1
|
Hummelgaard S, Hvid H, Birn H, Glerup S, Tom N, Bilgin M, Kirchhoff JE, Weyer K. Lack of renoprotective effects by long-term PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin in obese ZSF1 rats. Am J Physiol Renal Physiol 2025; 328:F48-F67. [PMID: 39556312 DOI: 10.1152/ajprenal.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). Despite the entry of sodium glucose cotransporter 2 (SGLT2) inhibitors, CKD persists as a medical challenge. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition reduces low-density lipoprotein (LDL)-cholesterol, a major risk factor of CVD. Interestingly, studies indicate that PCSK9 inhibition decreases proteinuria in kidney disease, complementing the reduced CVD risk. This study aimed to validate obese ZSF1 rats as a model for the renoprotective effects of PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin for 15 wk. Obese rats revealed a significant reduction in measured glomerular filtration rate (mGFR) and increased urine albumin/creatinine ratio (UACR) during follow-up compared with lean controls. Alirocumab treatment resulted in a decline in mGFR and increased UACR compared with vehicle-treated obese rats. Immunohistochemistry showed increased fibrosis and inflammation in kidney tissue from obese rats treated with empagliflozin or alirocumab, whereas hepatic cholesterol and triglyceride levels were lowered compared with vehicle-treated obese rats. Although alirocumab lowered circulating free cholesterol levels throughout the treatment period, certain cholesteryl esters were increased at the end of the study, resulting in no overall difference in total cholesterol levels in the alirocumab group. Correspondingly, only a trend toward increased hepatic LDL-receptor levels was observed. In conclusion, these findings suggest that alirocumab treatment aggravates kidney dysfunction in obese ZSF1 rats. Moreover, in contrast to the renoprotective properties of empagliflozin observed in patients with CKD, empagliflozin did not ameliorate kidney disease progression in the obese ZSF1 rat.NEW & NOTEWORTHY New treatments to slow kidney disease progression and reduce cardiovascular disease risk are needed for chronic kidney disease (CKD). We investigated the cholesterol-lowering PCSK9 inhibitor alirocumab as a new treatment for proteinuric CKD and the effect of SGLT2 inhibition using empagliflozin in obese ZSF1 rats. Regarding renoprotection, our findings were contradictory with previous preclinical studies and clinical data, suggesting that different pathophysiological mechanisms may apply to this rat model.
Collapse
Affiliation(s)
- Sandra Hummelgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardio-Renal Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Henning Hvid
- Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark
| | - Henrik Birn
- Department of Clinical Medicine and Renal Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Draupnir Bio, c/o INCUBA Skejby, Aarhus, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Callewaert B, Gsell W, Lox M, Backes WH, Jones EAV, Himmelreich U. Intravoxel incoherent motion as a surrogate marker of perfused vascular density in rat brain. NMR IN BIOMEDICINE 2024; 37:e5148. [PMID: 38556903 DOI: 10.1002/nbm.5148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
Intravoxel incoherent motion (IVIM) MRI has emerged as a valuable technique for the assessment of tissue characteristics and perfusion. However, there is limited knowledge about the relationship between IVIM-derived measures and changes at the level of the vascular network. In this study, we investigated the potential use of IVIM MRI as a noninvasive tool for measuring changes in cerebral vascular density. Variations in quantitative immunohistochemical measurements of the vascular density across different regions in the rat brain (cortex, corpus callosum, hippocampus, thalamus, and hypothalamus) were related to the pseudo-diffusion coefficient D* and the flowing blood fraction f in healthy Wistar rats. We assessed whether region-wise differences in the vascular density are reflected by variations in the IVIM measurements and found a significant positive relationship with the pseudo-diffusion coefficient (p < 0.05, β = 0.24). The effect of cerebrovascular alterations, such as blood-brain barrier (BBB) disruption on the perfusion-related IVIM parameters, is not well understood. Therefore, we investigated the effect of BBB disruption on the IVIM measures in a rat model of metabolic and vascular comorbidities (ZSF1 obese rat) and assessed whether this affects the relationship between the cerebral vascular density and the noninvasive IVIM measurements. We observed increased vascular permeability without detecting any differences in diffusivity, suggesting that BBB leakage is present before changes in the tissue integrity. We observed no significant difference in the relationship between cerebral vascular density and the IVIM measurements in our model of comorbidities compared with healthy normotensive rats.
