1
|
Liu AR, Sarkar N, Cress JD, de Jesus TJ, Vadlakonda A, Centore JT, Griffith AD, Rohr B, McCormick TS, Cooper KD, Ramakrishnan P. NF-κB c-Rel is a critical regulator of TLR7-induced inflammation in psoriasis. EBioMedicine 2024; 110:105452. [PMID: 39586195 PMCID: PMC11625363 DOI: 10.1016/j.ebiom.2024.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Nuclear factor kappa B (NF-κB) c-Rel is a psoriasis susceptibility locus, however mechanisms underlying c-Rel transactivation during disease are poorly understood. Inflammation in psoriasis can be triggered following Toll-like Receptor 7 (TLR7) signalling in dendritic cells (DCs), and c-Rel is a critical regulator of DC function. Here, we studied the mechanism of TLR7-induced c-Rel-mediated inflammation in DCs. METHODS The overall expression of c-Rel was analysed in skin sections from patients with psoriasis in human transcriptomics datasets as well as the imiquimod-induced psoriasis mouse model. The function of c-Rel in DCs following TLR7 stimulation was determined by c-Rel CRISPR/Cas9 knockout DC2.4 immortalised cells and primary bone marrow derived dendritic cells from c-Rel knockout C57BL6/J mice. FINDINGS c-Rel is highly expressed in lesional skin of patients with psoriasis and TLR7-induced psoriatic lesions in mice. c-Rel deficiency protected mice from the disease, and specifically compromised TLR7-induced, and not TLR9- or TLR3-induced, inflammation in dendritic cells. Mechanistically, c-Rel deficiency disrupted activating NF-κB dimers and allowed binding of inhibitory NF-κB homodimers to the IL-1β and IL-6 promoters thus inhibiting their expression. This functionally compromises the ability of c-Rel deficient DCs to induce Th17 polarisation, which is critical in psoriasis pathogenesis. INTERPRETATION Our findings reveal that c-Rel is a key regulator of TLR7-mediated dendritic cell-dependent inflammation, and that targeting c-Rel-dependent signalling could prove an effective strategy to dampen excessive inflammation in TLR7-related skin inflammation. FUNDING A complete list of funding sources that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Angela Rose Liu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Nandini Sarkar
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Jordan D Cress
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Tristan J de Jesus
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Ananya Vadlakonda
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Joshua T Centore
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA
| | - Alexis D Griffith
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Bethany Rohr
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Kevin D Cooper
- Department of Dermatology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA; Louis Stokes Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA.
| |
Collapse
|
2
|
Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Hao H, Ren H. Research progress on the activation mechanism of NLRP3 inflammasome in septic cardiomyopathy. Immun Inflamm Dis 2023; 11:e1039. [PMID: 37904696 PMCID: PMC10549821 DOI: 10.1002/iid3.1039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
Sepsis is an uncontrolled host response to infection, resulting in a clinical syndrome involving multiple organ dysfunctions. Cardiac damage is the most common organ damage in sepsis. Uncontrolled inflammatory response is an important mechanism in the pathogenesis of septic cardiomyopathy (SCM). NLRP3 inflammasome promotes inflammatory response by controlling the activation of caspase-1 and the release of pro-inflammatory cytokines interleukin IL-1β and IL-18. The role of NLRP3 inflammasome has received increasing attention, but its activation mechanism and regulation of inflammation in SCM remain to be investigated.
