in Chickens. Front Immunol 2019; 10:124. [PMID: 30774632 PMCID: PMC6367253 DOI: 10.3389/fimmu.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
The expression level of acute phase proteins (APPs) mirrors the health status of an individual. In human medicine, C-reactive protein (CRP), and other members of the pentraxin family are of significant relevance for assessing disease severity and prognosis. In chickens, however, which represent the most common livestock species around the world, no such marker has yet gained general acceptance. The aim of this study was therefore, to characterize chicken pentraxin 3 (chPTX3) and to evaluate its applicability as a general marker for inflammatory conditions. The mammalian and chicken PTX3 proteins were predicted to be similar in sequence, domain organization and polymeric structure. Nevertheless, some characteristics like certain sequence sections, which have varied during the evolution of mammals, and species-specific glycosylation patterns, suggest distinct biological functions. ChPTX3 is constitutively expressed in various tissues but, interestingly, could not be found in splenic tissue samples without stimulation. However, upon treatment with lipopolysaccharide (LPS), PTX3 expression in chicken spleens increased to 95-fold within hours. A search for PTX3 reads in various publicly available RNA-seq data sets of chicken spleen and bursa of Fabricius also showed that PTX3 expression increases within days after experimental infection with viral and bacterial pathogens. An experimental infection with avian pathogenic E.coli and qPCR analysis of spleen samples further established a challenge dose-dependent significant up-regulation of chPTX3 in subclinically infected birds of up to over 150-fold as compared to untreated controls. Our results indicate the potential of chPTX3 as an APP marker to monitor inflammatory conditions in poultry flocks.
Collapse
Affiliation(s)
- Nina B. Burkhardt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Susanne Röll
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anke Staudt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Taiana Costa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Alber
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Schusser
- Reproductive Biotechnology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
9
|
Arterial Stiffness in Early Phases of Prehypertension. UPDATES IN HYPERTENSION AND CARDIOVASCULAR PROTECTION 2019. [DOI: 10.1007/978-3-319-75310-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Ljungman PLS, Li W, Rice MB, Wilker EH, Schwartz J, Gold DR, Koutrakis P, Benjamin EJ, Vasan RS, Mitchell GF, Hamburg NM, Mittleman MA. Long- and short-term air pollution exposure and measures of arterial stiffness in the Framingham Heart Study. ENVIRONMENT INTERNATIONAL 2018; 121:139-147. [PMID: 30205320 PMCID: PMC6221919 DOI: 10.1016/j.envint.2018.08.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Studies of air pollution exposure and arterial stiffness have reported inconsistent results and large studies employing the reference standard of arterial stiffness, carotid-femoral pulse-wave velocity (CFPWV), have not been conducted. AIM To study long-term exposure to ambient fine particles (PM2.5), proximity to roadway, and short-term air pollution exposures in relation to multiple measures of arterial stiffness in the Framingham Heart Study. METHODS We assessed central arterial stiffness using CFPWV, forward pressure wave amplitude, mean arterial pressure and augmentation index. We investigated long-and short-term air pollution exposure associations with arterial stiffness with linear regressions using long-term residential PM2.5 (2003 average from a spatiotemporal model using satellite data) and proximity to roadway in addition to short-term averages of PM2.5, black carbon, particle number, sulfate, nitrogen oxides, and ozone from stationary monitors. RESULTS We examined 5842 participants (mean age 51 ± 16, 54% women). Living closer to a major roadway was associated with higher arterial stiffness (0.11 m/s higher CFPWV [95% CI: 0.01, 0.22] living <50 m vs 400 ≤ 1000 m). We did not observe association between arterial stiffness measures and long-term PM2.5 or short-term levels of PM2.5, particle number, sulfate or ozone. Higher levels of black carbon and nitrogen oxides in the previous days were unexpectedly associated with lower arterial stiffness. CONCLUSIONS Long-term exposure to PM2.5 was not associated with arterial stiffness but positive associations with living close to a major road may suggest that pollutant mixtures very nearby major roads, rather than PM2.5, may affect arterial stiffness. Furthermore, short-term air pollution exposures were not associated with higher arterial stiffness.