Collapse
Affiliation(s)
- Bram Callewaert
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Biomedical MRI Unit, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Department of Imaging and Pathology, Biomedical MRI Unit, KU Leuven, Leuven, Belgium
| | - Marleen Lox
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Walter H Backes
- Departments of Neurology and Radiology and Nuclear Medicine, Institute for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Institute for Mental Health & Neuroscience (MHeNs), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
- Department of Cardiology, Institute for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical MRI Unit, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Wang J, Casimiro-Garcia A, Johnson BG, Duffen J, Cain M, Savary L, Wang S, Nambiar P, Lech M, Zhao S, Xi L, Zhan Y, Olson J, Stejskal JA, Lin H, Zhang B, Martinez RV, Masek-Hammerman K, Schlerman FJ, Dower K. A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes. Sci Rep 2023; 13:16919. [PMID: 37805649 PMCID: PMC10560236 DOI: 10.1038/s41598-023-43759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCβ, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/β inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/β inhibition to T2D and obesity in humans is warranted.
Collapse
Affiliation(s)
- Ju Wang
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| | | | - Bryce G Johnson
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Duffen
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michael Cain
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Mediar Therapeutics, Boston, MA, USA
| | - Leigh Savary
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Instem Life Science Systems Ltd, Mount Ida College, South Hadley, MA, USA
| | - Stephen Wang
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Novartis Gene Therapies, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Prashant Nambiar
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Strand Therapeutics, Cambridge, MA, USA
| | - Matthew Lech
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shanrong Zhao
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Amunix Pharmaceuticals, San Francisco, CA, USA
| | - Li Xi
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Yutian Zhan
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Olson
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - James A Stejskal
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Hank Lin
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Sunovion Pharmaceuticals Inc., Marlborough, MA, USA
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Data Sciences, Biogen, Cambridge, MA, USA
| | - Robert V Martinez
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Center for Technological Innovation, Pfizer Worldwide Research and Development, San Francisco, CA, USA
| | | | - Franklin J Schlerman
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Ken Dower
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
4
|
Luo W, Tang S, Xiao X, Luo S, Yang Z, Huang W, Tang S. Translation Animal Models of Diabetic Kidney Disease: Biochemical and Histological Phenotypes, Advantages and Limitations. Diabetes Metab Syndr Obes 2023; 16:1297-1321. [PMID: 37179788 PMCID: PMC10168199 DOI: 10.2147/dmso.s408170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Animal models play a crucial role in studying the pathogenesis of diseases, developing new drugs, identifying disease risk markers, and improving means of prevention and treatment. However, modeling diabetic kidney disease (DKD) has posed a challenge for scientists. Although numerous models have been successfully developed, none of them can encompass all the key characteristics of human DKD. It is essential to choose the appropriate model according to the research needs, as different models develop different phenotypes and have their limitations. This paper provides a comprehensive overview of biochemical and histological phenotypes, modeling mechanisms, advantages and limitations of DKD animal models, in order to update relevant model information and provide insights and references for generating or selecting the appropriate animal models to fit different experimental needs.
Collapse
Affiliation(s)
- Wenting Luo
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiang Xiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Simin Luo
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Zixuan Yang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Songqi Tang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| |
Collapse
|
5
|
Petzuch B, Benardeau A, Hofmeister L, Meyer J, Hartmann E, Pavkovic M, Mathar I, Sandner P, Ellinger-Ziegelbauer H. Urinary miRNA profiles in chronic kidney injury - Benefits of extracellular vesicle enrichment and miRNAs as potential biomarkers for renal fibrosis, glomerular injury and endothelial dysfunction. Toxicol Sci 2022; 187:35-50. [PMID: 35244176 DOI: 10.1093/toxsci/kfac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Micro-RNAs (miRNAs) are regulators of gene expression and play an important role in physiological homeostasis and disease. In biofluids miRNAs can be found in protein complexes or in extracellular vesicles (EVs). Altered urinary miRNAs are reported as potential biomarkers for chronic kidney disease (CKD). In this context we compared established urinary protein biomarkers for kidney injury with urinary miRNA profiles in obese ZSF1 and hypertensive renin transgenic rats. Additionally, the benefit of urinary EV enrichment was investigated in vivo and the potential association of urinary miRNAs with renal fibrosis in vitro. Kidney damage in both rat models was confirmed by histopathology, proteinuria, and increased levels of urinary protein biomarkers. In total 290 miRNAs were elevated in obese ZSF1 rats compared to lean controls, while 38 miRNAs were altered in obese ZSF1 rats during 14 to 26 weeks of age. These 38 miRNAs correlated better with disease progression than established urinary protein biomarkers. MiRNAs increased in obese ZSF1 rats were associated with renal inflammation, fibrosis, and glomerular injury. Eight miRNAs were also changed in urinary EVs of renin transgenic rats, including one which might play a role in endothelial dysfunction. EV enrichment increased the number and detection level of several miRNAs implicated in renal fibrosis in vitro and in vivo. Our results show the benefit of EV enrichment for miRNA detection and the potential of total urine and urinary EV-associated miRNAs as biomarkers of altered kidney physiology, renal fibrosis and glomerular injury, and disease progression in hypertension and obesity induced CKD.