Collapse
Affiliation(s)
- Yuqi Wen
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Wenli Liu
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Jinyan Dong
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Qingkuo Liu
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Hongsheng Ren
- Department of Intensive Care UnitShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
3
|
Patinote C, Raevens S, Baumann A, Pellegrin E, Bonnet PA, Deleuze-Masquéfa C. [1,2,4]triazolo[4,3- a]quinoxaline as Novel Scaffold in the Imiqualines Family: Candidates with Cytotoxic Activities on Melanoma Cell Lines. Molecules 2023; 28:5478. [PMID: 37513350 PMCID: PMC10384284 DOI: 10.3390/molecules28145478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers and is the deadliest form of skin cancer, essentially due to metastases. Novel therapies are always required, since cutaneous melanoma develop resistance to oncogenic pathway inhibition treatment. The Imiqualine family is composed of heterocycles diversely substituted around imidazo[1,2-a]quinoxaline, imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline scaffolds, which display interesting activities on a panel of cancer cell lines, especially melanoma cell lines. We have designed and prepared novel compounds based on the [1,2,4]triazolo[4,3-a]quinoxaline scaffold through a common synthetic route, using 1-chloro-2-hydrazinoquinoxaline and an appropriate aldehyde. Cyclization is ensured by an oxidation-reduction mechanism using chloranil. The substituents on positions 1 and 8 were chosen based on previous structure-activity relationship (SAR) studies conducted within our heterocyclic Imiqualine family. Physicochemical parameters of all compounds have also been predicted. A375 melanoma cell line viability has been evaluated for 16 compounds. Among them, three novel [1,2,4]triazolo[4,3-a]quinoxalines display cytotoxic activities. Compounds 16a and 16b demonstrate relative activities in the micromolar range (respectively, 3158 nM and 3527 nM). Compound 17a shows the best EC50 of the novel series (365 nM), even if EAPB02303 remains the lead of the entire Imiqualine family (3 nM).
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Sandy Raevens
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Amélie Baumann
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Eloise Pellegrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| |
Collapse
|
4
|
He W, Dong H, Wu C, Zhong Y, Li J. The role of NLRP3 inflammasome in sepsis: A potential therapeutic target. Int Immunopharmacol 2023; 115:109697. [PMID: 37724951 DOI: 10.1016/j.intimp.2023.109697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023]
Abstract
Sepsis is the host immune imbalance following infection and leads to organ dysfunction, with highly complicated pathophysiology. To date, sepsis still lacks effective therapies with high mortality rates. Recently, numerous studies have highlighted the potential of NLRP3 inflammasome as a therapeutic target during sepsis. NLRP3 inflammasome is a protein complex that could induce the activation of caspase-1 and the following release of pro-inflammatory cytokines such as IL-1β and IL-18. It was demonstrated that NLRP3 inflammasome was involved in the development and progression of sepsis. In contrast, inhibition of NLRP3 inflammasome activation could mitigate the inflammatory response, protect organ function, and improve outcomes and mortality. This paper illustrated the activation pathways of the NLRP3 inflammasome and its possible molecular mechanisms in the pathophysiology of sepsis. Meanwhile, the beneficial effects of inhibiting NLRP3 activation in sepsis-related organ damage were also presented. In addition, the diverse role of NLRP3 inflammasome in bacterial clearance was addressed. Of note, several herbal extracts targeting NLRP3 inflammasome in the treatment of sepsis were emphasized. We hope that this paper could provide a basis for further drug research targeting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyun Dong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Identification of Potential Antitubulin Agents with Anticancer Assets from a Series of Imidazo[1,2- a]quinoxaline Derivatives: In Silico and In Vitro Approaches. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020802. [PMID: 36677860 PMCID: PMC9867416 DOI: 10.3390/molecules28020802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Computer-aided drug design is a powerful and promising tool for drug design and development, with a reduced cost and time. In the current study, we rationally selected a library of 34 fused imidazo[1,2-a]quinoxaline derivatives and performed virtual screening, molecular docking, and molecular mechanics for a lead identification against tubulin as an anticancer molecule. The computational analysis and pharmacophoric features were represented as 1A2; this was a potential lead against tubulin, with a maximized affinity and binding score at the colchicine-binding site of tubulin. The efficiency of this lead molecule was further identified using an in vitro assay on a tubulin enzyme and the anticancer potential was established using an MTT assay. Compound 1A2 (IC50 = 4.33-6.11 µM against MCF-7, MDA-MB-231, HCT-116, and A549 cell lines) displayed encouraging results similar to the standard drug colchicine in these in vitro studies, which further confirmed the effectiveness of CADD in new drug developments. Thus, we successfully applied the utility of in silico techniques to identify the best plausible leads from the fused azaheterocycles.