Collapse
Affiliation(s)
- Petter L S Ljungman
- Environmental Epidemiology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Cardiovascular Epidemiology Research Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Danderyds Hospital, Stockholm, Sweden.
| | - Wenyuan Li
- Cardiovascular Epidemiology Research Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mary B Rice
- Cardiovascular Epidemiology Research Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elissa H Wilker
- Cardiovascular Epidemiology Research Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA, USA; Preventive Medicine and Cardiology Sections, Department of Medicine, Boston University School of Medicine, MA, USA; Department of Epidemiology, Boston University School of Public Health, MA, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA, USA; Preventive Medicine and Cardiology Sections, Department of Medicine, Boston University School of Medicine, MA, USA; Department of Epidemiology, Boston University School of Public Health, MA, USA
| | | | - Naomi M Hamburg
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA, USA; Preventive Medicine and Cardiology Sections, Department of Medicine, Boston University School of Medicine, MA, USA; Department of Epidemiology, Boston University School of Public Health, MA, USA
| | - Murray A Mittleman
- Cardiovascular Epidemiology Research Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Chen L, Xiong S, Liu Y, Lin M, Wang J, Zhong R, Zhao J, Liu W, Zhu L, Shang X. C-Reactive Protein Can Be an Early Predictor of Poststroke Apathy in Acute Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2018; 27:1861-1869. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
|
12
|
Ramachandran B, Stabley JN, Cheng SL, Behrmann AS, Gay A, Li L, Mead M, Kozlitina J, Lemoff A, Mirzaei H, Chen Z, Towler DA. A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. J Biol Chem 2018; 293:7942-7968. [PMID: 29626090 DOI: 10.1074/jbc.ra118.002046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
In aortic vascular smooth muscle (VSM), the canonical Wnt receptor LRP6 inhibits protein arginine (Arg) methylation, a new component of noncanonical Wnt signaling that stimulates nuclear factor of activated T cells (viz NFATc4). To better understand how methylation mediates these actions, MS was performed on VSM cell extracts from control and LRP6-deficient mice. LRP6-dependent Arg methylation was regulated on >500 proteins; only 21 exhibited increased monomethylation (MMA) with concomitant reductions in dimethylation. G3BP1, a known regulator of arteriosclerosis, exhibited a >30-fold increase in MMA in its C-terminal domain. Co-transfection studies confirm that G3BP1 (G3BP is Ras-GAP SH3 domain-binding protein) methylation is inhibited by LRP6 and that G3BP1 stimulates NFATc4 transcription. NFATc4 association with VSM osteopontin (OPN) and alkaline phosphatase (TNAP) chromatin was increased with LRP6 deficiency and reduced with G3BP1 deficiency. G3BP1 activation of NFATc4 mapped to G3BP1 domains supporting interactions with RIG-I (retinoic acid inducible gene I), a stimulus for mitochondrial antiviral signaling (MAVS) that drives cardiovascular calcification in humans when mutated in Singleton-Merten syndrome (SGMRT2). Gain-of-function SGMRT2/RIG-I mutants increased G3BP1 methylation and synergized with osteogenic transcription factors (Runx2 and NFATc4). A chemical antagonist of G3BP, C108 (C108 is 2-hydroxybenzoic acid, 2-[1-(2-hydroxyphenyl)ethylidene]hydrazide CAS 15533-09-2), down-regulated RIG-I-stimulated G3BP1 methylation, Wnt/NFAT signaling, VSM TNAP activity, and calcification. G3BP1 deficiency reduced RIG-I protein levels and VSM osteogenic programs. Like G3BP1 and RIG-I deficiency, MAVS deficiency reduced VSM osteogenic signals, including TNAP activity and Wnt5-dependent nuclear NFATc4 levels. Aortic calcium accumulation is decreased in MAVS-deficient LDLR-/- mice fed arteriosclerotic diets. The G3BP1/RIG-I/MAVS relay is a component of Wnt signaling. Targeting this relay may help mitigate arteriosclerosis.
Collapse
Affiliation(s)
- Bindu Ramachandran
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John N Stabley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Su-Li Cheng
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Abraham S Behrmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Austin Gay
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Li Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Megan Mead
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dwight A Towler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|