Collapse
Affiliation(s)
- B Petzuch
- Bayer AG, Pharmaceuticals, Investigational Toxicology, 42096 Wuppertal, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Investigative Toxicology, Department of Non-Clinical Drug Safety, 88400 Biberach (Riß), Germany
| | - A Benardeau
- Novo Nordisk A/S,Cardio-Renal Biology, Måløv, Denmark
| | - L Hofmeister
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - J Meyer
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - E Hartmann
- Bayer AG, Pharmaceuticals, Toxicology, Pathology and Clinical Pathology, 42096 Wuppertal, Germany
| | - M Pavkovic
- Bayer AG, Pharmaceuticals, Investigational Toxicology, 42096 Wuppertal, Germany
| | - I Mathar
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - P Sandner
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany.,Hannover Medical School, Institute of Pharmacology, 30625 Hannover, Germany
| | | |
Collapse
|
6
|
Castañeda TR, Méndez M, Davison I, Elvert R, Schwahn U, Boldina G, Rocher C, Scherer P, Singh K, Bangari DS, Falkenhahn M, Kannt A, Konkar A, Larsen PJ, Arbeeny C, Dhal PK, Hübschle T. The Novel Phosphate and Bile Acid Sequestrant Polymer SAR442357 Delays Disease Progression in a Rat Model of Diabetic Nephropathy. J Pharmacol Exp Ther 2021; 376:190-203. [PMID: 33203659 DOI: 10.1124/jpet.120.000285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
As a gut-restricted, nonabsorbed therapy, polymeric bile acid sequestrants (BAS) play an important role in managing hyperlipidemia and hyperglycemia. Similarly, nonabsorbable sequestrants of dietary phosphate have been used for the management of hyperphosphatemia in end-stage renal disease. To evaluate the potential utility of such polymer sequestrants to treat type 2 diabetes (T2D) and its associated renal and cardiovascular complications, we synthesized a novel polymeric sequestrant, SAR442357, possessing optimized bile acid (BA) and phosphate sequestration characteristics. Long-term treatment of T2D obese cZucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) with SAR442357 resulted in enhanced sequestration of BAs and phosphate in the gut, improved glycemic control, lowering of serum cholesterol, and attenuation of diabetic kidney disease (DKD) progression. In comparison, colesevelam, a BAS with poor phosphate binding properties, did not prevent DKD progression, whereas losartan, an angiotensin II receptor blocker that is widely used to treat DKD, showed no effect on hyperglycemia. Analysis of hepatic gene expression levels of the animals treated with SAR442357 revealed upregulation of genes responsible for the biosynthesis of cholesterol and BAs, providing clear evidence of target engagement and mode of action of the new sequestrant. Additional hepatic gene expression pathway changes were indicative of an interruption of the enterohepatic BA cycle. Histopathological analysis of ZSF1 rat kidneys treated with SAR442357 further supported its nephroprotective properties. Collectively, these findings reveal the pharmacological benefit of simultaneous sequestration of BAs and phosphate in treating T2D and its associated comorbidities and cardiovascular complications. SIGNIFICANCE STATEMENT: A new nonabsorbed polymeric sequestrant with optimum phosphate and bile salt sequestration properties was developed as a treatment option for DKD. The new polymeric sequestrant offered combined pharmacological benefits including glucose regulation, lipid lowering, and attenuation of DKD progression in a single therapeutic agent.