Collapse
|
6
|
Goel KK, Kharb R, Rajput SK. Design, Synthesis and Biological Evaluation of Imidazole-Substituted/Fused Aryl Derivatives Targeting Tubulin Polymerization as Anticancer Agents. SYNOPEN 2023. [DOI: 10.1055/s-0042-1751835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractThe development of new pharmacologically active molecules targeting tubulin polymerization has recently attracted great interest in research groups. In efforts to develop new potent anticancer compounds, imidazole-tethered/fused pharmacologically active aryl derivatives possessing different substitution patterns targeting tubulin polymerization have been rationally designed and synthesized. The target molecules (P1-5 and KG1-5) were synthesized by multistep syntheses involving the reaction of intermediate 2-aminophenyl-tethered imidazoles with appropriate reactants in the presence of p-TsOH under different conditions. The synthesized compounds displayed moderate to good cytotoxicity, comparable to that of colchicine, against four cancer cell lines (MCF-7, MD-MBA-231, A549, and HCT-116). Compounds P2 and P5, with an imidazoloquinoxaline moiety, emerged as potential leads with cytotoxicity profiles against these cell lines similar to colchicine. Compounds P2 and P5 arrested cell division at the G2/M phase and prevented cancerous cell growth through induced apoptosis. These results favored the hypothesis that the compounds might act by binding to the colchicine binding site, which was further confirmed with the help of a tubulin polymerization inhibition assay. The results encourage the further exploration of imidazoloquinoxalines as promising leads that deserve advanced clinical investigation.
Collapse
Affiliation(s)
- Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University)
- Amity Institute of Pharmacy, Amity University
| | | | | |
Collapse
|
7
|
Mostafavi Hosseini F, Ashourpour M, Taheri S, Tavakoli-Yaraki M, Salami S, Shahsavari Z, Kazerouni F. Novel Derivatives of Tetrahydrobenzo (g) Imidazo[α-1,2] Quinoline Induce Apoptosis Via ROS Production in the Glioblastoma Multiforme Cells, U-87MG. Asian Pac J Cancer Prev 2022; 23:3885-3893. [PMID: 36444602 PMCID: PMC9930943 DOI: 10.31557/apjcp.2022.23.11.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Despite newer therapeutic approaches against glioblastoma multiforme (GBM), the severely poor prognosis and treatment resistance are still disadvantages that slow down the patient's recovery process. Consistent with the need to develop more effective and optimized therapies to control GBM cell growth, the effects of a new series of tetrahydrobenzo(g)imidazo[α-1,2]quinolone derivatives on GBM cell growth and the underlying mechanism is investigated in the current study. METHODS U-87MG cell line, glioblastoma multiforme and normal skin fibroblast cell line, AGO1522 were used to study the anticancer effects of 5 derivatives of tetrahydrobenzo(g)imidazo[α-1,2]quinolone and paclitaxel as a standard drug. The cytotoxic effect on cell growth was assessed using the MTT assay. Annexin V FITC staining and PI staining were applied to detect apoptosis and cell cycle distribution using flow cytometry. The extent of reactive oxygen species (ROS) formation was assessed using the fluorescent probe 7-dichlorofluorescin diacetate and caspase-3 activity using the colorimetric assay kit. RESULTS Among the 5 derivatives of tetrahydrobenzo(g)imidazo[α-1,2]quinolone, the 5c derivative (5-(6-bromo-2-chloroquinolin-3-yl)-9a-hydroxy-8,8-dimethyl-4-Nitro-2,3,5,5a,7,8,9,9a-octahydroimidazo[α-1,2]quinoline-6(1H)) showed the strongest cytotoxic effect on U-87MG cells in a time and Dose-dependent manner compared to the other derivatives and paclitaxel. The IC50 (11.91 M) of the 5c derivative induced apoptosis accompanied by a significant increase in sub-G1 and super-G2 phases of U-87MG cells. The increased level of cellular ROS and caspase 3 activity after treatment of U-87MG cells with 5c derivative was significant compared to untreated cells. CONCLUSION Our data provide insights into the potent anticancer effects of the 5c-derivative of tetrahydrobenzo(g)imidazo[α-1,2]quinolone on GBM cells via the caspase-dependent apoptotic pathway, which may merit further attention.