Collapse
Affiliation(s)
- Tamara R Castañeda
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - María Méndez
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Ian Davison
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Ralf Elvert
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Uwe Schwahn
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Galina Boldina
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Corinne Rocher
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Petra Scherer
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Kuldeep Singh
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Dinesh S Bangari
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Mechthilde Falkenhahn
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Aimo Kannt
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Anish Konkar
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Philip J Larsen
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Cynthia Arbeeny
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Pradeep K Dhal
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| | - Thomas Hübschle
- R&D Diabetes (T.R.C., R.E., A.Ka., A.Ko., P.J.L., C.A., T.H.), Integrated Drug Discovery (M.M.), Biomarkers and Clinical Bioanalysis (U.S.), Translational In Vivo Models, Global Discovery Pathology (P.S.), and Global Research Project Management (M.F.), Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany; C&BD Haverhill Operations, Sanofi GB Genzyme Limited, Haverhill, Suffolk, United Kingdom (I.D.); R&D Translational Sciences France, Bioinformatics, Sanofi, Chilly-Mazarin Cedex, France (C.R.); Translational In Vivo Models, Global Discovery Pathology, Framingham, Massachusetts (K.S., D.S.B.); and Pharmaceutical Development Platform, Sanofi Global R&D, Waltham, Massachusetts (P.K.D.)
| |
Collapse
|
7
|
Liu G, Shea CM, Jones JE, Price GM, Warren W, Lonie E, Yan S, Currie MG, Profy AT, Masferrer JL, Zimmer DP. Praliciguat inhibits progression of diabetic nephropathy in ZSF1 rats and suppresses inflammation and apoptosis in human renal proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F697-F711. [PMID: 32865013 DOI: 10.1152/ajprenal.00003.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Praliciguat, a clinical-stage soluble guanylate cyclase (sGC) stimulator, increases cGMP via the nitric oxide-sGC pathway. Praliciguat has been shown to be renoprotective in rodent models of hypertensive nephropathy and renal fibrosis. In the present study, praliciguat alone and in combination with enalapril attenuated proteinuria in the obese ZSF1 rat model of diabetic nephropathy. Praliciguat monotherapy did not affect hemodynamics. In contrast, enalapril monotherapy lowered blood pressure but did not attenuate proteinuria. Renal expression of genes in pathways involved in inflammation, fibrosis, oxidative stress, and kidney injury was lower in praliciguat-treated obese ZSF1 rats than in obese control rats; fasting glucose and cholesterol were also lower with praliciguat treatment. To gain insight into how tubular mechanisms might contribute to its pharmacological effects on the kidneys, we studied the effects of praliciguat on pathological processes and signaling pathways in cultured human primary renal proximal tubular epithelial cells (RPTCs). Praliciguat inhibited the expression of proinflammatory cytokines and secretion of monocyte chemoattractant protein-1 in tumor necrosis factor-α-challenged RPTCs. Praliciguat treatment also attenuated transforming growth factor-β-mediated apoptosis, changes to a mesenchyme-like cellular phenotype, and phosphorylation of SMAD3 in RPTCs. In conclusion, praliciguat improved proteinuria in the ZSF1 rat model of diabetic nephropathy, and its actions in human RPTCs suggest that tubular effects may contribute to its renal benefits, building upon strong evidence for the role of cGMP signaling in renal health.
Collapse
Affiliation(s)
- Guang Liu
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Courtney M Shea
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Juli E Jones
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Gavrielle M Price
- Department of Medical Writing, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - William Warren
- Department of Analytical Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Elisabeth Lonie
- Department of Analytical Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Shu Yan
- Department of Discovery Informatics, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Mark G Currie
- Department of Research Management, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Albert T Profy
- Department of Development Management, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Jaime L Masferrer
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Daniel P Zimmer
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| |
Collapse
|
8
|
Nielsen PM, Mariager CØ, Mølmer M, Sparding N, Genovese F, Karsdal MA, Nørregaard R, Bertelsen LB, Laustsen C. Hyperpolarized [1- 13 C] alanine production: A novel imaging biomarker of renal fibrosis. Magn Reson Med 2020; 84:2063-2073. [PMID: 32452096 DOI: 10.1002/mrm.28326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Renal tubulointerstitial fibrosis is strongly linked to the progressive decline of renal function seen in chronic kidney disease. State-of-the-art noninvasive diagnostic modalities are currently unable to detect the earliest changes associated with the onset of fibrosis. This study was undertaken to evaluate the potential for detecting the earliest alterations in fibrogenesis using a biofluid-based method and metabolic hyperpolarized [1-13 C]pyruvate imaging. METHODS We evaluated renal fibrosis in a combined ischemia reperfusion-induced and streptozotocin-induced diabetic nephropathy rodent model by hyperpolarized [1-13 C]pyruvate MRI and correlated the metabolic MRI parameters with biomarkers of fibrosis measured on renal tissue and plasma/urine. RESULTS The hyperglycemic rats experienced maladaptive injury repair after the ischemic insults, as shown by the elevation in the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Renal function was significantly impaired in the ischemic hyperglycemic kidney, as seen in the reduced perfusion and single-kidney glomerular filtration rate. A deranged energy metabolism was detected in the ischemic hyperglycemic kidney, as seen in the reduced fractional perfusion of lactate. Renal fibrosis biomarkers correlated significantly with the alanine production. CONCLUSION Hyperpolarized carbon-13 MRI provides a promising approach to assess renal fibrosis in an animal model of fibrotic chronic kidney disease. In particular, the metabolic supply of amino acids for fibrogenesis (alanine production) correlates well with biomarkers of fibrosis. Thus, [1-13 C]pyruvate-to-[1-13 C]alanine conversion might be a candidate for noninvasive assessment of renal fibrogenesis.
Collapse
Affiliation(s)
- Per Mose Nielsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Maria Mølmer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Zimmer DP, Shea CM, Tobin JV, Tchernychev B, Germano P, Sykes K, Banijamali AR, Jacobson S, Bernier SG, Sarno R, Carvalho A, Chien YT, Graul R, Buys ES, Jones JE, Wakefield JD, Price GM, Chickering JG, Milne GT, Currie MG, Masferrer JL. Olinciguat, an Oral sGC Stimulator, Exhibits Diverse Pharmacology Across Preclinical Models of Cardiovascular, Metabolic, Renal, and Inflammatory Disease. Front Pharmacol 2020; 11:419. [PMID: 32322204 PMCID: PMC7156612 DOI: 10.3389/fphar.2020.00419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling. Olinciguat, (R)-3,3,3-trifluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl)pyrimidin-4-yl)amino)methyl)-2-hydroxypropanamide, is a new sGC stimulator currently in Phase 2 clinical development. To understand the potential clinical utility of olinciguat, we studied its pharmacokinetics, tissue distribution, and pharmacologic effects in preclinical models. Olinciguat relaxed human vascular smooth muscle and was a potent inhibitor of vascular smooth muscle proliferation in vitro. These antiproliferative effects were potentiated by the phosphodiesterase 5 inhibitor tadalafil, which did not inhibit vascular smooth muscle proliferation on its own. Olinciguat was orally bioavailable and predominantly cleared by the liver in rats. In a rat whole body autoradiography study, olinciguat-derived radioactivity in most tissues was comparable to plasma levels, indicating a balanced distribution between vascular and extravascular compartments. Olinciguat was explored in rodent models to study its effects on the vasculature, the heart, the kidneys, metabolism, and inflammation. Olinciguat reduced blood pressure in normotensive and hypertensive rats. Olinciguat was cardioprotective in the Dahl rat salt-sensitive hypertensive heart failure model. In the rat ZSF1 model of diabetic nephropathy and metabolic syndrome, olinciguat was renoprotective and associated with lower circulating glucose, cholesterol, and triglycerides. In a mouse TNFα-induced inflammation model, olinciguat treatment was associated with lower levels of endothelial and leukocyte-derived soluble adhesion molecules. The pharmacological features of olinciguat suggest that it may have broad therapeutic potential and that it may be suited for diseases that have both vascular and extravascular pathologies.
Collapse
Affiliation(s)
- Daniel P Zimmer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Courtney M Shea
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jenny V Tobin
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Boris Tchernychev
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Peter Germano
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Kristie Sykes
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Ali R Banijamali
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Sarah Jacobson
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Sylvie G Bernier
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Renee Sarno
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Andrew Carvalho
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Yueh-Tyng Chien
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Regina Graul
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Emmanuel S Buys
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Juli E Jones
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - James D Wakefield
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Gavrielle M Price
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | | | - G Todd Milne
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Mark G Currie
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jaime L Masferrer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| |
Collapse
|
10
|
Preguiça I, Alves A, Nunes S, Gomes P, Fernandes R, Viana SD, Reis F. Diet-Induced Rodent Models of Diabetic Peripheral Neuropathy, Retinopathy and Nephropathy. Nutrients 2020; 12:nu12010250. [PMID: 31963709 PMCID: PMC7019796 DOI: 10.3390/nu12010250] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Unhealthy dietary habits are major modifiable risk factors for the development of type 2 diabetes mellitus, a metabolic disease with increasing prevalence and serious consequences. Microvascular complications of diabetes, namely diabetic peripheral neuropathy (DPN), retinopathy (DR), and nephropathy (DN), are associated with high morbidity rates and a heavy social and economic burden. Currently, available therapeutic options to counter the evolution of diabetic microvascular complications are clearly insufficient, which strongly recommends further research. Animal models are essential tools to dissect the molecular mechanisms underlying disease progression, to unravel new therapeutic targets, as well as to evaluate the efficacy of new drugs and/or novel therapeutic approaches. However, choosing the best animal model is challenging due to the large number of factors that need to be considered. This is particularly relevant for models induced by dietary modifications, which vary markedly in terms of macronutrient composition. In this article, we revisit the rodent models of diet-induced DPN, DR, and DN, critically comparing the main features of these microvascular complications in humans and the criteria for their diagnosis with the parameters that have been used in preclinical research using rodent models, considering the possible need for factors which can accelerate or aggravate these conditions.