Collapse
Affiliation(s)
- Fatemeh Mostafavi Hosseini
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Ashourpour
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Salman Taheri
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, I.R., Iran.
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Siamak Salami
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,For Correspondence: . Fatemeh Mostafavi Hosseini and Maryam Ashourpour have equal contribution in this study
| | - Faranak Kazerouni
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Goel KK, Rajput SK, Kumar A, Nandi NK, Joshi G, Kharb R. Imidazoquinoxaline as a Privileged Fused Pharmacophore in Anticancer Drug Development: A Review of Synthetic Strategies and Medicinal Aspects. ChemistrySelect 2022. [DOI: 10.1002/slct.202200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kapil Kumar Goel
- Deparment of Pharmaceutical Sciences Gurukul Kangri (Deemed to be University) Haridwar 249404 India
- Amity Institute of Pharmacy Amity University Noida Uttar Pradesh 201301 India
| | - Satyendra Kumar Rajput
- Deparment of Pharmaceutical Sciences Gurukul Kangri (Deemed to be University) Haridwar 249404 India
| | - Ashwani Kumar
- Deparment of Pharmaceutical Sciences Gurukul Kangri (Deemed to be University) Haridwar 249404 India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan G.T Road, Moga Punjab India- 142001
| | - Gaurav Joshi
- School of Pharmacy Graphic Era Hill University Dehradun 248002 India
| | - Rajeev Kharb
- Amity Institute of Pharmacy Amity University Noida Uttar Pradesh 201301 India
| |
Collapse
|
9
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
10
|
Kaushik D, Granato JT, Macedo GC, Dib PRB, Piplani S, Fung J, da Silva AD, Coimbra ES, Petrovsky N, Salunke DB. Toll-like receptor-7/8 agonist kill Leishmania amazonensis by acting as pro-oxidant and pro-inflammatory agent. J Pharm Pharmacol 2021; 73:1180-1190. [PMID: 33940589 PMCID: PMC8359742 DOI: 10.1093/jpp/rgab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Evaluation of the anti-Leishmanial activity of imidazoquinoline-based TLR7/8 agonists. METHODS TLR7/8-active imidazoquinolines (2 and 3) were synthesized and assessed for activity against Leishmania amazonensis-intracellular amastigotes using mouse peritoneal macrophages. The production of reactive oxygen species (ROS), nitric oxide (NO) and cytokines was determined in infected and non-infected macrophages. KEY FINDINGS The imidazoquinolines, 2 and 3, were primarily agonists of TLR7 with compound 3 also showing modest TLR8 activity. Docking studies showed them to occupy the same binding pocket on TLR7 and 8 as the known agonists, imiquimod and resiquimod. Compounds 2 and 3 inhibited the growth of L. amazonensis-intracellular amastigotes with the most potent compound (3, IC50 = 5.93 µM) having an IC50 value close to miltefosine (IC50 = 4.05 µM), a known anti-Leishmanial drug. Compound 3 induced macrophages to produce ROS, NO and inflammatory cytokines that likely explain the anti-Leishmanial effects. CONCLUSIONS This study shows that activating TLR7 using compounds 2 or 3 induces anti-Leishmanial activity associated with induction of free radicals and inflammatory cytokines able to kill the parasites. While 2 and 3 had a very narrow cytotoxicity window for macrophages, this identifies the possibility to further develop this chemical scaffold to less cytotoxic TLR7/8 agonist for potential use as anti-Leishmanial drug.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Juliana T Granato
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson C Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Paula R B Dib
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Sakshi Piplani
- Vaxine Pty Ltd., Warradale, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Johnson Fung
- Vaxine Pty Ltd., Warradale, South Australia, Australia
| | - Adilson D da Silva
- Departamento de Química, I.C.E., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B., Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, Brazil
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