Collapse
Affiliation(s)
- Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), University of Porto, 4200-450 Porto, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.P.); (A.A.); (S.N.); (P.G.); (R.F.); (S.D.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-053
| |
Collapse
|
11
|
Zhang B, Zhao S, Neuhaus I. canvasDesigner: a versatile interactive high-resolution scientific multi-panel visualization toolkit. Bioinformatics 2019; 34:3419-3420. [PMID: 29726919 DOI: 10.1093/bioinformatics/bty377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Summary We present a bioinformatics and systems biology visualization toolkit harmonizing real time interactive exploring and analyzing of big data, full-fledged customizing of look-n-feel and producing multi-panel publication-ready figures in PDF format simultaneously. Availability and implementation Source code and detailed user guides are available at http://canvasxpress.org, https://baohongz.github.io/canvasDesigner and https://baohongz.github.io/canvasDesigner/demo_video.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Baohong Zhang
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Shanrong Zhao
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Isaac Neuhaus
- Computational Genomics, Bristol-Myers Squibb Company, Pennington, NJ, USA
| |
Collapse
|
12
|
Jiang W, Zhang Z, Sun Y, Zhang Y, Zhang L, Liu H, Peng R. Construction and analysis of a diabetic nephropathy related protein-protein interaction network reveals nine critical and functionally associated genes. Comput Biol Chem 2019; 83:107115. [PMID: 31561072 DOI: 10.1016/j.compbiolchem.2019.107115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN) is one of the common diabetic complications, but the mechanisms are still largely unknown. In this study, we constructed a DN related protein-protein interaction network (DNPPIN) on the basis of RNA-seq analysis of renal cortices of DN and normal mice, and the STRING database. We analyzed DNPPIN in detail revealing nine critical proteins which are central in DNPPIN, and contained in one network module which is functionally enriched in ribosome, nucleic acid binding and metabolic process. Overall, this study identified nine critical and functionally associated protein-coding genes concerning DN. These genes could be a starting point of future research towards the goal of elucidating the mechanisms of DN pathogenesis and progression.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yajuan Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Rasmussen DGK, Nielsen PM, Kasab-Oglo ÖY, Nielsen SH, Kierulf-Lassen C, Karsdal MA, Genovese F, Nørregaard R. A non-invasive biomarker of type III collagen degradation reflects ischaemia reperfusion injury in rats. Nephrol Dial Transplant 2018; 34:1301-1309. [DOI: 10.1093/ndt/gfy345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Maintenance of kidney function in kidney allografts remains a challenge, as the allograft often progressively develops fibrosis after kidney transplantation. Fibrosis is caused by the accumulation of extracellular matrix proteins like type I and III collagen (COL I and III) that replace the functional tissue. We assessed the concentrations of a neo-epitope fragment of COL III generated by matrix metalloproteinase-9 cleavage (C3M) in two rat models resembling the ischaemic injury taking place following kidney transplantation.
Methods
We measured C3M in urine (U-C3M) and plasma (P-C3M) samples of rats subjected to unilateral nephrectomy followed by sham operation (NTx) or ischaemia reperfusion injury (NTxIRI) as well as in rats subjected to bilateral ischaemia reperfusion injury (BiIRI). Levels of U-C3M were normalized to urinary creatinine and were correlated to plasma creatinine, blood urea nitrogen, messenger ribonucleic acid (mRNA) of markers of kidney injury, and mRNA and protein levels of markers of tissue repair and fibrosis.
Results
Levels of U-C3M were significantly elevated 7 days after ischaemia reperfusion in the NTxIRI. BiIRI animals showed higher levels of U-C3M after 7 and 14 days of reperfusion but not at 21 days. P-C3M did not change in any of the models. There was a significant correlation between U-C3M and mRNA levels of fibronectin, COL I alpha 1 chain (COL Ia1) and neutrophil gelatinase-associated lipocalin (NGAL), and protein levels of alpha smooth muscle actin (αSMA), fibronectin and COL III in NTxIRI but not in NTx animals. Levels of U-C3M increased significantly in the BiIRI animals subsequent to reperfusion, and mirrored the histological alterations. Furthermore, U-C3M was associated with the extent of fibrosis, and remained elevated even after plasma creatinine levels decreased.
Conclusions
These results demonstrate that degradation of COL III increases after ischaemia reperfusion injury, and that U-C3M may be a non-invasive marker of tissue repair and fibrosis in the ischaemic kidney.
Collapse
Affiliation(s)
- Daniel Guldager Kring Rasmussen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Per Mose Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Özlem Yashar Kasab-Oglo
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Signe Holm Nielsen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
- Department of Biomedicine and Biotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Koszegi S, Molnar A, Lenart L, Hodrea J, Balogh DB, Lakat T, Szkibinszkij E, Hosszu A, Sparding N, Genovese F, Wagner L, Vannay A, Szabo AJ, Fekete A. RAAS inhibitors directly reduce diabetes-induced renal fibrosis via growth factor inhibition. J Physiol 2018; 597:193-209. [PMID: 30324679 PMCID: PMC6312411 DOI: 10.1113/jp277002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Increased activation of the renin-angiotensin-aldosterone system (RAAS) and elevated growth factor production are of crucial importance in the development of renal fibrosis leading to diabetic kidney disease. The aim of this study was to provide evidence for the antifibrotic potential of RAAS inhibitor (RAASi) treatment and to explore the exact mechanism of this protective effect. We found that RAASi ameliorate diabetes-induced renal interstitial fibrosis and decrease profibrotic growth factor production. RAASi prevents fibrosis by acting directly on proximal tubular cells, and inhibits hyperglycaemia-induced growth factor production and thereby fibroblast activation. These results suggest a novel therapeutic indication and potential of RAASi in the treatment of renal fibrosis. ABSTRACT In diabetic kidney disease (DKD) increased activation of renin-angiotensin-aldosterone system (RAAS) contributes to renal fibrosis. Although RAAS inhibitors (RAASi) are the gold standard therapy in DKD, the mechanism of their antifibrotic effect is not yet clarified. Here we tested the antifibrotic and renoprotective action of RAASi in a rat model of streptozotocin-induced DKD. In vitro studies on proximal tubular cells and renal fibroblasts were also performed to further clarify the signal transduction pathways that are directly altered by hyperglycaemia. After 5 weeks of diabetes, male Wistar rats were treated for two more weeks per os with the RAASi ramipril, losartan, spironolactone or eplerenone. Proximal tubular cells were cultured in normal or high glucose (HG) medium and treated with RAASi. Platelet-derived growth factor (PDGF) or connective tissue growth factor (CTGF/CCN2)-induced renal fibroblasts were also treated with various RAASi. In diabetic rats, reduced renal function and interstitial fibrosis were ameliorated and elevated renal profibrotic factors (TGFβ1, PDGF, CTGF/CCN2, MMP2, TIMP1) and alpha-smooth muscle actin (αSMA) levels were decreased by RAASi. HG increased growth factor production of HK-2 cells, which in turn induced activation and αSMA production of fibroblasts. RAASi decreased tubular PDGF and CTGF expression and reduced production of extracellular matrix (ECM) components in fibroblasts. In proximal tubular cells, hyperglycaemia-induced growth factor production increased renal fibroblast transformation, contributing to the development of fibrosis. RAASi, even in non-antihypertensive doses, decreased the production of profibrotic factors and directly prevented fibroblast activation. All these findings suggest a novel therapeutic role for RAASi in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Agnes Molnar
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dora Bianka Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Lakat
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Edgar Szkibinszkij
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Nadja Sparding
- Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Zhang C, Dower K, Zhang B, Martinez RV, Lin LL, Zhao S. Computational identification and validation of alternative splicing in ZSF1 rat RNA-seq data, a preclinical model for type 2 diabetic nephropathy. Sci Rep 2018; 8:7624. [PMID: 29769602 PMCID: PMC5955895 DOI: 10.1038/s41598-018-26035-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Obese ZSF1 rats exhibit spontaneous time-dependent diabetic nephropathy and are considered to be a highly relevant animal model of progressive human diabetic kidney disease. We previously identified gene expression changes between disease and control animals across six time points from 12 to 41 weeks. In this study, the same data were analysed at the isoform and exon levels to reveal additional disease mechanisms that may be governed by alternative splicing. Our analyses identified alternative splicing patterns in genes that may be implicated in disease pathogenesis (such as Shc1, Serpinc1, Epb4.1l5, and Il-33), which would have been overlooked in standard gene-level analysis. The alternatively spliced genes were enriched in pathways related to cell adhesion, cell–cell interactions/junctions, and cytoskeleton signalling, whereas the differentially expressed genes were enriched in pathways related to immune response, G protein-coupled receptor, and cAMP signalling. Our findings indicate that additional mechanistic insights can be gained from exon- and isoform-level data analyses over standard gene-level analysis. Considering alternative splicing is poorly conserved between rodents and humans, it is noted that this work is not translational, but the point holds true that additional insights can be gained from alternative splicing analysis of RNA-seq data.