- National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Patinote C, Deleuze-Masquéfa C, Kaddour KH, Vincent LA, Larive R, Zghaib Z, Guichou JF, Assaf MD, Cuq P, Bonnet PA. Imidazo[1,2-a]quinoxalines for melanoma treatment with original mechanism of action. Eur J Med Chem 2020; 212:113031. [PMID: 33309473 DOI: 10.1016/j.ejmech.2020.113031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
The malignant transformation of melanocytes causes several thousand deaths each year, making melanoma an important public health concern. Melanoma is the most aggressive skin cancer, which incidence has regularly increased over the past decades. We described here the preparation of new compounds based on the 1-(3,4-dihydroxyphenyl)imidazo[1,2-a]quinoxaline structure. Different positions of the quinoxaline moiety were screened to introduce novel substituents in order to study their influence on the biological activity. Several alkylamino or alkyloxy groups were also considered to replace the methylamine of our first generation of Imiqualines. Imidazo[1,2-a]pyrazine derivatives were also designed as potential minimal structure. The investigation on A375 melanoma cells displayed interesting in vitro low nanomolar cytotoxic activity. Among them, 9d (EAPB02303) is particularly remarkable since it is 20 times more potent than vemurafenib, the reference clinical therapy used on BRAF mutant melanoma. Contrary to the first generation, EAPB02303 does not inhibit tubulin polymerization, as confirmed by an in vitro assay and a molecular modelisation study. The mechanism of action for EAPB02303 highlighted by a transcriptomic analysis is clearly different from a panel of 12 well-known anticancer drugs. In vivoEAPB02303 treatment reduced tumor size and weight of the A375 human melanoma xenografts in a dose-dependent manner, correlated with a low mitotic index but not with necrosis.
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France; Société d'Accélération du Transfert de Technologies (SATT AxLR), CSU, 950 rue Saint Priest, 34090, Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France.
| | - Kamel Hadj Kaddour
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Romain Larive
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Zahraa Zghaib
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Jean-François Guichou
- CNRS, UMR 5048, INSERM, U105, Université de Montpellier, Centre de Biochimie Structurale, 34090, Montpellier, France
| | - Mona Diab Assaf
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
12
|
Tampucci S, Guazzelli L, Burgalassi S, Carpi S, Chetoni P, Mezzetta A, Nieri P, Polini B, Pomelli CS, Terreni E, Monti D. pH-Responsive Nanostructures Based on Surface Active Fatty Acid-Protic Ionic Liquids for Imiquimod Delivery in Skin Cancer Topical Therapy. Pharmaceutics 2020; 12:pharmaceutics12111078. [PMID: 33187215 PMCID: PMC7697672 DOI: 10.3390/pharmaceutics12111078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
For topical treatment of skin cancer, the design of pH-responsive nanocarriers able to selectively release the drug in the tumor acidic microenvironment represents a reliable option for targeted delivery. In this context, a series of newly synthesized surface-active fatty acid-protic ionic liquids (FA-PILs), based on tetramethylguanidinium cation and different natural hydrophobic fatty acid carboxylates, have been investigated with the aim of developing a pH-sensitive nanostructured drug delivery system for cutaneous administration in the skin cancer therapy. The capability of FA-PILs to arrange in micelles when combined with each other and with the non-ionic surfactant d-α-Tocopherol polyethylene glycol succinate (vitamin E TPGS) as well as their ability to solubilize imiquimod, an immuno-stimulant drug used for the treatment of skin cancerous lesions, have been demonstrated. The FA-PILs-TPGS mixed micelles showed pH-sensitivity, suggesting that the acidic environment of cancer cells can trigger nanostructures’ swelling and collapse with consequent rapid release of imiquimod and drug cytotoxic potential enhancement. The in vitro permeation/penetration study showed that the micellar formulation produced effective imiquimod concentrations into the skin exposed to acid environment, representing a potential efficacious and selective drug delivery system able to trigger the drug release in the tumor tissues, at lower and less irritating drug concentrations.