Collapse
Affiliation(s)
- Chi Zhang
- Precision Medicine, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Ken Dower
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Baohong Zhang
- Precision Medicine, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Robert V Martinez
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Lih-Ling Lin
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Shanrong Zhao
- Precision Medicine, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Esquejo RM, Salatto CT, Delmore J, Albuquerque B, Reyes A, Shi Y, Moccia R, Cokorinos E, Peloquin M, Monetti M, Barricklow J, Bollinger E, Smith BK, Day EA, Nguyen C, Geoghegan KF, Kreeger JM, Opsahl A, Ward J, Kalgutkar AS, Tess D, Butler L, Shirai N, Osborne TF, Steinberg GR, Birnbaum MJ, Cameron KO, Miller RA. Activation of Liver AMPK with PF-06409577 Corrects NAFLD and Lowers Cholesterol in Rodent and Primate Preclinical Models. EBioMedicine 2018; 31:122-132. [PMID: 29673898 PMCID: PMC6014578 DOI: 10.1016/j.ebiom.2018.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK β1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis. These effects require AMPK activity in the hepatocytes. Treatment of hyperlipidemic rats or cynomolgus monkeys with PF-06409577 for 6 weeks resulted in a reduction in circulating cholesterol. Together these data suggest that activation of AMPK β1 complexes with PF-06409577 is capable of impacting multiple facets of liver disease and represents a promising strategy for the treatment of NAFLD and NASH in humans. PF-06409577 is a potent activator of AMPK β1 containing complexes. PF-06409577 improves liver function and systemic dyslipidemia in rodents through hepatic AMPK activation. PF-06409577-mediated reductions in circulating cholesterol was observed in monkeys and diabetic rats.
NAFLD and NASH remain poorly treated and are diseases which are growing rapidly in societal cost. Therapeutic mechanisms that impact multiple aspects of the dysregulated metabolic regulation of NAFLD and NASH are needed. Pharmacological AMPK activation has long held promise as a treatment for NAFLD because of its impact on hepatic lipid and cholesterol synthesis, as well as its proposed anti-inflammatory and anti-lipolytic actions. Recent development of clinically viable small molecule AMPK activators, including PF-06409577, has enabled their more thorough characterization in preclinical disease models.
Collapse
Affiliation(s)
- Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | | | - Jake Delmore
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | | | - Allan Reyes
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Yuji Shi
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Rob Moccia
- Computational Sciences, Pfizer Inc, Cambridge, MA, USA
| | - Emily Cokorinos
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | | | - Mara Monetti
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Jason Barricklow
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc, Groton, CT, USA
| | - Eliza Bollinger
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Brennan K Smith
- Division of Endocrinology and Metabolism, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Emily A Day
- Division of Endocrinology and Metabolism, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Chuong Nguyen
- Primary Pharmacology Group, Pfizer Inc, Groton, CT, USA
| | | | - John M Kreeger
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | - Alan Opsahl
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | - Jessica Ward
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Amit S Kalgutkar
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - David Tess
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Lynne Butler
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | - Norimitsu Shirai
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | - Timothy F Osborne
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | | | | | - Russell A Miller
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA.
| |
Collapse
|