Collapse
Affiliation(s)
- Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- Correspondence: (S.T.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- Correspondence: (S.T.); (L.G.)
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Eleonora Terreni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| |
Collapse
|
13
|
An S, Hu H, Li Y, Hu Y. Pyroptosis Plays a Role in Osteoarthritis. Aging Dis 2020; 11:1146-1157. [PMID: 33014529 PMCID: PMC7505276 DOI: 10.14336/ad.2019.1127] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed novel forms of cell death beyond the canonical types of cellular apoptosis and necrosis, and these novel forms of cell death are induced by extreme microenvironmental factors. Pyroptosis, a type of regulated cell death, occurs when pattern recognition receptors (PRRs) induce the activation of cysteine-aspartic protease 1 (caspase-1) or caspase-11, which can trigger the release of the pyrogenic cytokines interleukin-1β (IL-1β) and IL-18. Osteoarthritis (OA), the most common joint disease worldwide, is characterized by low-grade inflammation and increased levels of cytokines, including IL-1β and IL-18. Additionally, some damaged chondrocytes associated with OA exhibit morphological changes consistent with pyroptosis, suggesting that this form of regulated cell death may contribute significantly to the pathology of OA. This review summarizes the molecular mechanisms of pyroptosis and shows the critical role of NLRP3 (NLR family, pyrin domain containing 3; NLR refers to "nucleotide-binding domain, leucine-rich repeat") inflammasomes. We also provide evidence describing potential role of pyroptosis in OA, including the relationship with OA risk factors and the contribution to cartilage degradation, synovitis and OA pain.
Collapse
Affiliation(s)
- Senbo An
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyu Hu
- 2Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng Li
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,3National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihe Hu
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Patinote C, Cirnat N, Hadj-Kaddour K, Cuq P, Bonnet PA, Deleuze-Masquéfa C. Substantial Cellular Penetration of Fluorescent Imidazoquinoxalines. J Fluoresc 2020; 30:1499-1512. [PMID: 32778995 DOI: 10.1007/s10895-020-02595-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022]
Abstract
Fluorescent tools have revolutionized our capability to visualize, probe, study, and understand the biological cellular properties, processes and dynamics, enabling researchers to improve their knowledge for example in cancer field. In this paper, we use the peculiar properties of our Imiqualines derivatives to study their cellular penetration and distribution in a human melanoma cell line A375 using confocal microscopy. Preliminary results on colocalization with the potent protein target c-Kit of our lead are also described.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Pierre Cuq
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
15
|
Wu M, Tian Y, Wang Q, Guo C. Gout: a disease involved with complicated immunoinflammatory responses: a narrative review. Clin Rheumatol 2020; 39:2849-2859. [PMID: 32382830 DOI: 10.1007/s10067-020-05090-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Gout is a disease with acute and/or chronic inflammation and tissue damage induced by the precipitation of monosodium urate crystal (MSU) crystals in bone joints, kidneys, and subcutaneous sites. In recent years, with the continuous research on gout animal models and patient clinical investigations, the mechanism of inflammation activation of gout has been further discovered. Studies have shown that pro-inflammatory factors such as interleukin (IL)-1β, IL-8 and IL-17, NLRP3 inflammasome, and tumor necrosis factor alpha (TNF-α), anti-inflammatory factors such as IL-10, IL-37 are all involved in the MSU-induced gout inflammatory process. And the immune cells in gout, including neutrophils, monocytes/macrophages, and lymphocytes, all play important roles in the pathogenesis of gout. In this review, we mainly emphasize the understanding of various cytokines, inflammasome, and immune cells involved in the onset of gout, in order to provide a systematic and theoretical basis for the novel exploration of inflammatory therapeutic targets for gout.
Collapse
Affiliation(s)
- Meimei Wu
- Southern Medical University Second Clinical College, Shenzhen, 518101, China
- Department of Rheumatology and Immunology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, 518101, China
| | - Ye Tian
- Department of Rheumatology and Immunology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, 518101, China
- Department of Rheumatology and Immunology, Guangdong Medical University Shenzhen Baoan Clinical College, Shenzhen, 518101, China
- Department of Rheumatology and Immunology, Shenzhen University Second affiliated Hospital, Shenzhen, 518101, China
| | - Qianqian Wang
- Department of Rheumatology and Immunology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, 518101, China
- Department of Rheumatology and Immunology, Guangdong Medical University Shenzhen Baoan Clinical College, Shenzhen, 518101, China
- Department of Rheumatology and Immunology, Shenzhen University Second affiliated Hospital, Shenzhen, 518101, China
| | - Chengshan Guo
- Department of Rheumatology and Immunology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen, 518101, China.
- Department of Rheumatology and Immunology, Guangdong Medical University Shenzhen Baoan Clinical College, Shenzhen, 518101, China.
- Department of Rheumatology and Immunology, Shenzhen University Second affiliated Hospital, Shenzhen, 518101, China.
| |
Collapse
|
16
|
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
Collapse
|
17
|
Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:177-196. [PMID: 31259731 DOI: 10.2478/acph-2019-0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 01/19/2023]
Abstract
Surpassing heart diseases, cancer is taking the lead as the deadliest disease because of its fast rate of spreading in all parts of the world. Tireless commitment to searching for novel therapeutic medicines is a worthwhile adventure in synthetic chemistry because of the drug resistance predicament and regular outbreak of new diseases due to abnormal cell growth and proliferation. Medicinal chemistry researchers and pharmacists have unveiled quinoxaline templates as precursors of importance and valuable intermediates in drug discovery because they have been established to possess diverse pharmacological potentials. Hence, this review highlights the current versatile routes to accessing functionalized quinoxaline motifs and harnessing their documented therapeutic potentials for anticancer drug development.
Collapse
|
18
|
Gentile F, Deriu MA, Barakat K, Danani A, Tuszynski J. A Novel Interaction Between the TLR7 and a Colchicine Derivative Revealed Through a Computational and Experimental Study. Pharmaceuticals (Basel) 2018; 11:ph11010022. [PMID: 29462934 PMCID: PMC5874718 DOI: 10.3390/ph11010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 01/05/2023] Open
Abstract
The Toll-Like Receptor 7 (TLR7) is an endosomal membrane receptor involved in the innate immune system response. Its best-known small molecule activators are imidazoquinoline derivatives such as imiquimod (R-837) and resiquimod (R-848). Recently, an interaction between R-837 and the colchicine binding site of tubulin was reported. To investigate the possibility of an interaction between structural analogues of colchicine and the TLR7, a recent computational model for the dimeric form of the TLR7 receptor was used to determine a possible interaction with a colchicine derivative called CR42-24, active as a tubulin polymerization inhibitor. The estimated values of the binding energy of this molecule with respect to the TLR7 receptor were comparable to the energies of known binders as reported in a previous study. The binding to the TLR7 was further assessed by introducing genetic transformations in the TLR7 gene in cancer cell lines and exposing them to the compound. A negative shift of the IC50 value in terms of cell growth was observed in cell lines carrying the mutated TLR7 gene. The reported study suggests a possible interaction between TLR7 and a colchicine derivative, which can be explored for rational design of new drugs acting on this receptor by using a colchicine scaffold for additional modifications.
Collapse
Affiliation(s)
- Francesco Gentile
- Department of Physics, University of Alberta, AB T6G 2E1 Edmonton, Canada.
| | - Marco A Deriu
- Istituto Dalle Molle di Studi Sull'intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), CH-6928 Manno, Switzerland.
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, AB T6G 2H1 Edmonton, Canada.
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), CH-6928 Manno, Switzerland.
| | - Jack Tuszynski
- Department of Physics, University of Alberta, AB T6G 2E1 Edmonton, Canada.
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy.
- Department of Oncology, University of Alberta, AB T6G 1Z2 Edmonton, Canada.
| |
Collapse
|